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Motivations: Example 1 – Crowd Motion

2
Source: CGTN, Youtube

http://www.youtube.com/watch?v=9ulY7N3dZ9k


Motivations: Example 1 – Crowd Motion
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Motivations: Example 1 – Crowd Motion

Macroscopic approximation

4
Source: Wikipedia



Motivations: Example 1 – Crowd Motion

Macroscopic approximation
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Motivations: Example 1 – Crowd Motion
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Motivations: Example 2 – Economic Market
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Source: Unsplash



Motivations: Example 3 – Climate Change
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Source: Unsplash



Outline of the mini-course

1. MFG Models

2. Optimality Conditions

3. Numerical Methods
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1. MFG models
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1.1 Static Setting
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1.1.1 Static Setting:
Finite-Population Game
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Notation

● N players

● action space

● each player selects an action 

● it induces a population profile of actions

● each player pays a cost

● goal of each player: minimize her own cost
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Nash Equilibrium

Main question: Is there a “stable configuration”?

Definition: Nash equilibrium (NE)
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An Example: Population Distribution

Population distribution game

Version 1: target position
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Population distribution game

Version 2: attraction to the group
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An Example: Population Distribution



Population distribution game

Version 3: repulsion from the group

Example without Nash equilibrium?
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Population distribution game

Version 4: spatial preferences + attraction to / repulsion from the group
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An Example: Population Distribution



An Example: Population Distribution

Schelling's model of segregation

● 2 types of agents
● each agent desires a fraction B of their neighbors to be of the same type
● repeat at each round:

○ check if the fraction is good
○ if not, relocate to a free location with a good fraction

● Schelling’s result: threshold value Bseg ≅ ⅓ such that

If B > Bseg , then the iterations lead to segregation

22Source: Schelling, T.C., 1971. Dynamic models of segregation. Journal of mathematical sociology, 1(2), pp.143-186.



Mixed Strategies

Warning: a pure NE does not always exist
● N players

● each player chooses a mixed strategy

● each player picks an action according to her strategy

● it induces population profiles of strategies and actions

● each player pays a cost

● goal for each player: minimize her own average cost

Note: the population distribution of actions is random

23



Mixed Strategies

Warning: a pure NE does not always exist
Nash theorem: existence of mixed NE 

24Source: Nash, J., 1951. Non-cooperative games. Annals of Mathematics, 54(2).



Mixed Strategies

Warning: a pure NE does not always exist
Nash theorem: existence of mixed NE 
Proof based on fixed point theorem:
● Kakutani’s fixed point theorem: based on the best-response mapping, which 

is in general a multi-valued mapping

● Brouwer’s fixed point theorem: “Every continuous function from a convex 
compact subset K of a Euclidean space to K itself has a fixed point.”

25Source: Kakutani, S., 1941. A generalization of Brouwer’s fixed point theorem. Duke mathematical journal, 8(3), pp.457-459.



Population Distribution Example: Mixed Strategies

Population distribution game

Version 1: target position
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Population Distribution Example: Mixed Strategies

Population distribution game

Version 2: attraction to the group
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Population Distribution Example: Mixed Strategies

Population distribution game

Version 3: repulsion from the group

What happens to the example without Nash equilibrium?
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Population Distribution Example: Mixed Strategies

Population distribution game

Version 4: spatial preferences + attraction to / repulsion from the group
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Large Population Games: N → +∞

● In many applications, the number of players is extremely large
● Intuitively, 

○ each player has a negligible impact on the rest of the population
○ the population distribution of actions becomes deterministic

● This should simplify the analysis
● Can we formalize this intuition?

30



Large Population Games: N → +∞

● In many applications, the number of players is extremely large
● Intuitively, 

○ each player has a negligible impact on the rest of the population
○ the population distribution of actions becomes deterministic

● This should simplify the analysis
● Can we formalize this intuition?
● Idea: let N go to infinity and study the problem we obtain in the limit
● Key assumptions: homogeneity and anonymity
● “Mean field game” paradigm [Lasry, Lions; Caines, Huang, Malhamé ~2006] 
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1.1.2 Static Setting:
Mean Field Game
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Key Assumptions

To pass to the mean field limit, we assume homogeneity and anonymity
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Mean Field Game: Notation

● “Infinitely many” players
● each player chooses a (mixed) strategy
● each player picks an action according to the strategy
● it induces a population distribution of actions
● each player pays a cost
● goal for each player: minimize her own average cost

34



Mean Field Game: Notation

● “Infinitely many” players
● each player chooses a (mixed) strategy
● each player picks an action according to the strategy
● it induces a population distribution of actions
● each player pays a cost
● goal for each player: minimize her own average cost

Key points:
● it is enough to understand the behavior of one representative player
● each player has no influence on the rest of the population

35



Mean Field Nash Equilibrium

Definition: mean field Nash equilibrium (MFNE)

Fixed point formulation
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Population Distribution Example: MFG Viewpoint

Population distribution game

Version 1: target position
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Population Distribution Example: MFG Viewpoint

Population distribution game

Version 2: attraction to the group
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Population Distribution Example: MFG Viewpoint

Population distribution game

Version 3: repulsion from the group

39



Population Distribution Example: MFG Viewpoint

Population distribution game

Version 4: spatial preferences + attraction to / repulsion from the group

㊟ “mean-field interactions” is more general than “interactions through the mean”

40



Approximate Nash Equilibrium

Definition: Approximate Nash equilibrium in N-player game

Intuition: An MFG equilibrium strategy provides an approximate Nash equilibrium 
in the corresponding finite-player game
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Approximate Nash Equilibrium: Example

Example: interaction through the mean

Model:

Assumption: Mean field Nash equilibrium property

Goal: ε-Nash equilibrium for N-player game
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Approximate Nash Equilibrium: Example

Example: interaction through the mean

Proof sketch:
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Remarks

● Deterministic vs randomized decisions

● Discrete vs continuous action spaces

● Non-atomic anonymous games (continuum of players)
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Summary

Main takeaways so far

45



1.2 Social optimum
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Social Optimum: Static Setting

● Goal: minimize the social cost = average cost for the agents in the population
● N-agent social cost:

● Mean field social cost:
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Social Optimum vs Nash Equilibrium

● In general the two notions are different

● The socially optimal strategy is different from the Nash equilibrium policy 

● Price of Anarchy 

48
Source: Koutsoupias, E. and Papadimitriou, C., 1999, March. Worst-case equilibria. In Annual 
symposium on theoretical aspects of computer science (pp. 404-413). Springer, Berlin, Heidelberg.



Social Optimum = Nash equilibrium: Example

In some cases, the two notions coincide. 
Example: Potential MFG with cost:
The average cost is: 
Assuming the potential convex, we have the equivalence:

Example: entropy: 

49



Exercises

Ex. 1: Find a static MFG with exactly 2 pure NE. How many mixed NE are there?

Ex. 2: Find a static MFG with exactly 2 mixed social optima.

Ex. 3: Find a static MFG with a unique mixed NE and a unique mixed SO, such 
that their values are different. Same question with “such that their values are the 
same”.

50



1.3 Dynamic Setting
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1.2.1 Dynamic Setting:
Finite-Population Game
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Dynamic N-player Game

Main difference with static case: each player has a state which evolves in time

53

“Static” game “Dynamic” game



Dynamic N-player Game: Notation

● Time

● State space

● Action space

● One-step strategy (deterministic or mixed)

● Control or policy

● Player’s state

● Population’s state
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Dynamic N-player Game: Notation

We assume homogeneity and anonymity

● Player’s dynamics

● Population’s dynamics
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Dynamic N-player Game: Notation

● Running cost

● Terminal cost

● Total cost
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Nash Equilibrium

Definition: Nash equilibrium in dynamic N-player game
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1.2.2 Dynamic Setting:
Mean Field Game
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Dynamic Mean Field Game: Notation

● Time

● State space

● Action space

● One-step strategy (deterministic or mixed)

● Control or policy

● Player’s state

● Population’s state

59



Dynamic Mean Field Game: Notation

● Player’s dynamics:

● Population distribution dynamics:

● Mean field (MF) induced by a policy:
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Dynamic Mean Field Game: Notation

● Running cost

● Terminal cost

● Total cost

● Best response (BR) to a mean field:

61



Example: Crowd Motion

● Dynamics:

● Cost:
○ Running cost:

■ cost to move (congestion):

■ discomfort (aversion):

○ Terminal cost: 
■ spatial preference:
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Mean Field Nash Equilibrium

Definition: Mean field Nash equilibrium (MFNE) in a dynamic MFG

Fixed point formulation:
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Exercises

Ex. 1: Find a dynamic MFG such that: 

(1) there is a unique NE 

(2) given the equilibrium mean field sequence, there are multiple BR

64



1.2.3 Dynamic Setting:
Continuous time & space
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MFG in Continuous Time and Space

For a (the) large(st) part, the MFG literature starts like this:

66

Source: Cardaliaguet, P., Graber, P.J., Porretta, A. and Tonon, D., 2015. Second order mean field games with degenerate diffusion and local coupling. 
Nonlinear Differential Equations and Applications NoDEA, 22(5), pp.1287-1317.

Source: Carmona, R. and Delarue, F., 2013. Probabilistic analysis of mean-field games. SIAM Journal on Control and Optimization, 51(4), pp.2705-2734.



Continuous Setting

Why do we care about continuous time & space?
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Continuous Setting

Why do we care about continuous time & space?

● Calculus!

● More natural for many applications

● Discretizing a continuous time/space process is not trivial

68



Example 4 - Epidemics  

SIR model

69

Source: Wikipedia
Source: Kermack WO, McKendrick AG (1927). "A Contribution to the Mathematical Theory 
of Epidemics". Proceedings of the Royal Society of London. Series A, Containing Papers of 
a Mathematical and Physical Character. 115 (772): 700–721.

ODE system:

Basic reproduction number:

Source: Aurell, A., Carmona, R., Dayanikli, G. and Lauriere, M., 2022. Optimal incentives to 
mitigate epidemics: a Stackelberg mean field game approach. SIAM Journal on Control and 
Optimization, 60(2), pp.S294-S322.
See also: Turinici, Hubert, et al.

where the control        is a “contact” factor that depends on the 
individual’s behavior (e.g., socialization, wearing mask, …)

The running cost encodes the individual’s preferences

It is also possible to include other aspects: vaccination, 
incentives, age structure, spatial movement, …



Example 5 - Flocking 

Cucker-Smale model

70

Source: Unsplash
Source: Cucker, F. and Smale, S., 2007. Emergent behavior in flocks. IEEE Transactions 
on automatic control, 52(5), pp.852-862.

Position and velocity:

with a matrix of interactions based on the positions:

Source: Nourian, M., Caines, P.E. and Malhamé, R.P., 2010, September. Synthesis of 
Cucker-Smale type flocking via mean field stochastic control theory: Nash equilibria. In 
2010 48th Annual Allerton Conference on Communication, Control, and Computing 
(Allerton) (pp. 814-819). IEEE.

Nourian, Caines & Malhamé’10:

Velocity change = acceleration = control
Running cost penalizes deviation from neighbors’ velocity: 



Diffusion Model

● Particle’s dynamics:

● Macroscopic distribution dynamics: 

● Link with N-particle system: propagation of chaos [Kac’76]

● Note: We can also add a transport term (convection–diffusion equation)

71
Source: Wikipedia



MFG in Continuous Time and Space

● Time

● Player’s control (deterministic)

● Player’s dynamics:

● Population dynamics: Kolmogorov-Fokker-Planck equation

72
See e.g. Bogachev, V.I., Krylov, N.V., Röckner, M. and Shaposhnikov, S.V., 2022. Fokker–Planck–Kolmogorov Equations (Vol. 207). American Mathematical Society.



MFG in Continuous Time and Space

● Cost: dependence on the mean field

○ non-local (typically “regularizing” operator)

○ local (if the distribution has a density)
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Summary of Different Settings
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               Time
Space

Discrete Continuous

Discrete

Continuous



Remarks and Extensions

● Discrete vs continuous: time, action and state spaces
● Controls:

○ Open-loop vs closed-loop
○ Deterministic vs randomized (pure vs mixed)
○ Interaction through the distribution of controls (“extended” MFG)

● Noise/perturbations:
○ With or without idiosyncratic noise (“first order” MFG)
○ With or without common noise

● Homogeneity: extension with multiple groups, major-minor, Stackelberg, …
● Anonymity: multiple groups, graphon, …

75



Characterization of MFNE

Question: 

How can we characterize and compute mean field Nash equilibria?

76



Characterization of MFNE

Question: 

How can we characterize and compute mean field Nash equilibria?

Answer: 

… in the rest of the mini-course.

77



2. Optimality Conditions
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Outline

2. Optimality conditions

2.1 Introduction

2.2 Deterministic viewpoint

2.3 Stochastic viewpoint
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2.1 Introduction
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Reminder: Dynamic MFNE

In the dynamic setting:

● Definition of MFNE

● Characterization?
○ Fixed point formulation

○ Population behavior

○ Best response characterization?

81



Optimality conditions

Large(st) part of the MFG literature starts like this:

82

Source: Cardaliaguet, P., Graber, P.J., Porretta, A. and Tonon, D., 2015. Second order mean field games with degenerate diffusion and local coupling. 
Nonlinear Differential Equations and Applications NoDEA, 22(5), pp.1287-1317.

Source: Carmona, R. and Delarue, F., 2013. Probabilistic analysis of mean-field games. SIAM Journal on Control and Optimization, 51(4), pp.2705-2734.

What do these equations mean?



2.2 Deterministic viewpoint
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2.2.1 Deterministic Viewpoint:
Discrete Setting

84



Discrete Setting: Value Function

Definition: Value function of a representative player given a mean field sequence

Value of a state = sum of future costs, when starting from this state

85



Discrete Setting: Bellman Equation

Bellman equation for the value function (Dynamic Programming Principle):

● Terminal time:

● Backward induction:

Recovering the optimal control from the value function: 

86



Discrete Setting: Forward-Backward System

Coupled system:
● Forward equation for the mean field:

● Backward equation for the value function:

● Equilibrium policy: 

Challenge: We cannot (fully) solve one equation before the other!

87



Discrete Setting: Existence and uniqueness?

Existence: generally based on fixed point formulation

Typically:

● Banach/Picard fixed point theorem

● Brouwer/Schauder fixed point theorem

88



Discrete Setting: Existence and uniqueness?

Uniqueness: two cases:

● Contractivity: uniqueness is a consequence of Banach fixed point theorem

● Monotonicity: V is monotone in L2 if:

○ Typical setting: 

○ Example: crowd motion (control = velocity) with cost = movement + crowd aversion

89
Source: Lasry, J.M. and Lions, P.L., 2007. Mean field games. Japanese journal of mathematics, 2(1), pp.229-260.



Discrete Setting: Example of Existence Proof

Sketch of existence proof:

A simple model:

90



Discrete Setting: Example of Existence Proof

Step 1: Convexity and compactness

Step 2: Continuity of 

Step 2.a: Continuity of MF?

91



Discrete Setting: Example of Existence Proof

Step 1: Convexity and compactness

Step 2: Continuity of 

Step 2.b: Continuity of BR?

92



2.2.2 Deterministic Viewpoint:
Continuous Setting

93



Continuous Setting: Value Function

Definition: Value function of a representative player given a mean field flow

Value of a state = sum of future costs, when starting from this state

Dynamic Programming Principle?

94



Continuous Setting: HJB Equation

Hamiltonian: 

Hamilton-Jacobi-Bellman equation:

Recovering the optimal control:

95



Continuous Setting: Forward-Backward System

Coupled system:

● Forward equation for the mean field:

● Backward equation for the value function:

Challenge: We cannot (fully) solve one equation before the other!

96



Existence and Uniqueness of MFNE

● Existence: generally obtained by applying a fixed point theorem, such as:

○ Banach fixed point theorem: typically applicable under “smallness” conditions (small time or 
small Lipschitz constants); gives uniqueness too

○ Schauder fixed point theorem: applicable more generally; does not yield uniqueness 

○ Compactness can be challenging

● Uniqueness:

○ Contractivity (application of Banach fixed point theorem; “smallness” assumptions)

○ Monotonicity condition (Lasry & Lions; “structural” assumption)

97



Variational MFGs

In some cases, the MFG PDE system can be interpreted as the optimality conditions for a variational problem
(See e.g. Lasry & Lions’06, Cardaliaguet & Graber’15, …)

98

MFG
Model

PDE
SystemHow can we characterize 

the solution?

Variational
Problem



MFG with Common Noise

● Common noise: randomness affecting the whole population
● Example: extra Brownian motion common to all the players
● Then the two PDEs become stochastic PDEs

See: Cardaliaguet, P., Delarue, F., Lasry, J.M. and Lions, P.L., 2019. The master equation and the convergence problem in 
mean field games:(ams-201). Princeton University Press.
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MFG with Common Noise

● Common noise: randomness affecting the whole population
● Example: extra Brownian motion common to all the players
● Convergence analysis (as N → ∞)  based on the Master equation

See: Cardaliaguet, P., Delarue, F., Lasry, J.M. and Lions, P.L., 2019. The master equation and the convergence problem in 
mean field games:(ams-201). Princeton University Press.
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Exercises

Ex. 1: For the following drift and running cost function, write the KFP equation, the 
Hamiltonian and the HJB equation:

Ex. 2: Derive optimality conditions for the social optimum problem.
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Exercises

Ex. 3 [Bogachev, Krylov, Röckner, Shaposhnikov; Thm 9.8.41]: 

Consider the MFG PDE system:

with 

Part 1: Write the player’s dynamics and the cost function.

Part 2: Show existence of a classical solution, assuming:

○      is a probability distribution on Rd with finite second moment
○                                                    are bounded and Lipschitz

102
Source: Bogachev, V.I., Krylov, N.V., Röckner, M. and Shaposhnikov, S.V., 2022. Fokker–Planck–Kolmogorov Equations (Vol. 207). American Mathematical Society.



2.3 Stochastic viewpoint
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2.3.1 Stochastic Viewpoint:
From Bellman’s Principle
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Reminder: Value Function

● Value function of a representative player given a mean field sequence

● Hamilton-Jacobi-Bellman equation:

● Actually in practice, we do not really need to know u everywhere
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Reminder: Value Function

● We want to know u and the control along the path of X

● Introduce Yt = u(t, Xt )

● Dynamics of Y :

106



2.3.2 Stochastic Viewpoint:
From Pontryagin’s Principle

107



Another point of view: Co-state

● Assume X has a deterministic evolution:

● Hamiltonian:

● Pontryagin’s maximum principle:

● In fact, Yt can be interpreted as ∂x u(t, Xt )

108



Another point of view: Co-state

● If X satisfies an SDE: 

● Hamiltonian:

● Stochastic maximum principle:

● In fact, Yt can be interpreted as ∂x u(t, Xt )

109



Another point of view: Co-state

● If X satisfies a mean field SDE: 

● Hamiltonian: 

● Stochastic maximum principle:

● Note: for the equilibrium, we need to include the consistency condition for the MF

● In fact, Yt can be interpreted as ∂x u(t, Xt )
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FBSDE Systems

In both cases (from Bellman or Pontryagin’s principles), we get an instance of a 
McKean-Vlasov forward-backward SDEs (MKV-FBSDE):

● Analysis: existence, uniqueness, …
● Link with Master equation
● See Carmona & Delarue’s book
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Exercises

Ex. 1: For the following drift and running cost function, write the MKV FBSDE 
system:

Ex. 2: Derive an FBSDE system for the social optimum problem.

112



3. Numerical Methods
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Outline

3. Numerical Methods

3.1 “Learning” in MFGs

3.2 Solving Forward-Backward Equations
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3.1 “Learning” in MFGs
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Learning in Games

● Several different meanings

● Algorithmic game theory, economics, …

● Recent successes of (machine) learning for games (Chess, Go, Stratego, …)

● Connection with Multi-Agent Reinforcement Learning (MARL)

● Most existing methods are not directly suitable for large populations

● MFG can be a way to scale-up in terms of number of agents
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Learning in MFG

● Fixed point formulation

● Fixed point iterations

● Converges if strict contraction, but otherwise might fail (oscillations, …)
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Learning in MFG

● To stabilize the learning, several variants have been introduced

○ Averaging over past iterations 
⤳ Fictitious Play, Online Mirror Descent, …

○ Smoothing the policy 
⤳ Softmax/Boltzmann policies, …

○ Regularization through the cost
⤳ Entropic penalty, …

○ …

118



Example: Fictitious Play

For simplicity, we consider a static MFG

● 2 cities connected by 2 roads; players = drivers; action = choice of road

● Initialization: everyone chooses road 1 ⇒ traffic jam

● Iteration 1: everyone chooses road 2 ⇒ traffic jam

● …

● No convergence

119



Example: Fictitious Play

For simplicity, we consider a static MFG

● If players react to the average of past distributions 
⇒ convergence of the mean field (but maybe not the last iterate)

120



Best Response Update

In a dynamic setting, at each iteration, we need to:

● Update the mean field

● Update the policy/control

○ optimality conditions

■ deterministic

■ stochastic

○ model-free learning (RL)

121



3.2 Solving Forward-Backward 
Equations
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Numerical methods

Two main questions:

● Approximation, e.g.
○ discretization (time, space, population)

○ parameterization (grid, neural networks, …)

○ …

● Computation, e.g.
○ fixed point algorithms

○ optimization methods

○ …
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Deterministic Approach

● Finite time and space

● Continuous time and finite space
○ numerical schemes for the time variable

● Continuous time and finite space:
○ traditional numerical schemes for PDEs (finite differences, finite elements, …)

○ neural network-based methods (e.g., DGM method by Sirignano & Spiliopoulos)

● Alternatives to fixed-point: 
○ e.g. solving the whole system at once [Achdou, Capuzzo-Dolcetta]
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Example: Finite Difference Scheme

Finite difference scheme for the PDE system [Achdou & Capuzzo-Dolcetta]

125
Source: Achdou, Y. and Laurière, M., 2020. Mean field games and applications: Numerical aspects. Mean field games, pp.249-307.
Original paper: Achdou, Y. and Capuzzo-Dolcetta, I., 2010. Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), pp.1136-1162.



Example: Finite Difference Scheme

Crowd motion with congestion

126
Source: Achdou, Y. and Laurière, M., 2020. Mean field games and applications: Numerical aspects. Mean field games, pp.249-307.
Original paper: Achdou, Y. and Capuzzo-Dolcetta, I., 2010. Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), pp.1136-1162.

Room Initial density



Example: Finite Difference Scheme

Crowd motion with congestion: Nash equilibrium vs Social optimum

127
Source: Achdou, Y. and Laurière, M., 2020. Mean field games and applications: Numerical aspects. Mean field games, pp.249-307.
Original paper: Achdou, Y. and Capuzzo-Dolcetta, I., 2010. Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), pp.1136-1162.

MFG:

MFC:

t = 1 min t = 5 min t = 15 min



Stochastic Viewpoint

● Approximation of the forward SDE (state process): 

○ Euler-Maruyama scheme [Bossy, Talay; …]

○ Need to take into account the mean field interactions 

● Approximation of the backward SDE (value function or its derivative)

○ Tree based methods [Chassagneux, Crisan, Delarue; …]

○ Regression Monte Carlo methods [Pham et al.; …]
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Stochastic Viewpoint

● Several methods using neural networks, motivated by high dimensionality

○ Direct approach to solve control problems

○ DeepBSDE [E, Han, Jentzen] 

○ DBDP [Pham, Warin et al.]

○ For standard BSDE first, and have been adapted to the MF setting

129



Summary and Perspectives

130



Summary

What MFGs are NOT:

● agent-based model / multi-agent system
→ scalability issues when N is large

● (mean-field) dynamical system
→ no game or optimization

● non-atomic anonymous game
→ continuum of players
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Summary

132

MFG
Models

Optimality
Conditions

Numerical
Methods

How can we characterize 
the solution?

How can we compute 
the solution?



Summary

1. Mean-field Nash equilibrium (mean-field social optimum)

133

MF

BR

● Mean-field approximation:

○ Simplifies the analysis

○ Provides an approximate N-player equilibrium

● MFG as a fixed point problem

● MFC as an optimization problem



Summary

2. Optimality conditions

134

Forward equation for the mean-field state or the player’s state

Backward equation for the value function or the backward process

● Necessary (and sometimes sufficient) conditions of “optimality” (in fact “equilibrium”)

● PDE / SDE viewpoint

● Generally fully coupled system

● Existence proof e.g. through fixed point argument



Summary

3. Numerical methods

135

● Approximation

● Algorithms

● Methods inspired by “learning” algorithms

● Key tool for real-world applications of MFGs



Perspectives: Some Research Directions

● MFG Models for new applications
→ complex models (dynamics and cost function)
→ beyond perfect homogeneity and anonymity 

● Rigorous justification of the mean field limit
→ from MFG equilibria to N-player (approximate) equilibria
→ convergence of N-player Nash equilibria to MFG (rate, large deviations, …)

● Derivation and analysis of the optimality conditions
→ existence/uniqueness
→ regularity

● Numerical methods
→ developing & analyzing machine learning methods

● Data-driven approaches
→ combining MFG paradigm with data for real-world predictions
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Some Extra References
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