
Learning Methods in Mean Field Games
Parts 1 & 2

Mathieu LAURIÈRE

NYU Shanghai

“Numerical methods for optimal transport problems, mean field games,
and multi-agent dynamics”

January 8-12, 2024
Universidad Técnica Federico Santa María, Valparaíso, Chile



Survey paper: arXiv:2205.12944

Questions, comments or suggestions are most welcome.

Based on joint works with many people, including:

Andrea Angiuli, Olivier Bachem, Tamer Basar, Theophile Cabannes, René Carmona,
Gökçe Dayanikli, Romuald Élie, Jean-Pierre Fouque, Matthieu Geist, Maximilien
Germain, Sertan Girgin, Kenza Hamidouche, Ruimeng Hu, Ayush Jain, Alec Koppel,
Raphael Marinier, Paul Muller, Rémi Munos, Julien Pérolat, Sarah Perrin, Huyên
Pham, Olivier Pietquin, Georgios Piliouras, Mark Rowland, Zongjun Tan, Karl Tuyls,
Muhammad Aneeq uz Zaman, . . .

as well as other people’s works

1 / 100

http://arxiv.org/abs/2205.12944


Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Motivations

2 / 100



Some other existing approaches (“What MFGs are not”)

▶ Dynamical systems:
▶ describe the dynamics of one or many agents, sometimes mean field
▶ but usually no rationality (optimization)

▶ Agent based models (ABM):
▶ “Agent-based models are a kind of microscale model that simulate the

simultaneous operations and interactions of multiple agents in an attempt to
re-create and predict the appearance of complex phenomena. ”

▶ “Individual agents are typically characterized as boundedly rational, presumed to
be acting in what they perceive as their own interests, such as reproduction,
economic benefit, or social status, using heuristics or simple decision-making rules.”
(Wikipedia)

▶ Game theory
▶ optimization aspects
▶ notion of Nash equilibrium, social optimum, . . .
▶ but usually limited to a finite (small) number of agents

▶ Evolutionary game theory (EGT)
▶ “application of game theory to evolving populations in biology”
▶ “an evolutionary version of game theory does not require players to act rationally

– only that they have a strategy” (Wikipedia)

▶ Non-atomic anonymous games
▶ continuum of rational players; each player has her own index and own strategy
▶ mostly limited to static games; difficulties for dynamic, stochastic games

3 / 100



MFG paradigm in a nutshell

4 / 100



Some References

• Introduction to Mean Field Games:
• Pierre-Louis Lions’ lectures at Collège de France (https://www.college-de-france.fr/)

• Pierre Cardaliaguet’s notes (2013):
https://www.ceremade.dauphine.fr/ cardaliaguet/MFG20130420.pdf

• Gomes, D. A., & Saúde, J. (2014). Mean field games models—a brief survey. Dynamic
Games and Applications, 4, 110-154.

• Cardaliaguet, P., & Porretta, A. (2020). An Introduction to Mean Field Game Theory. In Mean
Field Games (pp. 1-158). Springer, Cham.

• Carmona, Delarue, Graves, Lacker, Laurière, Malhamé & Ramanan: Lecture notes of the
2020 AMS Short Course on Mean Field Games (American Mathematical Society),
organized by François Delarue

• Achdou, Y., Cardaliaguet, P., Delarue, F., Porretta, A., & Santambrogio, F. (2021). Mean Field
Games: Cetraro, Italy 2019 (Vol. 2281). Springer Nature.

• Delarue, F. (Ed.). (2021). Mean Field Games (Vol. 78). American Mathematical Society.

5 / 100



Some References

• Monographs on Mean Field Games and Mean Field Control:
• Bensoussan, A., Frehse, J., & Yam, P. (2013). Mean field games and mean field type control

theory (Vol. 101). New York: Springer.

• Gomes, D. A., Pimentel, E. A., & Voskanyan, V. (2016). Regularity theory for mean-field
game systems. New York: Springer.

• Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with
Applications I: Mean Field FBSDEs, Control, and Games (Vol. 83). Springer.

• Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with
Applications II: Mean Field Games with Common Noise and Master Equations (Vol. 84).
Springer.

6 / 100



Some References

• Surveys about numerical methods for MFGs:
• Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi

equations: approximations, numerical analysis and applications (pp. 1-47). Springer,
Berlin, Heidelberg.

• Achdou, Y., & Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects.
Mean Field Games: Cetraro, Italy 2019, 2281, 249.

• Laurière, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control.
Lecture notes for the AMS’20 short course. arXiv preprint arXiv:2106.06231.

• Carmona, R., & Laurière, M. (2021). Deep Learning for Mean Field Games and Mean Field
Control with Applications to Finance. arXiv preprint arXiv:2107.04568.

• Hu, R., & Laurière, M. (2023). Recent developments in machine learning methods for
stochastic control and games. arXiv preprint arXiv:2303.10257.

• Laurière, M., Perrin, S., Geist, M., & Pietquin, O. (2022). Learning mean field games: A
survey. arXiv preprint arXiv:2205.12944.

7 / 100



MFG & (R)L: Motivations

Main motivation: real-world applications require methods for large-scale problems

▶ Scaling up population size → Mean Field Games
▶ Initial papers: Lasry & Lions; Caines, Huang & Malhamé (2006-2007)
▶ Books: Bensoussan, Frehse & Yam; Carmona & Delarue; . . .

▶ Scaling up environment complexity → (model-free) Reinforcement Learning
▶ Book: Sutton & Barto; . . .
▶ Applications: Robotics, language processing, games, . . .

8 / 100



MFG & (R)L: Motivations

Main motivation: real-world applications require methods for large-scale problems

▶ Scaling up population size → Mean Field Games
▶ Initial papers: Lasry & Lions; Caines, Huang & Malhamé (2006-2007)
▶ Books: Bensoussan, Frehse & Yam; Carmona & Delarue; . . .

▶ Scaling up environment complexity → (model-free) Reinforcement Learning
▶ Book: Sutton & Barto; . . .
▶ Applications: Robotics, language processing, games, . . .

8 / 100



Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )

9 / 100



Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )

9 / 100



Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )

9 / 100



Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )

9 / 100



Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )

9 / 100



Learning

Recent successes of learning in games, e.g.:

Go [SHM+16, SSS+17, SHS+18], Chess [CHJH02], Checkers [SBB+07],
Hex [ATB17], Starcraft II [VBC+19], poker games [BS17, BS19, MSB+17, BBJT15],
Stratego [MLFB20], . . .

At least two interpretations of “learning”:

▶ Game theory, economics, . . . :
Fudenberg & Levine [FL09][frame]Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium.

Annu. Rev. Econ., 1(1), 385-420.: “The theory of learning in games [. . . ] examines how,
which, and what kind of equilibrium might arise as a consequence of a long-run
nonequilibrium process of learning, adaptation, and/or imitation”

▶ Machine Learning, Reinforcement Learning, . . . :
Mitchell [M+97][frame]Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN:

978-0-07-042807-2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

10 / 100



Learning

Recent successes of learning in games, e.g.:

Go [SHM+16, SSS+17, SHS+18], Chess [CHJH02], Checkers [SBB+07],
Hex [ATB17], Starcraft II [VBC+19], poker games [BS17, BS19, MSB+17, BBJT15],
Stratego [MLFB20], . . .

At least two interpretations of “learning”:

▶ Game theory, economics, . . . :
Fudenberg & Levine [FL09]1: “The theory of learning in games [. . . ] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

▶ Machine Learning, Reinforcement Learning, . . . :
Mitchell [M+97]2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

1
Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ., 1(1), 385-420.

2
Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN: 978-0-07-042807-2

10 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



N -Player Stochastic Differential Game

For now, continuous time and continuous space:

▶ N players

▶ Player i’s state is Xi
t ∈ Rd

▶ with dynamics:

dXi
t = b(t, Xi

t , αi
t, µN

t )dt + σdW i
t , Xi

0 ∼ m0

▶ W i is an idiosyncratic (individual) noise, independent from other W j ’s

▶ The empirical state distribution is: µN
t = 1

N

∑N

j=1 δ
X

j
t

▶ Instantaneous cost function f and terminal cost function g

▶ Goal for player i: minimize over αi the total expected cost:

J(αi, α−i) = E
[∫ T

0
f(t, Xi

t , αi
t, µN

t )dt + g(Xi
T , µN

T )
]

11 / 100



N -Player Stochastic Differential Game

For now, continuous time and continuous space:

▶ N players

▶ Player i’s state is Xi
t ∈ Rd

▶ with dynamics:

dXi
t = b(t, Xi

t , αi
t, µN

t )dt + σdW i
t , Xi

0 ∼ m0

▶ W i is an idiosyncratic (individual) noise, independent from other W j ’s

▶ The empirical state distribution is: µN
t = 1

N

∑N

j=1 δ
X

j
t

▶ Instantaneous cost function f and terminal cost function g

▶ Goal for player i: minimize over αi the total expected cost:

J(αi, α−i) = E
[∫ T

0
f(t, Xi

t , αi
t, µN

t )dt + g(Xi
T , µN

T )
]

11 / 100



N -Player Stochastic Differential Game: Solution Concepts

Two concepts:

▶ Nash equilibrium (α̂1, . . . , α̂N ): for all i = 1, . . . , N and all αi,

J(α̂i, α̂−i) ≤ J(αi, α̂−i)

→ no incentive for unilateral deviations
→ fixed point problem

▶ Social optimum (α∗1, . . . , α∗N ): for all i = 1, . . . , N and all (α1, . . . , αN ),

J̄(α∗1, . . . , α∗N ) = 1
N

∑
i=1

J(α∗i, α∗−i) ≤ J̄(α1, . . . , αN ) = 1
N

∑
i=1

J(αi, α−i)

→ no incentive for joint deviations
→ optimization problem

In general, they are different, which leads to the notion of Price of Anarchy

12 / 100



N -Player Stochastic Differential Game: Solution Concepts

Two concepts:

▶ Nash equilibrium (α̂1, . . . , α̂N ): for all i = 1, . . . , N and all αi,

J(α̂i, α̂−i) ≤ J(αi, α̂−i)

→ no incentive for unilateral deviations
→ fixed point problem

▶ Social optimum (α∗1, . . . , α∗N ): for all i = 1, . . . , N and all (α1, . . . , αN ),

J̄(α∗1, . . . , α∗N ) = 1
N

∑
i=1

J(α∗i, α∗−i) ≤ J̄(α1, . . . , αN ) = 1
N

∑
i=1

J(αi, α−i)

→ no incentive for joint deviations
→ optimization problem

In general, they are different, which leads to the notion of Price of Anarchy

12 / 100



Mean Field Limit

Pass to the limit N → +∞?

Key assumptions:
▶ homogeneity: all the agents have the same f, g, b, σ

▶ symmetry/anonymity: interactions are only through the empirical distribution

In the limit, we expect to have: the cost for one representative player is:

J(α, µ) = E
[∫ T

0
f(t, Xt, αt, µt)dt + g(XT , µT )

]
with the dynamics:

dXt = b(t, Xt, αt, µt) + σdWt

where
▶ X and α are respectively the state and the control of the representative player,
▶ µ is the first marginal (state-only distribution)

13 / 100



Mean Field Limit

Pass to the limit N → +∞?

Key assumptions:
▶ homogeneity: all the agents have the same f, g, b, σ

▶ symmetry/anonymity: interactions are only through the empirical distribution

In the limit, we expect to have: the cost for one representative player is:

J(α, µ) = E
[∫ T

0
f(t, Xt, αt, µt)dt + g(XT , µT )

]
with the dynamics:

dXt = b(t, Xt, αt, µt) + σdWt

where
▶ X and α are respectively the state and the control of the representative player,
▶ µ is the first marginal (state-only distribution)

13 / 100



Mean Field Solution Concepts

Here again, two concepts:

▶ Nash equilibrium (α̂, µ̂):
▶ Optimality: for all α,

J(α̂, µ̂) ≤ J(α, µ̂)
▶ Consistency: µ̂t = L(Xα̂

t )
→ no incentive for unilateral deviations
→ fixed point problem over the mean field flow µ

▶ Social optimum α∗: for all α,

J(α∗, µα∗
) ≤ J(α, µα)

where µα
t = L(Xα

t )
→ no incentive for joint deviations
→ optimization problem for α 7→ J(α, µα)

14 / 100



Mean Field Solution Concepts

Here again, two concepts:

▶ Nash equilibrium (α̂, µ̂):
▶ Optimality: for all α,

J(α̂, µ̂) ≤ J(α, µ̂)
▶ Consistency: µ̂t = L(Xα̂

t )
→ no incentive for unilateral deviations
→ fixed point problem over the mean field flow µ

▶ Social optimum α∗: for all α,

J(α∗, µα∗
) ≤ J(α, µα)

where µα
t = L(Xα

t )
→ no incentive for joint deviations
→ optimization problem for α 7→ J(α, µα)

14 / 100



Optimality Conditions

Large(st) part of the MFG literature focuses on equations of the form:

→ Theory: derivation, analysis, . . .

15 / 100



“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

▶ Finite difference & Newton method: [ACD10], [ACCD12], . . .
▶ (Semi-)Lagrangian approach: [CS14, CS15], [CS18], [CCS22], . . .
▶ Augmented Lagrangian & ADMM: [BC15], [And17a], [AL16], . . .
▶ Primal-dual algo.: [BnAKS18], [BnAKK+19], . . .
▶ Gradient descent based methods [LP16], [Pfe16], [LP22], . . .
▶ Monotone operators [AFG17], [GS18], [GY20], . . .
▶ Policy iteration [CCG21a], [CK21a], [CT22], [TS22], [LST23], . . .
▶ Finite elements [BC15], [And17b], . . .
▶ Gaussian processes [MYZ22], . . .
▶ Kernel-based representation [LJL+21], . . .
▶ Fourier approximation [N+19], . . .

16 / 100



“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

▶ Cubature [dRT15], . . .

▶ Markov chain approximation: [BBC18], . . .

▶ Probabilistic approach and Picard: [CCD19], [AGL+19], . . .

▶ Probabilistic approach and regression: [BHL+19], . . .

▶ . . .

17 / 100



“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:

▶ (relatively) small dimension

▶ (relatively) simple structure

⇒ motivations to develop deep learning methods

18 / 100



Deep Learning Numerical Methods for MFG

▶ DL for direct approach for MFG [FZ20], [CL22], . . .

▶ DL for McKean-Vlasov FBSDEs [FZ20], [CL22], [GMW22], . . .

▶ DL for PDE system [AACN+19], [CL21], [ROL+20], [CGL20], . . .

▶ DL for Master equations [GLPW22], [Lau21, Section 7.2], . . .

Pros & Cons:

▶ Scalability in terms of dimension

▶ Much less understood than classical methods

⇒ Lots of open questions for mathematicians!

19 / 100



Extensions

From the modeling viewpoint, many possible extensions:

▶ More settings, e.g. MFG with ergodic cost [CLLP12], [Fel13], [BP14], [ABC17b],
[AKS23], . . .

▶ Interactions through the action distribution (“extended MFGs”, “MFGs of
controls”, . . . ): [GPV14], [GV16], [CL18], [AK20], [LT22], [Kob22], . . .

▶ Common noise: in the continuous space case see [CD18] and references
therein; in the finite state case, see e.g. [BLL19], [BCCD21], . . .

▶ Several populations MFGs: [HMC+06b], [Fel13], [Cir15], [ABC17a], [BHL18],
. . .

▶ Mean field type games: [DTT17], [BGT21] and references therein; [MP19a],
[CP19], [CLT19a], . . .

▶ Mean field control games: [ADF+22b], [ADF+22a]

20 / 100



Extensions

▶ Major player: [CZ16], [CK16], [CW17], [LL18], [CCP20], [CD21], [CDL22], . . .

▶ Stackelberg MFGs [BCY15], [MB18], [EMP19], [FSJ21], [ACDL22b], [VB22],
[GHZ22], [DL23],. . .

▶ Graphon games [PO19], [CH19], [CH21], [LS22], [GTC20], [VMV21], [CCGL22],
[ACL22], [ACDL22a], [BWZ23], . . .

▶ Correlated equilibria [CF22], [MRE+21], [MER+22], . . .

▶ . . .

21 / 100



These lectures

For simplicity, in most of the presentation, we will consider

▶ “plain” MFGs/MFCs,

▶ with discrete time and spaces

but many ideas can be extended in a (more or less) straightforward way.

22 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings
Static setting
Dynamic settings
Value functions

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Settings: Intuition

With time?

Dynamic settingsStatic setting

Mean field 
changes?

Stationary 
mean field

YesNo

No

Evolutive setting

Discounted 
setting Ergodic setting

Yes

23 / 100



Settings

4 different settings:

▶ Static:
▶ No states (normal-form game): each player chooses an action a ∼ π(·)
▶ Reward: depends on own action & population’s action distribution
▶ Examples: towel on the beach, urban settlement, . . .

▶ Evolutive:
▶ One-step reward: depends on own state, action & population’s (state,action)

distribution.
▶ Fixed initial state distribution; finite or infinite time horizon.
▶ Policy: time-dependant policy πn(·|x)
▶ Examples: crowd motion, traffic routing, . . .

▶ Infinite horizon discounted & stationary:
▶ One-step reward: similar to Evolutive case.
▶ Total reward: infinite horizon discounted sum.
▶ Initial state distribution = stationary distribution induced by the population’s policy.
▶ Policy: stationary policy π(·|x)
▶ Examples: player joining a crowd already in a steady state

▶ Ergodic:
▶ Similar to infinite horizon discounted & stationary.
▶ But: Total reward = long time average.

▶ Other settings: asymptotic, γ-discounted, . . .
24 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings
Static setting
Dynamic settings
Value functions

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Static game

Example: Population distribution (towel on the beach, . . . )
▶ action: choice of position
▶ reward: depends on my position and on the density of people

Source: unsplash

25 / 100

https://unsplash.com/photos/IQ8dwaa3yJc


Static setting

▶ Finite action set A (e.g., beach = possible towels’ positions)
▶ Player’s behavior π ∈ ∆A = P(A)
▶ Population’s behavior ξ ∈ ∆A

▶ Player’s reward: for player policy π ∈ ∆A and population behavior ξ ∈ ∆A,

J(π; ξ) = Ea∼π [r(a, ξ)]

(e.g., crowd aversion, ice cream stall attraction, . . . )

26 / 100



Static game: Solution concepts

▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best response: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂)
2. Consistency: ξ̂ = π̂

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π)

▶ Note: at social optimum, the population distribution is ξ∗ = π∗

▶ But in general π∗ ̸= π̂ so ξ̂ ̸= ξ∗

27 / 100



Static game: Solution concepts

▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best response: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂)
2. Consistency: ξ̂ = π̂

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π)

▶ Note: at social optimum, the population distribution is ξ∗ = π∗

▶ But in general π∗ ̸= π̂ so ξ̂ ̸= ξ∗

27 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)

28 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!

So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)

28 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)

28 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)

28 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)

28 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)
28 / 100



Nash Equilibrium vs Social Optimum: Potential case

▶ In some cases, the two notions coincide.

▶ Example: Potential MFG with reward: r(a, ξ) = ∇F (ξ)(a) for some F : ∆A → R

▶ The average cost is: J(π, ξ) = Ea∼π[r(a, ξ)] =
∑

a
π(a)∇F (ξ)(a) = π · ∇F (ξ)

▶ Assuming the potential F concave, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≤ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≤ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a maximizer of F

⇔ π̂ is a social optimum

▶ Example: (negative of) entropy: F (ξ) = −
∑

a
ξ(a) log(ξ(a)): encourages agent

to spread throughout the action space A

▶ Note: the link between potential MFGs and MFC can be exploited to design
numerical methods

29 / 100



Nash Equilibrium vs Social Optimum: Potential case

▶ In some cases, the two notions coincide.

▶ Example: Potential MFG with reward: r(a, ξ) = ∇F (ξ)(a) for some F : ∆A → R

▶ The average cost is: J(π, ξ) = Ea∼π[r(a, ξ)] =
∑

a
π(a)∇F (ξ)(a) = π · ∇F (ξ)

▶ Assuming the potential F concave, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≤ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≤ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a maximizer of F

⇔ π̂ is a social optimum

▶ Example: (negative of) entropy: F (ξ) = −
∑

a
ξ(a) log(ξ(a)): encourages agent

to spread throughout the action space A

▶ Note: the link between potential MFGs and MFC can be exploited to design
numerical methods

29 / 100



Nash Equilibrium vs Social Optimum: Potential case

▶ In some cases, the two notions coincide.

▶ Example: Potential MFG with reward: r(a, ξ) = ∇F (ξ)(a) for some F : ∆A → R

▶ The average cost is: J(π, ξ) = Ea∼π[r(a, ξ)] =
∑

a
π(a)∇F (ξ)(a) = π · ∇F (ξ)

▶ Assuming the potential F concave, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≤ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≤ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a maximizer of F

⇔ π̂ is a social optimum

▶ Example: (negative of) entropy: F (ξ) = −
∑

a
ξ(a) log(ξ(a)): encourages agent

to spread throughout the action space A

▶ Note: the link between potential MFGs and MFC can be exploited to design
numerical methods

29 / 100



Nash Equilibrium vs Social Optimum: Potential case

▶ In some cases, the two notions coincide.

▶ Example: Potential MFG with reward: r(a, ξ) = ∇F (ξ)(a) for some F : ∆A → R

▶ The average cost is: J(π, ξ) = Ea∼π[r(a, ξ)] =
∑

a
π(a)∇F (ξ)(a) = π · ∇F (ξ)

▶ Assuming the potential F concave, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≤ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≤ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a maximizer of F

⇔ π̂ is a social optimum

▶ Example: (negative of) entropy: F (ξ) = −
∑

a
ξ(a) log(ξ(a)): encourages agent

to spread throughout the action space A

▶ Note: the link between potential MFGs and MFC can be exploited to design
numerical methods

29 / 100



Settings: Intuition – Reminder

With time?

Dynamic settingsStatic setting

Mean field 
changes?

Stationary 
mean field

YesNo

No

Evolutive setting

Discounted 
setting Ergodic setting

Yes

30 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings
Static setting
Dynamic settings
Value functions

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Notation for Dynamic Settings

▶ State x ∈ S, action a ∈ A (S, A finite for most of this presentation)
▶ Mean field state µ ∈ ∆S = P(S) (extensions: state-action distrib.)
▶ Discrete time n ∈ N
▶ Player’s transition probability: p(·|x, a, µ)
▶ Player’s reward: r(x, a, µ)
▶ One-step policy: π ∈ Π := (∆A)S , functions S → ∆A

▶ One-step mean field transition matrix: Pµ,π(x, y) =
∑

a∈A
π(a|x)p(y|x, a, µ)

▶ What happens in one time step?
▶ “Each” player selects an action (we focus on one “representative” player)
▶ “Each” player gets a reward
▶ “Each” player state is updated
▶ Mean field is updated

▶ Mathematically: with policy πn and mean field µn

an ∼ πn(·|xn)
r(xn, an, µn)
xn+1 ∼ p(·|xn, an, µn)

µn+1 = P ⊤
µn,πn

µn =
∑
y∈S

µn(y)
∑
a∈A

πn(a|y)p(·|y, a, µn)

31 / 100



Notation for Dynamic Settings

▶ State x ∈ S, action a ∈ A (S, A finite for most of this presentation)
▶ Mean field state µ ∈ ∆S = P(S) (extensions: state-action distrib.)
▶ Discrete time n ∈ N
▶ Player’s transition probability: p(·|x, a, µ)
▶ Player’s reward: r(x, a, µ)
▶ One-step policy: π ∈ Π := (∆A)S , functions S → ∆A

▶ One-step mean field transition matrix: Pµ,π(x, y) =
∑

a∈A
π(a|x)p(y|x, a, µ)

▶ What happens in one time step?
▶ “Each” player selects an action (we focus on one “representative” player)
▶ “Each” player gets a reward
▶ “Each” player state is updated
▶ Mean field is updated

▶ Mathematically: with policy πn and mean field µn

an ∼ πn(·|xn)
r(xn, an, µn)
xn+1 ∼ p(·|xn, an, µn)

µn+1 = P ⊤
µn,πn

µn =
∑
y∈S

µn(y)
∑
a∈A

πn(a|y)p(·|y, a, µn)

31 / 100



Stationary setting



Stationary game

Example: joining a population in a stationary regime (flocking, economics, . . . )
▶ the population is at equilibrium → MF distribution is stationary
▶ a player wants to join → optimal control problem
▶ but the distribution is the result of the agents’ decisions → fixed point problem

Source: unsplash

32 / 100

https://unsplash.com/photos/b7MZ6iGIoSI


Stationary setting

▶ Stationary setting: NT = ∞
▶ No fixed initial m0 but a stationary distribution
▶ Notation: MF(π) := stationary distribution when using policy π:

µ = P ⊤
µ,πµ =: Pπ(µ)

▶ Player’s reward: for player’s policy π ∈ ∆A and mean field µ ∈ ∆S ,

J(π; µ) = E

[
∞∑

n=0

γnr(xn, an, µ)

]
where γ ∈ (0, 1) is a discount parameter, and

an ∼ π(·|xn), x0 ∼ µ, xn+1 ∼ p(·|xn, an, µ), n ≥ 0

33 / 100



Stationary setting: Solution concepts

▶ Stationary MFG Nash equilibrium: (π̂, µ̂) ∈ Π × ∆S×A s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field state: µ̂ = MF(π̂)

▶ Fixed point: µ̂ ∈ MF(BR(µ̂))

▶ Stationary MFC Social optimum: π∗ ∈ Π s.t.
▶ Optimality: π∗ ∈ argmaxπ∗ J(π∗; µπ∗

) where µπ∗
= MF(π∗)

34 / 100



Evolutive setting



Evolutive game

Example: Crowd exiting a room [AL15]

35 / 100



Evolutive setting

▶ Horizon: NT ∈ N (extensions: p, r depending on n; infinite horizon)
▶ Fixed initial state distribution: m0 ∈ ∆S

▶ The MF evolves in time: µ = (µn)n=0,...,NT ∈ ∆NT
S

▶ Notation MFm0,NT (π) := generated by policy π starting from m0:{
µ0 = m0,

µn+1 = P ⊤
µn,πn

µn, n ≥ 0

▶ Player’s reward: for player’s policy π ∈ ΠNT and mean field µ ∈ ∆NT
S ,

J(π; µ) = E

[
NT∑
n=0

r(xn, an, µn)

]
where

an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

36 / 100



Evolutive setting: Solution concepts

▶ Evolutive MFG Nash equilibrium: (π̂, µ̂) ∈ ΠNT × ∆NT
S s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field flow: µ̂ = MFm0,NT (π̂)

▶ Fixed point: µ̂ ∈ MFm0,NT (BR(µ̂))

▶ Evolutive MFC Social optimum: π∗ ∈ ΠNT s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; µπ) where µπ = MFm0,NT (π)

37 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings
Static setting
Dynamic settings
Value functions

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Value function: stationary case

▶ Value function of a (stationary) policy π given a (stationary) mean field µ:

V µ,π(x) := Eπ

[∑
n≥0 γnr(xn, an, µ)

]
satisfies:

V µ,π(x) = Ea∼π(·|x)

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,π(x′)]︸ ︷︷ ︸

Qµ,π(x,a)

]
V µ,π = T µ,πV µ,π

Qµ,π = Bµ,πQµ,π

▶ Optimal value function given a mean field µ: V µ,∗(x) = maxπ V µ,π(x):

V µ,∗(x) = max
π

Ea∼π(·|x))

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,∗(x′)]︸ ︷︷ ︸

Qµ,∗(x,a)

]
V µ,∗ = T µ,∗V µ,∗

Qµ,∗ = Bµ,∗Qµ,∗

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗(·|x)) ⊆ argmax
a∈A

Qµ,∗(x, a)

▶ Bellman equations are fixed point equations

38 / 100



Value function: stationary case

▶ Value function of a (stationary) policy π given a (stationary) mean field µ:

V µ,π(x) := Eπ

[∑
n≥0 γnr(xn, an, µ)

]
satisfies:

V µ,π(x) = Ea∼π(·|x)

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,π(x′)]︸ ︷︷ ︸

Qµ,π(x,a)

]
V µ,π = T µ,πV µ,π

Qµ,π = Bµ,πQµ,π

▶ Optimal value function given a mean field µ: V µ,∗(x) = maxπ V µ,π(x):

V µ,∗(x) = max
π

Ea∼π(·|x))

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,∗(x′)]︸ ︷︷ ︸

Qµ,∗(x,a)

]
V µ,∗ = T µ,∗V µ,∗

Qµ,∗ = Bµ,∗Qµ,∗

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗(·|x)) ⊆ argmax
a∈A

Qµ,∗(x, a)

▶ Bellman equations are fixed point equations
38 / 100



Value function: finite horizon evolutive case

Finite horizon evolutive case (NT < +∞):

▶ Value function of a policy π given a mean field µ:
V µ,π

n (x) := Eπ[
∑NT

n′=n
r(xn′ , an′ , µn′ )|xn = x] satisfies:

V µ,π
NT +1(x) = 0

V µ,π
n (x) = Ea∼πn(·|x)

[
r(x, a, µn) + Ex′∼p(·|x,a,µn)[V µ,π

n+1(x′)]︸ ︷︷ ︸
Q

µ,π
n (x,a)

]
,

n = NT − 1, . . . , 0

▶ Optimal value function given a mean field µ:

V µ,∗
n (x) = max

π
V µ,π

n (x)

Qµ,∗
n (x, a) = max

π
Qµ,π

n (x, a)

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗
n(·|x)) ⊆ argmax

a∈A

Qµ,∗
n (x, a)

▶ Bellman equations are backward induction equations

39 / 100



Value function: finite horizon evolutive case

Finite horizon evolutive case (NT < +∞):

▶ Value function of a policy π given a mean field µ:
V µ,π

n (x) := Eπ[
∑NT

n′=n
r(xn′ , an′ , µn′ )|xn = x] satisfies:

V µ,π
NT +1(x) = 0

V µ,π
n (x) = Ea∼πn(·|x)

[
r(x, a, µn) + Ex′∼p(·|x,a,µn)[V µ,π

n+1(x′)]︸ ︷︷ ︸
Q

µ,π
n (x,a)

]
,

n = NT − 1, . . . , 0

▶ Optimal value function given a mean field µ:

V µ,∗
n (x) = max

π
V µ,π

n (x)

Qµ,∗
n (x, a) = max

π
Qµ,π

n (x, a)

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗
n(·|x)) ⊆ argmax

a∈A

Qµ,∗
n (x, a)

▶ Bellman equations are backward induction equations
39 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods
General principles
Variations and improvements

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods
General principles
Variations and improvements

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



MFG Equilibrium Computation: General Principles

We are going to focus mostly on MFG Nash equilibria computation

Two main objects: policy π and population distribution µ

Most basic idea: alternate

1. Update of the policy

2. Update of the population’s distribution

Many other possibilities using optimality conditions, e.g.
▶ traditional methods such as Newton’s method for the PDE system [ACCD12]
▶ deep learning methods for PDE/FBSDE system, see [HL22]

But cannot be directly adapted to the model-free RL setting.

40 / 100



MFG Equilibrium Computation: General Principles

We are going to focus mostly on MFG Nash equilibria computation

Two main objects: policy π and population distribution µ

Most basic idea: alternate

1. Update of the policy

2. Update of the population’s distribution

Many other possibilities using optimality conditions, e.g.
▶ traditional methods such as Newton’s method for the PDE system [ACCD12]
▶ deep learning methods for PDE/FBSDE system, see [HL22]

But cannot be directly adapted to the model-free RL setting.

40 / 100



MFG Equilibrium Computation: General Principles

We are going to focus mostly on MFG Nash equilibria computation

Two main objects: policy π and population distribution µ

Most basic idea: alternate

1. Update of the policy

2. Update of the population’s distribution

Many other possibilities using optimality conditions, e.g.
▶ traditional methods such as Newton’s method for the PDE system [ACCD12]
▶ deep learning methods for PDE/FBSDE system, see [HL22]

But cannot be directly adapted to the model-free RL setting.

40 / 100



Updating the policy

For standard MDPs:
▶ Bellman operators

▶ Optimal Bellman operator:

B∗ : (Q(x, a))x,a 7→ B∗Q =
(

r(x, a) + γEx′∼p(·|x,a)[max
a′

Q(x′, a′)]
)

x,a

▶ Bellman operator associated to a policy π:

Bπ : (Q(x, a))x,a 7→ BπQ =
(

r(x, a) + γEx′∼p(·|x,a),a′∼π [Q(x, a′)]
)

x,a

▶ Iterative learning methods:
▶ Value iteration:

Qk+1 = B∗Qk

▶ Policy iteration:{
Qk+1 = Qπk

(policy evaluation)

πk+1 ∈ argmax Qk+1 (policy improvement)

where the policy evaluation can be done by applying Bπk
many times

→ For MFG: intertwine applications of Bµ,∗ or Bµ,π with MF updates

41 / 100



Updating the policy

For standard MDPs:
▶ Bellman operators

▶ Optimal Bellman operator:

B∗ : (Q(x, a))x,a 7→ B∗Q =
(

r(x, a) + γEx′∼p(·|x,a)[max
a′

Q(x′, a′)]
)

x,a

▶ Bellman operator associated to a policy π:

Bπ : (Q(x, a))x,a 7→ BπQ =
(

r(x, a) + γEx′∼p(·|x,a),a′∼π [Q(x, a′)]
)

x,a

▶ Iterative learning methods:
▶ Value iteration:

Qk+1 = B∗Qk

▶ Policy iteration:{
Qk+1 = Qπk

(policy evaluation)

πk+1 ∈ argmax Qk+1 (policy improvement)

where the policy evaluation can be done by applying Bπk
many times

→ For MFG: intertwine applications of Bµ,∗ or Bµ,π with MF updates

41 / 100



Updating the policy

For standard MDPs:
▶ Bellman operators

▶ Optimal Bellman operator:

B∗ : (Q(x, a))x,a 7→ B∗Q =
(

r(x, a) + γEx′∼p(·|x,a)[max
a′

Q(x′, a′)]
)

x,a

▶ Bellman operator associated to a policy π:

Bπ : (Q(x, a))x,a 7→ BπQ =
(

r(x, a) + γEx′∼p(·|x,a),a′∼π [Q(x, a′)]
)

x,a

▶ Iterative learning methods:
▶ Value iteration:

Qk+1 = B∗Qk

▶ Policy iteration:{
Qk+1 = Qπk

(policy evaluation)

πk+1 ∈ argmax Qk+1 (policy improvement)

where the policy evaluation can be done by applying Bπk
many times

→ For MFG: intertwine applications of Bµ,∗ or Bµ,π with MF updates
41 / 100



Iterative methods for MFG: Stationary case

Goal: find MFG Nash equilibirum (π̂, µ̂) ∈ Π × ∆S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗ = Bµk,∗Qµk,∗

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,∗(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

µk+1

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

= Bµk,πk

Qµk,πk

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,πk

(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

(µk+1)

Sometimes: one application of fixed point operator instead of true fixed point:

▶ µk+1 = Pπk+1
(µk) instead of µk+1 s.t. µk+1 = Pπk+1

(µk+1)
▶ Learning step ≈ time step in the game

42 / 100



Iterative methods for MFG: Stationary case

Goal: find MFG Nash equilibirum (π̂, µ̂) ∈ Π × ∆S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗ = Bµk,∗Qµk,∗

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,∗(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

µk+1

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

= Bµk,πk

Qµk,πk

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,πk

(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

(µk+1)

Sometimes: one application of fixed point operator instead of true fixed point:

▶ µk+1 = Pπk+1
(µk) instead of µk+1 s.t. µk+1 = Pπk+1

(µk+1)
▶ Learning step ≈ time step in the game

42 / 100



Iterative methods for MFG: Evolutive case

Goal: find MFG Nash equilibrium (π̂, µ̂) ∈ ΠNT × ∆NT
S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,∗

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,πk

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

Backward equations instead of fixed point equations as in stationary case

43 / 100



Iterative methods for MFG: Evolutive case

Goal: find MFG Nash equilibrium (π̂, µ̂) ∈ ΠNT × ∆NT
S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,∗

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,πk

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

Backward equations instead of fixed point equations as in stationary case

43 / 100



Challenges

Potential issues (for both stationary and evolutive settings):

▶ Non-uniqueness of the equilibrium MF µ̂ or µ̂

▶ Non-uniqueness of the Best Response π ∈ BR(µ̂)
(even though there might be a unique equilibrium policy π̂!)

▶ Lack of convergence (typically if MF ◦ BR is not a strict contraction)

⇒ Oscillations / instabilities

Several variations / improvements have been studied

44 / 100



Challenges

Potential issues (for both stationary and evolutive settings):

▶ Non-uniqueness of the equilibrium MF µ̂ or µ̂

▶ Non-uniqueness of the Best Response π ∈ BR(µ̂)
(even though there might be a unique equilibrium policy π̂!)

▶ Lack of convergence (typically if MF ◦ BR is not a strict contraction)

⇒ Oscillations / instabilities

Several variations / improvements have been studied

44 / 100



Challenges

Potential issues (for both stationary and evolutive settings):

▶ Non-uniqueness of the equilibrium MF µ̂ or µ̂

▶ Non-uniqueness of the Best Response π ∈ BR(µ̂)
(even though there might be a unique equilibrium policy π̂!)

▶ Lack of convergence (typically if MF ◦ BR is not a strict contraction)

⇒ Oscillations / instabilities

Several variations / improvements have been studied

44 / 100



Challenges

Potential issues (for both stationary and evolutive settings):

▶ Non-uniqueness of the equilibrium MF µ̂ or µ̂

▶ Non-uniqueness of the Best Response π ∈ BR(µ̂)
(even though there might be a unique equilibrium policy π̂!)

▶ Lack of convergence (typically if MF ◦ BR is not a strict contraction)

⇒ Oscillations / instabilities

Several variations / improvements have been studied

44 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods
General principles
Variations and improvements

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Damping / Averaging

Damping / smoothing:
▶ for policies: instead of:

πk+1 = BR(µk)
use:

π̄k+1 =
k∑

i=1

αiBR(µi)

for some coefficients (αi)i, and then:

µk+1 = MF(π̄k+1)
▶ and/or average mean fields, value functions, . . .

▶ tends to avoid oscillations
▶ helps to learn a mixed policy even if every BR is pure
▶ slower convergence if small α’s

→ Encompasses many possible variants such as:
▶ Fixed point iteration / value iteration (no damping):

e.g. [HMC06a, GHXZ19, AKS20b] . . .
▶ Fictitious Play: e.g. [CH17, Had17, MJMdC18, PPL+20, MH21, DV21] . . .
▶ Policy Iteration: e.g. [CCG21b, CT21, LST21] . . .
▶ Online Mirror Descent (OMD): e.g. [Had17, Had18, PPE+21a] . . .

45 / 100



Damping / Averaging

Damping / smoothing:
▶ for policies: instead of:

πk+1 = BR(µk)
use:

π̄k+1 =
k∑

i=1

αiBR(µi)

for some coefficients (αi)i, and then:

µk+1 = MF(π̄k+1)
▶ and/or average mean fields, value functions, . . .
▶ tends to avoid oscillations
▶ helps to learn a mixed policy even if every BR is pure
▶ slower convergence if small α’s

→ Encompasses many possible variants such as:
▶ Fixed point iteration / value iteration (no damping):

e.g. [HMC06a, GHXZ19, AKS20b] . . .
▶ Fictitious Play: e.g. [CH17, Had17, MJMdC18, PPL+20, MH21, DV21] . . .
▶ Policy Iteration: e.g. [CCG21b, CT21, LST21] . . .
▶ Online Mirror Descent (OMD): e.g. [Had17, Had18, PPE+21a] . . .

45 / 100



Damping / Averaging

Damping / smoothing:
▶ for policies: instead of:

πk+1 = BR(µk)
use:

π̄k+1 =
k∑

i=1

αiBR(µi)

for some coefficients (αi)i, and then:

µk+1 = MF(π̄k+1)
▶ and/or average mean fields, value functions, . . .
▶ tends to avoid oscillations
▶ helps to learn a mixed policy even if every BR is pure
▶ slower convergence if small α’s

→ Encompasses many possible variants such as:
▶ Fixed point iteration / value iteration (no damping):

e.g. [HMC06a, GHXZ19, AKS20b] . . .
▶ Fictitious Play: e.g. [CH17, Had17, MJMdC18, PPL+20, MH21, DV21] . . .
▶ Policy Iteration: e.g. [CCG21b, CT21, LST21] . . .
▶ Online Mirror Descent (OMD): e.g. [Had17, Had18, PPE+21a] . . .

45 / 100



Smooth policies

Class of smooth(er) policies:
▶ E.g. softmax/Botzmann policies: instead of

πk+1(·|x) ∈ argmax Qk(x, ·)

use:

πk+1(·|x) = softmaxτ Qk(x, ·) = e
1
τ

Q(x,·)∑
a

e
1
τ

Q(x,a)

▶ forces to play every action with a positive probability
▶ temperature τ can be decreased progressively if needed
▶ solves the problem of ambiguity among possible elements of argmax
▶ but the equilibrium policy π̂ is not necessarily of softmax form!

46 / 100



Smooth policies

Class of smooth(er) policies:
▶ E.g. softmax/Botzmann policies: instead of

πk+1(·|x) ∈ argmax Qk(x, ·)

use:

πk+1(·|x) = softmaxτ Qk(x, ·) = e
1
τ

Q(x,·)∑
a

e
1
τ

Q(x,a)

▶ forces to play every action with a positive probability
▶ temperature τ can be decreased progressively if needed
▶ solves the problem of ambiguity among possible elements of argmax
▶ but the equilibrium policy π̂ is not necessarily of softmax form!

46 / 100



Reward regularization

Reward regularization:
▶ Modify the reward with a regularizing penalty
▶ For instance, entropy penalty: instead of:

r(x, a, µ)

use:

r(x, a, µ) − η log
(

π(a|x)
π̃(a|x)

)
where π̃ is a reference policy (e.g., uniform)

▶ it depends on the whole policy π(·|x) and not just on the action played
▶ helps to ensure uniqueness of the equilibrium and the BR
▶ but only for the modified game ̸= original game

47 / 100



Reward regularization

Reward regularization:
▶ Modify the reward with a regularizing penalty
▶ For instance, entropy penalty: instead of:

r(x, a, µ)

use:

r(x, a, µ) − η log
(

π(a|x)
π̃(a|x)

)
where π̃ is a reference policy (e.g., uniform)

▶ it depends on the whole policy π(·|x) and not just on the action played
▶ helps to ensure uniqueness of the equilibrium and the BR
▶ but only for the modified game ̸= original game

47 / 100



Some Canonical Examples

Algorithm: Fixed point iter.
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 πk := BR against µk−1;

4 µk := µπk

;
5 return πK , µK

↓

Algorithm: Fictitious Play
input : Initial policy π0

1 π̄0 := π0;
2 µ̄0 := µπ̄0

;
3 for k = 1, . . . , K: do
4 πk := BR against µ̄k−1;

5 µ̄k := k
k+1 µ̄k−1 + 1

k+1 µπk

;
6 π̄k := policy giving µ̄k;
7 return π̄K , µ̄K

Algorithm: Policy iter.
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 Qk := Q-func. for πk−1 given µk−1;
4 πk := argmax Qk;

5 µk := µπk

;
6 return πK , µK

↓

Algorithm: OMD
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 Qk := Q-func. for πk−1 given µk−1;
4 Q̄k := Q̄k−1 + αQk;
5 πk := softmaxτ Q̄k;

6 µk := µπk

;
7 return πK , µK

48 / 100



Assumptions and convergence guarantees

Several classes of assumptions to guarantee convergence of the iterations:

1. "Quantitative" assumptions:

▶ small Lipschitz constants / short time

▶ proof by strict contraction

▶ Ex: [HMC06a, GHXZ19, AKS20b, LST21] . . .

2. "Qualitative/structural" assumptions:

▶ potential structure / monotonicity

▶ proof by Lyapunov stability

▶ Ex: [CH17, Had17, Had18, MJMdC18, PPL+20, PPE+21a] . . .

49 / 100



Convergence?

How can we check whether the algorithm has converged?

Beware:

▶ Total reward of a player is not a good indicator of convergence
▶ Distance between π and π̂ is not necessarily meaningful

→ Exploitability:
▶ Evaluates the quality of a policy in a game [ZJBP07, LWZB09]
▶ How “far” π is from being a Nash equilibrium policy?

In the context of MFGs:

▶ Definition: The exploitability E(π) of a policy π is defined as:

E(π) := max
π′

J(π′, µπ) − J(π, µπ)

▶ Interpretation: E(π) quantifies the average gain for a representative player to
replace its policy by a best response, while the rest of the population plays with
policy π.

▶ If E(π) = 0, then π is a Nash equilibrium policy.

50 / 100



Convergence?

How can we check whether the algorithm has converged?

Beware:

▶ Total reward of a player is not a good indicator of convergence
▶ Distance between π and π̂ is not necessarily meaningful

→ Exploitability:
▶ Evaluates the quality of a policy in a game [ZJBP07, LWZB09]
▶ How “far” π is from being a Nash equilibrium policy?

In the context of MFGs:

▶ Definition: The exploitability E(π) of a policy π is defined as:

E(π) := max
π′

J(π′, µπ) − J(π, µπ)

▶ Interpretation: E(π) quantifies the average gain for a representative player to
replace its policy by a best response, while the rest of the population plays with
policy π.

▶ If E(π) = 0, then π is a Nash equilibrium policy.

50 / 100



Convergence?

How can we check whether the algorithm has converged?

Beware:

▶ Total reward of a player is not a good indicator of convergence
▶ Distance between π and π̂ is not necessarily meaningful

→ Exploitability:
▶ Evaluates the quality of a policy in a game [ZJBP07, LWZB09]
▶ How “far” π is from being a Nash equilibrium policy?

In the context of MFGs:

▶ Definition: The exploitability E(π) of a policy π is defined as:

E(π) := max
π′

J(π′, µπ) − J(π, µπ)

▶ Interpretation: E(π) quantifies the average gain for a representative player to
replace its policy by a best response, while the rest of the population plays with
policy π.

▶ If E(π) = 0, then π is a Nash equilibrium policy.
50 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



OpenSpiel

▶ Open source framework for research in learning in games

▶ Main motivation: multi-agent reinforcement learning (MARL)

▶ Marc Lanctot (Google DeepMind) + many contributors

▶ Mostly in C++ and Python; APIs in Julia, . . .

▶ Various games including zero-sum games, N-player games, imperfect
information, . . .

▶ Chess, Blackjack, Atari, Kuhn poker, Go, . . .

▶ And also: Mean field games

51 / 100



OpenSpiel

Introduction to OpenSpiel:

▶ https://openspiel.readthedocs.io/en/latest/intro.html

▶ Python notebook:
https://colab.research.google.com/github/deepmind/open_
spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb

▶ Tutorial by Marc Lanctot available online:
https://www.youtube.com/watch?v=8NCPqtPwlFQ

▶ Paper [LLL+19]

▶ Two big components:

▶ Games

▶ Algorithms

52 / 100

https://openspiel.readthedocs.io/en/latest/intro.html
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://www.youtube.com/watch?v=8NCPqtPwlFQ


MFG in OpenSpiel

▶ Julien Pérolat, Raphael Marinier, Sertan Girgin & growing number of contributors
Théophille Cabannes, Sarah Perrin, Paul Muller, . . .

▶ For today, three main questions:

▶ How to use the existing material?

▶ How to define a new MFG model (environment/game)?

▶ How to define a new algorithm to learn the MFG solution?

53 / 100



Existing codes for MFG in OpenSpiel

▶ MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

▶ MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [PPL+20]
▶ Crowd modeling 2D illustrated in [PPL+20, GPL+22]
▶ Dynamic routing illustrated in [CLP+22]
▶ Linear quadratic (1D) illustrated in [LPG+22]
▶ Predator prey (multi-population 2D) illustrated in [PPE+21b]

▶ MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [LPG+22]
▶ Boltzmann policy iteration [CK21a]
▶ Fictitious play [PPL+20], . . .
▶ Fixed point
▶ Mirror descent [PPE+21b]
▶ Munchausen deep mirror descent [LPG+22]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
▶ Some examples: https://github.com/deepmind/open_spiel/tree/

master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!

54 / 100

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples


Existing codes for MFG in OpenSpiel

▶ MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

▶ MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [PPL+20]
▶ Crowd modeling 2D illustrated in [PPL+20, GPL+22]
▶ Dynamic routing illustrated in [CLP+22]
▶ Linear quadratic (1D) illustrated in [LPG+22]
▶ Predator prey (multi-population 2D) illustrated in [PPE+21b]

▶ MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [LPG+22]
▶ Boltzmann policy iteration [CK21a]
▶ Fictitious play [PPL+20], . . .
▶ Fixed point
▶ Mirror descent [PPE+21b]
▶ Munchausen deep mirror descent [LPG+22]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)

▶ Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!

54 / 100

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples


Existing codes for MFG in OpenSpiel

▶ MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

▶ MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [PPL+20]
▶ Crowd modeling 2D illustrated in [PPL+20, GPL+22]
▶ Dynamic routing illustrated in [CLP+22]
▶ Linear quadratic (1D) illustrated in [LPG+22]
▶ Predator prey (multi-population 2D) illustrated in [PPE+21b]

▶ MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [LPG+22]
▶ Boltzmann policy iteration [CK21a]
▶ Fictitious play [PPL+20], . . .
▶ Fixed point
▶ Mirror descent [PPE+21b]
▶ Munchausen deep mirror descent [LPG+22]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
▶ Some examples: https://github.com/deepmind/open_spiel/tree/

master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!
54 / 100

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples


MFG in OpenSpiel: Usecase

Q1. How to use existing material?

▶ Install & imports

▶ Creating a game (e.g., grid world)

▶ Running a learning algorithm (e.g., fictitious play)

▶ Plotting the results (e.g., exploitability and distribution)

55 / 100



Tutorial 1: Introduction to MFG in OpenSpiel

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/16p95oXZGdhzCAX9MTPlcMNnsD3dyW9ur?usp=sharing

▶ Installation and imports

▶ Creating a game

▶ Running an algorithm

▶ Visualizing the results

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook

56 / 100

https://colab.research.google.com/drive/16p95oXZGdhzCAX9MTPlcMNnsD3dyW9ur?usp=sharing
https://colab.research.google.com/drive/16p95oXZGdhzCAX9MTPlcMNnsD3dyW9ur?usp=sharing


Tutorial 2: Comparing Learning Algorithms

Another example of game: 2D crowd modeling in a grid world but with obstacles (4
connected rooms). The performance of several algorithms are compared.

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1L1MIVba_2Wm534TDcGL35W2D5vxCsFeo?usp=sharing

▶ Four room grid world

▶ Running multiple pre-defined algorithms

▶ Comparing their exploitabilities

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook

57 / 100

https://colab.research.google.com/drive/1L1MIVba_2Wm534TDcGL35W2D5vxCsFeo?usp=sharing
https://colab.research.google.com/drive/1L1MIVba_2Wm534TDcGL35W2D5vxCsFeo?usp=sharing


Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 1: Noise level = 0.2
State distribution at different time steps (columns) for different algorithms (rows):

Fictitious Play
0 5 10 15 20 25

Online Mirror Descent
0 5 10 15 20 25

Fixed Point
0 5 10 15 20 25

Damped Fixed Point
0 5 10 15 20 25

Softmax Fixed Point
0 5 10 15 20 25

Softmax Fictitious Play
0 5 10 15 20 25

Boltzmann Policy Iteration
0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.055

0.073

0.000

0.008

0.017

0.026

0.034

0.000

0.004

0.008

0.011

0.015

0.000

0.004

0.007

0.010

0.014

0.000

0.004

0.007

0.010

0.014

0.00

0.25

0.50

0.75

1.00

0.000

0.019

0.038

0.056

0.075

0.000

0.008

0.017

0.026

0.034

0.000

0.003

0.006

0.010

0.013

0.000

0.002

0.005

0.008

0.010

0.000

0.002

0.005

0.008

0.010

0.00

0.25

0.50

0.75

1.00

0.000

0.188

0.377

0.566

0.754

0.000

0.188

0.376

0.563

0.751

0.000

0.207

0.414

0.621

0.828

0.000

0.204

0.407

0.610

0.814

0.000

0.188

0.376

0.563

0.751

0.00

0.25

0.50

0.75

1.00

0.000

0.016

0.032

0.048

0.064

0.000

0.008

0.017

0.026

0.034

0.000

0.006

0.012

0.018

0.024

0.000

0.005

0.010

0.016

0.021

0.000

0.004

0.009

0.013

0.018

0.00

0.25

0.50

0.75

1.00

0.000

0.212

0.425

0.638

0.850

0.000

0.212

0.425

0.638

0.850

0.000

0.212

0.425

0.638

0.850

0.000

0.210

0.420

0.629

0.839

0.000

0.216

0.433

0.650

0.866

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.055

0.073

0.000

0.009

0.018

0.026

0.035

0.000

0.004

0.007

0.010

0.014

0.000

0.003

0.006

0.008

0.011

0.000

0.002

0.005

0.008

0.010

0.00

0.25

0.50

0.75

1.00

0.000

0.020

0.041

0.062

0.082

0.000

0.012

0.024

0.036

0.048

0.000

0.010

0.019

0.028

0.038

0.000

0.008

0.017

0.026

0.034

0.000

0.008

0.016

0.024

0.032

58 / 100



Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 1: Noise level = 0.2
Exploitability vs number of steps:

0.0 20.0 40.0 60.0 80.0 100.0
iterations

0.01

0.1

1.0

10.0

100.0

1000.0

10000.0

ex
pl

oi
ta

bi
lit

y

Fictitious Play
Online Mirror Descent
Fixed Point
Damped Fixed Point

Softmax Fixed Point
Softmax Fictitious Play
Boltzmann Policy Iteration

58 / 100



Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 2: Noise level = 0
State distribution at different time steps (columns) for different algorithms (rows):

Fictitious Play
0 5 10 15 20 25

Online Mirror Descent
0 5 10 15 20 25

Fixed Point
0 5 10 15 20 25

Damped Fixed Point
0 5 10 15 20 25

Softmax Fixed Point
0 5 10 15 20 25

Softmax Fictitious Play
0 5 10 15 20 25

Boltzmann Policy Iteration
0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.000

0.020

0.040

0.059

0.079

0.000

0.015

0.030

0.044

0.059

0.000

0.008

0.015

0.022

0.030

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.00

0.25

0.50

0.75

1.00

0.000

0.015

0.030

0.045

0.060

0.000

0.012

0.024

0.036

0.048

0.000

0.004

0.009

0.013

0.018

0.000

0.002

0.005

0.008

0.010

0.000

0.002

0.005

0.008

0.010

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.000

0.016

0.032

0.048

0.064

0.000

0.013

0.026

0.039

0.052

0.000

0.007

0.014

0.020

0.027

0.000

0.006

0.012

0.017

0.023

0.000

0.005

0.010

0.015

0.020

0.00

0.25

0.50

0.75

1.00

0.000

0.040

0.080

0.121

0.161

0.000

0.025

0.050

0.075

0.100

0.000

0.019

0.038

0.058

0.077

0.000

0.016

0.032

0.048

0.064

0.000

0.014

0.028

0.042

0.056

0.00

0.25

0.50

0.75

1.00

0.000

0.014

0.029

0.044

0.058

0.000

0.012

0.024

0.037

0.049

0.000

0.005

0.010

0.014

0.019

0.000

0.003

0.006

0.010

0.013

0.000

0.003

0.006

0.010

0.013

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.053

0.071

0.000

0.012

0.024

0.036

0.048

0.000

0.007

0.014

0.021

0.028

0.000

0.006

0.012

0.017

0.023

0.000

0.006

0.011

0.016

0.022

59 / 100



Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 2: Noise level = 0
Exploitability vs number of steps:

0.0 20.0 40.0 60.0 80.0 100.0
iterations

0.01

0.1

1.0

10.0

100.0

1000.0

10000.0

ex
pl

oi
ta

bi
lit

y

Fictitious Play
Online Mirror Descent
Fixed Point
Damped Fixed Point

Softmax Fixed Point
Softmax Fictitious Play
Boltzmann Policy Iteration

59 / 100



MFG model in OpenSpiel: State

Q2. How to define a new MFG model?

▶ State of the game = all the information required to describe the current stage

▶ In an MFG: representative player’s state and mean field state

▶ Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

▶ The state evolves along a tree of possibilities

60 / 100



MFG model in OpenSpiel: State

Q2. How to define a new MFG model?

▶ State of the game = all the information required to describe the current stage

▶ In an MFG: representative player’s state and mean field state

▶ Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

▶ The state evolves along a tree of possibilities

60 / 100



MFG model in OpenSpiel: State

Q2. How to define a new MFG model?

▶ State of the game = all the information required to describe the current stage

▶ In an MFG: representative player’s state and mean field state

▶ Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

▶ The state evolves along a tree of possibilities

60 / 100



MFG model in OpenSpiel: State evolution

61 / 100



MFG model in OpenSpiel: State types

▶ Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

▶ Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

▶ Chance:
▶ can be viewed as a player with a fixed policy
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

▶ Mean field: no actions

62 / 100



MFG model in OpenSpiel: State types

▶ Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

▶ Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

▶ Chance:
▶ can be viewed as a player with a fixed policy
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

▶ Mean field: no actions

62 / 100



MFG model in OpenSpiel: State types

▶ Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

▶ Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

▶ Chance:
▶ can be viewed as a player with a fixed policy
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

▶ Mean field: no actions

62 / 100



MFG model in OpenSpiel: State types

▶ Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

▶ Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

▶ Chance:
▶ can be viewed as a player with a fixed policy
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

▶ Mean field: no actions

62 / 100



MFG in OpenSpiel: Distribution

▶ The distribution is something specific to MFGs (compared with other games in
OpenSpiel)

▶ Remember that time is part of the state object. Evaluating the distribution at a
given state means evaluating the distribution at (t, x).

▶ master/open_spiel/python/mfg/algorithms/distribution.py

▶ Computes the distribution of a policy
▶ DistributionPolicy

▶ evaluate: based on the logic behind nodes
▶ _one_forward_step

▶ master/open_spiel/python/mfg/distribution.py

▶ Representation of a distribution for a game
▶ Distribution

▶ master/open_spiel/python/mfg/tabular_distribution.py

▶ Tabular representation of a distribution for a game
▶ TabularDistribution

63 / 100

master/open_spiel/python/mfg/algorithms/distribution.py
master/open_spiel/python/mfg/distribution.py
master/open_spiel/python/mfg/tabular_distribution.py


MFG model in OpenSpiel: Example

We take a concrete example: crowd modeling in 1D with a grid world

master/open_spiel/python/mfg/games/crowd_modelling.py

3 main classes

▶ MFGCrowdModellingGame:
▶ __init__: initialization
▶ new_initial_state: generate new initial state

▶ MFGCrowdModellingState:
▶ __init__: initialization
▶ _legal_actions: actions that are valid
▶ chance_outcomes: distribution over values of the noise in the dynamics
▶ _apply_action: will be called at each node to modify the state based on the action
▶ _rewards: representative player’s reward

▶ Observer:
▶ defines an observation, here basically t and x

64 / 100

 master/open_spiel/python/mfg/games/crowd_modelling.py 


MFG algorithms in OpenSpiel: Principles

Q3. How to define a new algorithm?

Simplest one: Fixed point
master/open_spiel/python/mfg/algorithms/fixed_point.py

A bit more involved: Fictitious play
master/open_spiel/python/mfg/algorithms/fictitious_play.py

▶ Main class FictitiousPlay

▶ Main method iteration

▶ Compute the distribution (sequence) associated to the current policy
▶ Update the policy (using fictitious play rule); this uses an auxiliary class

MergedPolicy to mix the previous policy and the new one

▶ get_policy: returns the current policy

65 / 100

master/open_spiel/python/mfg/algorithms/fixed_point.py
master/open_spiel/python/mfg/algorithms/fictitious_play.py


Tutorial 3: Game construction

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing

▶ Details of the definition of an MFG game in OpenSpiel

▶ Modification of an existing game

▶ Reward function, transitions, . . .

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook

66 / 100

https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing
https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing


Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG
Model-free RL framework
Model-free RL methods

7. Learning MFC Social Optimum

8. Conclusion



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG
Model-free RL framework
Model-free RL methods

7. Learning MFC Social Optimum

8. Conclusion



Revisiting Dynamic Programming: Classical Setup

Classical MDP (S, A, p, r, γ):

Qπ(x, a) = (BπQπ)(x, a) = r(x, a) + γEx′∼p(·|x,a),

a′∼π(·|x)

[
Qπ(x′, a′)

]
→ Can be computed by applying repeatedly Bπ

→ But what if p & r are unknown and we can only observe samples (x′, r(x, a))?

Environment

Agent

Reward
rn+1

State
xn+1

Action
an

Reward
rn

State
xn

See e.g. [SB18]

67 / 100



Revisiting Dynamic Programming: Classical Setup

Classical MDP (S, A, p, r, γ):

Qπ(x, a) = (BπQπ)(x, a) = r(x, a) + γEx′∼p(·|x,a),

a′∼π(·|x)

[
Qπ(x′, a′)

]
→ Can be computed by applying repeatedly Bπ

→ But what if p & r are unknown and we can only observe samples (x′, r(x, a))?

Environment

Agent

Reward
rn+1

State
xn+1

Action
an

Reward
rn

State
xn

See e.g. [SB18]

67 / 100



Revisiting Dynamic Programming: Classical Setup

Classical MDP (S, A, p, r, γ):

Qπ(x, a) = (BπQπ)(x, a) = r(x, a) + γEx′∼p(·|x,a),

a′∼π(·|x)

[
Qπ(x′, a′)

]
→ Can be computed by applying repeatedly Bπ

→ But what if p & r are unknown and we can only observe samples (x′, r(x, a))?

Environment

Agent

Reward
rn+1

State
xn+1

Action
an

Reward
rn

State
xn

See e.g. [SB18]

67 / 100



Revisiting Dynamic Programming: Mean Field Game Setup

MDP parameterized by mean field term (S, A, p(·|·, ·, µ), r(·|·, ·, µ), γ):

Qµ,π(x, a) = (Bµ,πQµ,π)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

→ What if p & r are unknown and we can only observe samples (x′, r(x, a, µ))?

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µ

Action
an

Reward
rn

State
xn

Note: the agent does not need to observe µ, but it is part of the environment.

68 / 100



Revisiting Dynamic Programming: Mean Field Game Setup

MDP parameterized by mean field term (S, A, p(·|·, ·, µ), r(·|·, ·, µ), γ):

Qµ,π(x, a) = (Bµ,πQµ,π)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
→ What if p & r are unknown and we can only observe samples (x′, r(x, a, µ))?

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µ

Action
an

Reward
rn

State
xn

Note: the agent does not need to observe µ, but it is part of the environment.

68 / 100



Revisiting Dynamic Programming: Mean Field Game Setup

MDP parameterized by mean field term (S, A, p(·|·, ·, µ), r(·|·, ·, µ), γ):

Qµ,π(x, a) = (Bµ,πQµ,π)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
→ What if p & r are unknown and we can only observe samples (x′, r(x, a, µ))?

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µ

Action
an

Reward
rn

State
xn

Note: the agent does not need to observe µ, but it is part of the environment.

68 / 100



Revisiting Dynamic Programming: Mean Field Game Setup

MDP parameterized by mean field term (S, A, p(·|·, ·, µ), r(·|·, ·, µ), γ):

Qµ,π(x, a) = (Bµ,πQµ,π)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
→ What if p & r are unknown and we can only observe samples (x′, r(x, a, µ))?

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µ

Action
an

Reward
rn

State
xn

Note: the agent does not need to observe µ, but it is part of the environment.

68 / 100



Revisiting Dynamic Programming: Mean Field Game Setup

How to deal with µ in practice? To implement the simulator, we can for instance:

▶ Vector (if finite S); updates using transition matrix

▶ Empirical distribution µN ; updates using individual transitions

▶ Neural network (e.g., normalizing flow); updates by training

▶ . . .

69 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG
Model-free RL framework
Model-free RL methods

7. Learning MFC Social Optimum

8. Conclusion



Policy evaluation

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,π:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing

E

[ ∣∣∣∣∣Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qθk (x′, a′)

]∣∣∣∣∣
2 ]

70 / 100



Policy evaluation

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,π:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing

E

[ ∣∣∣∣∣Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qθk (x′, a′)

]∣∣∣∣∣
2 ]

70 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,π:
▶ Observe x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment

▶ Approximate Ex′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
by Monte Carlo

▶ Use similar updates as before (in the ideal case)? For instance with tabular
representation: at a given k, for all (x, a) compute:

Qk+1(x, a) = r(x, a, µ) + γẼB
x′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
where ẼB is an empirical expectation based on a batch of B i.i.d samples.

▶ This is model-free (= purely based on samples from the environment) . . .
▶ But this requires: many samples for every (x, a) at every iteration k . . .

71 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,π:
▶ Observe x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment

▶ Approximate Ex′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
by Monte Carlo

▶ Use similar updates as before (in the ideal case)? For instance with tabular
representation: at a given k, for all (x, a) compute:

Qk+1(x, a) = r(x, a, µ) + γẼB
x′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
where ẼB is an empirical expectation based on a batch of B i.i.d samples.

▶ This is model-free (= purely based on samples from the environment) . . .

▶ But this requires: many samples for every (x, a) at every iteration k . . .

71 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,π:
▶ Observe x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment

▶ Approximate Ex′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
by Monte Carlo

▶ Use similar updates as before (in the ideal case)? For instance with tabular
representation: at a given k, for all (x, a) compute:

Qk+1(x, a) = r(x, a, µ) + γẼB
x′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
where ẼB is an empirical expectation based on a batch of B i.i.d samples.

▶ This is model-free (= purely based on samples from the environment) . . .
▶ But this requires: many samples for every (x, a) at every iteration k . . .

71 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume we only have access to samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the
environment.

Repeatedly improve estimate Qk of Qµ,π: In practice:
▶ asynchronous updates: follow a trajectory (xk, ak)k≥0:

Qk+1(xk, ak) = r(xk, ak, µ) + γQk(xk+1, ak+1)

where xk+1 ∼ p(·|xk, ak, µ), ak+1 ∼ π(·|xk)
→ addresses the previous point . . . but very unstable

▶ learning rate:

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γQk(xk+1, ak+1)

]
▶ many extra tricks (replay buffer, policy parameterization, . . . )

72 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume we only have access to samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the
environment.

Repeatedly improve estimate Qk of Qµ,π: In practice:
▶ asynchronous updates: follow a trajectory (xk, ak)k≥0:

Qk+1(xk, ak) = r(xk, ak, µ) + γQk(xk+1, ak+1)

where xk+1 ∼ p(·|xk, ak, µ), ak+1 ∼ π(·|xk)
→ addresses the previous point . . . but very unstable

▶ learning rate:

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γQk(xk+1, ak+1)

]

▶ many extra tricks (replay buffer, policy parameterization, . . . )

72 / 100



Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume we only have access to samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the
environment.

Repeatedly improve estimate Qk of Qµ,π: In practice:
▶ asynchronous updates: follow a trajectory (xk, ak)k≥0:

Qk+1(xk, ak) = r(xk, ak, µ) + γQk(xk+1, ak+1)

where xk+1 ∼ p(·|xk, ak, µ), ak+1 ∼ π(·|xk)
→ addresses the previous point . . . but very unstable

▶ learning rate:

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γQk(xk+1, ak+1)

]
▶ many extra tricks (replay buffer, policy parameterization, . . . )

72 / 100



Optimal policy computation

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]

Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,∗:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing∥∥∥(x, a) 7→ Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ)

[
max

a′
Qθk (x′, a′)

]∥∥∥
2

73 / 100



Optimal policy computation

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]
Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,∗:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing∥∥∥(x, a) 7→ Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ)

[
max

a′
Qθk (x′, a′)

]∥∥∥
2

73 / 100



Optimal policy computation: Model-free

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]
Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,∗:

▶ similar as evaluation, using MC samples

▶ computation of max (and argmax to recover an optimal policy) possible by
exhaustive search if the action space A is finite and small

▶ tabular Q-learning [WD92] (with extra µ in the environment):

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γ max

a′
Qk(xk+1, a′)

]
where xk+1 ∼ p(·|xk, ak, µ) and ak ∼ some policy

▶ otherwise: learn an optimal parameterized policy
▶ either along the way, with the Q-function ⇒ actor-critic methods
▶ only the parameterized policy ⇒ policy gradient methods

▶ Ex: DQN, SAC, PPO, . . .

74 / 100



Optimal policy computation: Model-free

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]
Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,∗:

▶ similar as evaluation, using MC samples

▶ computation of max (and argmax to recover an optimal policy) possible by
exhaustive search if the action space A is finite and small

▶ tabular Q-learning [WD92] (with extra µ in the environment):

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γ max

a′
Qk(xk+1, a′)

]
where xk+1 ∼ p(·|xk, ak, µ) and ak ∼ some policy

▶ otherwise: learn an optimal parameterized policy
▶ either along the way, with the Q-function ⇒ actor-critic methods
▶ only the parameterized policy ⇒ policy gradient methods

▶ Ex: DQN, SAC, PPO, . . .
74 / 100



MFG Nash equilibrium: Model-free

▶ Above: enables the computation of a Best Response
(using for instance model-free versions of value iteration and policy iteration)

▶ Good but not enough for Nash equilibrium!

▶ “Outer loop” to update the mean field µ

▶ Various options, depending on the MFG setting:

▶ Stationary setting: one or many applications of the transition matrix
(ideally: computation of the stationary distribution)

▶ Evolutive setting: application of the transition matrix for each of the time
steps (computation of the MF sequence)

▶ If applying the transition matrix is not an option (e.g., continuous spaces), one
can for instance use an empirical distribution obtained by simulating N agents

75 / 100



MFG Nash equilibrium: Model-free

▶ Above: enables the computation of a Best Response
(using for instance model-free versions of value iteration and policy iteration)

▶ Good but not enough for Nash equilibrium!

▶ “Outer loop” to update the mean field µ

▶ Various options, depending on the MFG setting:

▶ Stationary setting: one or many applications of the transition matrix
(ideally: computation of the stationary distribution)

▶ Evolutive setting: application of the transition matrix for each of the time
steps (computation of the MF sequence)

▶ If applying the transition matrix is not an option (e.g., continuous spaces), one
can for instance use an empirical distribution obtained by simulating N agents

75 / 100



MFG Nash equilibrium: Model-free

▶ Above: enables the computation of a Best Response
(using for instance model-free versions of value iteration and policy iteration)

▶ Good but not enough for Nash equilibrium!

▶ “Outer loop” to update the mean field µ

▶ Various options, depending on the MFG setting:

▶ Stationary setting: one or many applications of the transition matrix
(ideally: computation of the stationary distribution)

▶ Evolutive setting: application of the transition matrix for each of the time
steps (computation of the MF sequence)

▶ If applying the transition matrix is not an option (e.g., continuous spaces), one
can for instance use an empirical distribution obtained by simulating N agents

75 / 100



MFG Nash equilibrium: Model-free

▶ Above: enables the computation of a Best Response
(using for instance model-free versions of value iteration and policy iteration)

▶ Good but not enough for Nash equilibrium!

▶ “Outer loop” to update the mean field µ

▶ Various options, depending on the MFG setting:

▶ Stationary setting: one or many applications of the transition matrix
(ideally: computation of the stationary distribution)

▶ Evolutive setting: application of the transition matrix for each of the time
steps (computation of the MF sequence)

▶ If applying the transition matrix is not an option (e.g., continuous spaces), one
can for instance use an empirical distribution obtained by simulating N agents

75 / 100



MFG algorithms in OpenSpiel: Reinforcement Learning – Principles

OpenSpiel also contains RL codes for MFGs

Two main building blocks:

▶ Environment (in the sense of RL): in charge of updating the State based on the
based on the Game

▶ Agent: in charge of training the policy by interacting with the environment

76 / 100



MFG algorithms in OpenSpiel: Reinforcement Learning – Examples

Policy update: best respond computation for instance through DQN:
▶ DQN is a variant of Q-learning with a neural network for Q [MKS+15]
▶ Implementation: open_spiel/python/mfg/examples/mfg_dqn_jax.py
▶ neural network implementation through JAX
▶ see the source code for details (hyperparameters etc.)

Mean field update: Example of DQN embedded in Fictitious Play [LPG+22]:
▶ Train a NN for the average policy across iterations
▶ Implem.: open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
▶ Key steps:

▶ fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)

▶ distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just computed
by fictitious play iteration

▶ env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration

▶ agents[p].step(time_step): train the agent

Alternative: Munchausen Deep Mirror Descent [LPG+22]:
▶ Train a NN for the cumulative Q-function
▶ Implem.: open_spiel/python/mfg/examples/munchausen_deep_

mirror_descent.py

77 / 100

open_spiel/python/mfg/examples/mfg_dqn_jax.py
open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py


MFG algorithms in OpenSpiel: Reinforcement Learning – Examples

Policy update: best respond computation for instance through DQN:
▶ DQN is a variant of Q-learning with a neural network for Q [MKS+15]
▶ Implementation: open_spiel/python/mfg/examples/mfg_dqn_jax.py
▶ neural network implementation through JAX
▶ see the source code for details (hyperparameters etc.)

Mean field update: Example of DQN embedded in Fictitious Play [LPG+22]:
▶ Train a NN for the average policy across iterations
▶ Implem.: open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
▶ Key steps:

▶ fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)

▶ distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just computed
by fictitious play iteration

▶ env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration

▶ agents[p].step(time_step): train the agent

Alternative: Munchausen Deep Mirror Descent [LPG+22]:
▶ Train a NN for the cumulative Q-function
▶ Implem.: open_spiel/python/mfg/examples/munchausen_deep_

mirror_descent.py

77 / 100

open_spiel/python/mfg/examples/mfg_dqn_jax.py
open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py


MFG algorithms in OpenSpiel: Reinforcement Learning – Examples

Policy update: best respond computation for instance through DQN:
▶ DQN is a variant of Q-learning with a neural network for Q [MKS+15]
▶ Implementation: open_spiel/python/mfg/examples/mfg_dqn_jax.py
▶ neural network implementation through JAX
▶ see the source code for details (hyperparameters etc.)

Mean field update: Example of DQN embedded in Fictitious Play [LPG+22]:
▶ Train a NN for the average policy across iterations
▶ Implem.: open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
▶ Key steps:

▶ fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)

▶ distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just computed
by fictitious play iteration

▶ env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration

▶ agents[p].step(time_step): train the agent

Alternative: Munchausen Deep Mirror Descent [LPG+22]:
▶ Train a NN for the cumulative Q-function
▶ Implem.: open_spiel/python/mfg/examples/munchausen_deep_

mirror_descent.py
77 / 100

open_spiel/python/mfg/examples/mfg_dqn_jax.py
open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py
open_spiel/python/mfg/examples/munchausen_deep_mirror_descent.py


Tutorial 4: Deep RL for MFG in OpenSpiel

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1rF9DpjO_xTpbBC2Y-6h_7yQ80j75eb6j?usp=sharing

▶ Installation and imports for DRL in OpenSpiel

▶ Munchausen Deep Mirror Descent

▶ Average Network Fictitious Play

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook

78 / 100

https://colab.research.google.com/drive/1rF9DpjO_xTpbBC2Y-6h_7yQ80j75eb6j?usp=sharing
https://colab.research.google.com/drive/1rF9DpjO_xTpbBC2Y-6h_7yQ80j75eb6j?usp=sharing


A (Non-exhaustive) Glance at the literature: RL for MFG

RL for Mean Field Game:

▶ MARL with mean field approximation: Yang et al. [YLL+18]
▶ Inverse RL: Yang et al. [YYT+17], Chen et al. [CLK21]
▶ Multi-time scales: Subramanian et al. [SM19], Angiuli et

al. [AFL20, AFLZ20, AH21]
▶ Fictitious Play with tabular RL: Pérolat et al. [PPL+20], with deep RL: Elie et

al. [EPL+20, CK21b] and distribution embedding: Perrin et al. [PLP+21b]
▶ Fixed point iterations with Q-learning and variants: Guo et

al. [GHXZ19, GHXZ20], Anahtarci et al. [AKS19, AKS21], Xie et al. [XYWM21]
▶ Entropy regularization: Anahtarci et al. [AKS20a], Cui et al. [CK21b]
▶ LQ MFG with actor-critic: [FYCW19, uZZMB20], or policy gradient: Wang et

al. [WHYW21]
▶ RL for partially observable MFG: Subramanian et al. [STCP20]
▶ Mean field RL for multiple types: Subramabian et al. [SPTH20, uZMB22]
▶ Learning Master policies with deep RL: Perrin et al. [PLP+21a]
▶ Learning with a single agent: [AFL20, ZKBB23]
▶ . . .

79 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum
From MFC to MFMDP
RL for MFMDP
Unified algorithm for MFG and MFC

8. Conclusion



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum
From MFC to MFMDP
RL for MFMDP
Unified algorithm for MFG and MFC

8. Conclusion



Stationary Setting – Reminder

Setting:
▶ Stationary setting: NT = ∞
▶ No fixed initial m0 but a stationary distribution
▶ Notation: MF(π) := stationary distribution when using policy π:

µ = P ⊤
µ,πµ =: Pπ(µ)

▶ Player’s reward: for player’s policy π ∈ ∆A and mean field µ ∈ ∆S ,

J(π; µ) = E

[
∞∑

n=0

γnr(xn, an, µ)

]
where γ ∈ (0, 1) is a discount parameter, and

an ∼ π(·|xn), x0 ∼ µ, xn+1 ∼ p(·|xn, an, µ), n ≥ 0

Solution concepts:
▶ Stationary MFG Nash equilibrium: (π̂, µ̂) ∈ Π × ∆S×A s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field state: µ̂ = MF(π̂)

▶ Fixed point: µ̂ ∈ MF(BR(µ̂))

▶ Stationary MFC Social optimum: π∗ ∈ Π s.t.
▶ Optimality: π∗ ∈ argmaxπ∗ J(π∗; µπ∗

) where µπ∗
= MF(π∗)

80 / 100



Evolutive Setting – Reminder

Setting:
▶ Horizon: NT ∈ N (extensions: p, r depending on n; infinite horizon)
▶ Fixed initial state distribution: m0 ∈ ∆S

▶ The MF evolves in time: µ = (µn)n=0,...,NT ∈ ∆NT
S

▶ Notation MFm0,NT (π) := generated by policy π starting from m0:

µ0 = m0, µn+1 = P ⊤
µn,πn

µn, n ≥ 0

▶ Player’s reward: for player’s policy π ∈ ΠNT and mean field µ ∈ ∆NT
S ,

J(π; µ) = E

[
NT∑
n=0

r(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts:
▶ Evolutive MFG Nash equilibrium: (π̂, µ̂) ∈ ΠNT × ∆NT

S s.t.
1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field flow: µ̂ = MFm0,NT (π̂)

▶ Fixed point: µ̂ ∈ MFm0,NT (BR(µ̂))

▶ Evolutive MFC Social optimum: π∗ ∈ ΠNT s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; µπ) where µπ = MFm0,NT (π)

81 / 100



Evolutive Setting – Infinite Horizon Discounted

Setting:
▶ Horizon: NT = +∞; discount γ ∈ (0, 1)

▶ Notation MFm0,NT (π) := as before generated by policy π starting from m0 (but
now: infinite sequence, NT = ∞)

▶ Player’s reward: for player’s policy π ∈ Π∞ and mean field µ ∈ ∆∞
S ,

J(π; µ) = E

[
+∞∑
n=0

γnr(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts: as before (with infinite sequences, NT = ∞)

82 / 100



Evolutive Setting – Infinite Horizon Discounted

Setting:
▶ Horizon: NT = +∞; discount γ ∈ (0, 1)
▶ Notation MFm0,NT (π) := as before generated by policy π starting from m0 (but

now: infinite sequence, NT = ∞)
▶ Player’s reward: for player’s policy π ∈ Π∞ and mean field µ ∈ ∆∞

S ,

J(π; µ) = E

[
+∞∑
n=0

γnr(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts: as before (with infinite sequences, NT = ∞)

82 / 100



Evolutive Setting – Infinite Horizon Discounted

Setting:
▶ Horizon: NT = +∞; discount γ ∈ (0, 1)
▶ Notation MFm0,NT (π) := as before generated by policy π starting from m0 (but

now: infinite sequence, NT = ∞)
▶ Player’s reward: for player’s policy π ∈ Π∞ and mean field µ ∈ ∆∞

S ,

J(π; µ) = E

[
+∞∑
n=0

γnr(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts: as before (with infinite sequences, NT = ∞)

82 / 100



From MFC to MFMDP

Let:
JMF C(π) := J(π; MFm0,NT (π))

MFC problem:
π∗ ∈ argmax

π

JMF C(π)

Note: in the definition of J using policy π,

µn = L(xn)
so

JMF C(π) =
+∞∑
n=0

γnr̄(ān, µn)

where r̄(ān, µn) := Exn∼µn,an∼πn(·|xn)[r(xn, an, µn)]

Intuitively, this is an MDP with state = mean field µn: Mean Field MDP

Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄

83 / 100



From MFC to MFMDP

Let:
JMF C(π) := J(π; MFm0,NT (π))

MFC problem:
π∗ ∈ argmax

π

JMF C(π)

Note: in the definition of J using policy π,

µn = L(xn)
so

JMF C(π) =
+∞∑
n=0

γnr̄(ān, µn)

where r̄(ān, µn) := Exn∼µn,an∼πn(·|xn)[r(xn, an, µn)]

Intuitively, this is an MDP with state = mean field µn: Mean Field MDP

Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄

83 / 100



From MFC to MFMDP

Let:
JMF C(π) := J(π; MFm0,NT (π))

MFC problem:
π∗ ∈ argmax

π

JMF C(π)

Note: in the definition of J using policy π,

µn = L(xn)
so

JMF C(π) =
+∞∑
n=0

γnr̄(ān, µn)

where r̄(ān, µn) := Exn∼µn,an∼πn(·|xn)[r(xn, an, µn)]

Intuitively, this is an MDP with state = mean field µn: Mean Field MDP

Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄

83 / 100



From MFC to MFMDP

Let:
JMF C(π) := J(π; MFm0,NT (π))

MFC problem:
π∗ ∈ argmax

π

JMF C(π)

Note: in the definition of J using policy π,

µn = L(xn)
so

JMF C(π) =
+∞∑
n=0

γnr̄(ān, µn)

where r̄(ān, µn) := Exn∼µn,an∼πn(·|xn)[r(xn, an, µn)]

Intuitively, this is an MDP with state = mean field µn: Mean Field MDP

Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄
83 / 100



MFMDP

MFMDP problem:
π̄∗ ∈ argmax

π̄

J̄J(π̄; m0)

where

J̄(π̄; m0) =
+∞∑
n=0

γnr̄(ān, µn)

subject to:
µ0 = m0, µn+1 = P ⊤

µn,π̄n
µn (+ noise), n ≥ 0

Value functions:
▶ V̄ ∗(µ) and Q̄∗(µ, ā)
▶ Dynamic programming equations [CLT23] (see also [GGWX23] without common

noise, and [MP19b] with common noise but no common randomization)
▶ Need to properly define the class of actions and policies [omitted here; see e.g.

[CLT23] for details]

RL:
▶ From here, we can re-use existing RL methods for this MDP of mean-field type
▶ Question 1: What is the environment?
▶ Question 2: How to deal with the (continuous) state?

84 / 100



MFMDP

MFMDP problem:
π̄∗ ∈ argmax

π̄

J̄J(π̄; m0)

where

J̄(π̄; m0) =
+∞∑
n=0

γnr̄(ān, µn)

subject to:
µ0 = m0, µn+1 = P ⊤

µn,π̄n
µn (+ noise), n ≥ 0

Value functions:
▶ V̄ ∗(µ) and Q̄∗(µ, ā)
▶ Dynamic programming equations [CLT23] (see also [GGWX23] without common

noise, and [MP19b] with common noise but no common randomization)
▶ Need to properly define the class of actions and policies [omitted here; see e.g.

[CLT23] for details]

RL:
▶ From here, we can re-use existing RL methods for this MDP of mean-field type
▶ Question 1: What is the environment?
▶ Question 2: How to deal with the (continuous) state?

84 / 100



MFMDP

MFMDP problem:
π̄∗ ∈ argmax

π̄

J̄J(π̄; m0)

where

J̄(π̄; m0) =
+∞∑
n=0

γnr̄(ān, µn)

subject to:
µ0 = m0, µn+1 = P ⊤

µn,π̄n
µn (+ noise), n ≥ 0

Value functions:
▶ V̄ ∗(µ) and Q̄∗(µ, ā)
▶ Dynamic programming equations [CLT23] (see also [GGWX23] without common

noise, and [MP19b] with common noise but no common randomization)
▶ Need to properly define the class of actions and policies [omitted here; see e.g.

[CLT23] for details]

RL:
▶ From here, we can re-use existing RL methods for this MDP of mean-field type
▶ Question 1: What is the environment?
▶ Question 2: How to deal with the (continuous) state?

84 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum
From MFC to MFMDP
RL for MFMDP
Unified algorithm for MFG and MFC

8. Conclusion



MFMDP: Environment

Mean field MDP (S̄ = ∆S , Ā = ∆S
A, p̄, r̄, γ):

Q̄π̄(µ, ā) = (B̄µ,π̄Q̄π̄)(µ, ā) = r̄(µ, ā) + γEµ′∼p̄(·|µ,ā),

ā′∼π̄(·|µ)

[
Q̄π̄(µ′, ā′)

]
→ What if p̄ & r̄ are unknown and we can only observe samples (x′, r̄(µ, ā))?

Environment

Population

Reward

rn+1

MF State

µn+1

Action

an

Reward

rn

MF State
µn

85 / 100



Mean Field State

How to deal with the MFMDP value functions (and policies)?

▶ Difficulty: µn takes continuous values in ∆S (likewise for actions ān)

▶ Option 1: discretize the simplex(es) and then use tabular RL methods

▶ Option 2: function approximation Qθ(µ, ā) and then use deep RL methods

▶ Remarks on policy randomization:

▶ Randomization at the agent level is useful to allow agents to have different
trajectories even when start at the same state

▶ There exists an optimal policy which is pure at the pop. level [CLT23]

▶ But common randomization (at the pop. level) helps with exploration

86 / 100



Mean Field State

How to deal with the MFMDP value functions (and policies)?

▶ Difficulty: µn takes continuous values in ∆S (likewise for actions ān)

▶ Option 1: discretize the simplex(es) and then use tabular RL methods

▶ Option 2: function approximation Qθ(µ, ā) and then use deep RL methods

▶ Remarks on policy randomization:

▶ Randomization at the agent level is useful to allow agents to have different
trajectories even when start at the same state

▶ There exists an optimal policy which is pure at the pop. level [CLT23]

▶ But common randomization (at the pop. level) helps with exploration

86 / 100



Mean Field State

How to deal with the MFMDP value functions (and policies)?

▶ Difficulty: µn takes continuous values in ∆S (likewise for actions ān)

▶ Option 1: discretize the simplex(es) and then use tabular RL methods

▶ Option 2: function approximation Qθ(µ, ā) and then use deep RL methods

▶ Remarks on policy randomization:

▶ Randomization at the agent level is useful to allow agents to have different
trajectories even when start at the same state

▶ There exists an optimal policy which is pure at the pop. level [CLT23]

▶ But common randomization (at the pop. level) helps with exploration

86 / 100



Mean Field State

How to deal with the MFMDP value functions (and policies)?

▶ Difficulty: µn takes continuous values in ∆S (likewise for actions ān)

▶ Option 1: discretize the simplex(es) and then use tabular RL methods

▶ Option 2: function approximation Qθ(µ, ā) and then use deep RL methods

▶ Remarks on policy randomization:

▶ Randomization at the agent level is useful to allow agents to have different
trajectories even when start at the same state

▶ There exists an optimal policy which is pure at the pop. level [CLT23]

▶ But common randomization (at the pop. level) helps with exploration

86 / 100



A (Non-exhaustive) Glance at the literature: RL for MFC

RL for Mean Field Control:

▶ Early works on MDP viewpoint: Gast et al. [GG11, GGLB12]
▶ Policy optimization for stationary MFC: Subramanian et al. [SM19]
▶ Policy gradient for LQ MFC [CLT19b, WHYW21] and zero sum mean field type

game [CHLT20]
▶ Multi-time scale for MFC (and MFG): Angiuli et al. [AFL20, AFLZ20, AH21]:
▶ Mean field MDP: dynamic programming and

RL [CLT23, GGWX23, MP19b, GGWX20, CTSK21]
▶ Decentralized network approach [GGWX21]
▶ Model based RL for MFC: Pasztor et al. [PBK21]
▶ . . .

87 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])

88 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 1: m0 = (1/4, 1/4, 1/4, 1/4)

0 2 4 6 8 10
time

0.0

0.1

0.2

0.3

0.4

0.5

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE ) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
88 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 2: m0 = (1, 0, 0, 0)

0 2 4 6 8 10
time

0.0

0.2

0.4

0.6

0.8

1.0

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE ) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
88 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 3: m0 = (0, 0, 0, 1)

0 2 4 6 8 10
time

0.0

0.2

0.4

0.6

0.8

1.0

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE ) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.15

0.20

0.25

0.30

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
88 / 100



From Tabular to Deep RL for MFMDP

▶ Tabular RL is easy to implement and well understood (convergence, etc.)

▶ But:

▶ leads to errors due to projections on the discretized state space

▶ not feasible if the number |S| of (individual) states is large, because µ
becomes high dimensional

▶ Instead of discretizing the distribution, we can:

▶ replace Q̄∗ by a parameterized function, e.g., neural network

▶ train it using a deep RL algorithm, e.g., DDPG, . . .

▶ Deep RL for MFMDP: See sections 6.1, 6.2 and 6.3 of [CLT23]

89 / 100



From Tabular to Deep RL for MFMDP

▶ Tabular RL is easy to implement and well understood (convergence, etc.)

▶ But:

▶ leads to errors due to projections on the discretized state space

▶ not feasible if the number |S| of (individual) states is large, because µ
becomes high dimensional

▶ Instead of discretizing the distribution, we can:

▶ replace Q̄∗ by a parameterized function, e.g., neural network

▶ train it using a deep RL algorithm, e.g., DDPG, . . .

▶ Deep RL for MFMDP: See sections 6.1, 6.2 and 6.3 of [CLT23]

89 / 100



Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing

▶ Same example as above: MFC for cybersecurity

▶ Solved using deep RL with population-dependent controls

90 / 100

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing
https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing


Another Example: Distribution Planning

▶ Goal: match a target distribution.
▶ S = {1, . . . , 10} and A = {−1, 0, +1}.
▶ Transitions: F (x, a, µ, e, e0) = x + a + e0.
▶ Cost:

f(x, a, µ) = |a| +
∑

i

|µ(i) − µtarget(i)|2.

▶ Here we chose: µtarget = (0, 0, 0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0, 0).
▶ No idiosyncratic noise.
▶ Hence in general it is not possible to match the target distribution unless the

agents are allowed to randomize their actions at the individual level.
▶ We use (∆A)S for the level-1 action space.
▶ Without or with common noise ε0

n ∈ A.
▶ It is not feasible to rely on a tabular method. We show deep RL results.

91 / 100



Another Example: Distribution Planning

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30
st

at
e 

di
st

rib
ut

io
n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

st
at

e 
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
at

e 
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

More details in [CLT23]

92 / 100



Another Example: Distribution Planning with Common Noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
at

e 
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

1.0

0.8

0.6

0.4

0.2

0.0

co
m

m
on

 n
oi

se

Cumulative common noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

st
at

e 
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0
ac

tio
n 

di
st

rib
ut

io
n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

co
m

m
on

 n
oi

se

Cumulative common noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e 
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n 
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

0.04

0.02

0.00

0.02

0.04

co
m

m
on

 n
oi

se

Cumulative common noise

More details in [CLT23]

93 / 100



Some Proofs of Convergence

Proof of convergence of RL methods for MFMDP?

▶ Tabular Q-learning after simplex discretization [CLT23]

▶ Policy gradient for LQ MFC [CLT19a]

▶ Still a lot of open questions to study

94 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum
From MFC to MFMDP
RL for MFMDP
Unified algorithm for MFG and MFC

8. Conclusion



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Definitions & Unification via Two timescales [AFL20]

Policy improvement can be implemented through the Q-function for instance:

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) max
a′

Q(x′, a′).

The scheme (using ideal updates) can be written as: for k ≥ 0{
Qk+1 = Qk + ρQ

k T (Qk, µk)
µk+1 = µk + ρµ

k P(Qk, µk),

where{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) maxa′ Q(x′, a′) − Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x) − µ(x), with P Q,µ(x, x′) = p(x′|x, π̂Q(x), µ)

Extension: sample-based asynchronous (stochastic approximation [Bor09])

96 / 100



Definitions & Unification via Two timescales [AFL20]

Policy improvement can be implemented through the Q-function for instance:

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) max
a′

Q(x′, a′).

The scheme (using ideal updates) can be written as: for k ≥ 0{
Qk+1 = Qk + ρQ

k T (Qk, µk)
µk+1 = µk + ρµ

k P(Qk, µk),

where{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) maxa′ Q(x′, a′) − Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x) − µ(x), with P Q,µ(x, x′) = p(x′|x, π̂Q(x), µ)

Extension: sample-based asynchronous (stochastic approximation [Bor09])

96 / 100



Definitions & Unification via Two timescales [AFL20]

Policy improvement can be implemented through the Q-function for instance:

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) max
a′

Q(x′, a′).

The scheme (using ideal updates) can be written as: for k ≥ 0{
Qk+1 = Qk + ρQ

k T (Qk, µk)
µk+1 = µk + ρµ

k P(Qk, µk),

where{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) maxa′ Q(x′, a′) − Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x) − µ(x), with P Q,µ(x, x′) = p(x′|x, π̂Q(x), µ)

Extension: sample-based asynchronous (stochastic approximation [Bor09])

96 / 100



Numerical Results on LQ Example [AFL20]

Numerical illustration: Linear-quadratic example
▶ fixed (quadratic) reward function and (linear) drift function
▶ the two notions of solutions (MFG/MFC) are different

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
state x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFC solution (ρQ < ρµ)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFG solution (ρQ > ρµ)

97 / 100



Comments

▶ The distribution can be estimated along the way, using a single agent’s sample
(without “mean field oracle” in the environment)

▶ Theory: Proof of convergence [AFLZ23]

▶ Application: Tuning properly the two learning rates is not trivial!

▶ Extension: this approach also works for other models, such as mean field
control games (MFCG) [ADF+22b, ADF+22a]

→ MFG where each agent is of mean field type (solves an MFC)
→ 3 time scales instead of 2

98 / 100



Comments

▶ The distribution can be estimated along the way, using a single agent’s sample
(without “mean field oracle” in the environment)

▶ Theory: Proof of convergence [AFLZ23]

▶ Application: Tuning properly the two learning rates is not trivial!

▶ Extension: this approach also works for other models, such as mean field
control games (MFCG) [ADF+22b, ADF+22a]

→ MFG where each agent is of mean field type (solves an MFC)
→ 3 time scales instead of 2

98 / 100



Comments

▶ The distribution can be estimated along the way, using a single agent’s sample
(without “mean field oracle” in the environment)

▶ Theory: Proof of convergence [AFLZ23]

▶ Application: Tuning properly the two learning rates is not trivial!

▶ Extension: this approach also works for other models, such as mean field
control games (MFCG) [ADF+22b, ADF+22a]

→ MFG where each agent is of mean field type (solves an MFC)
→ 3 time scales instead of 2

98 / 100



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Summary

▶ Settings (static, stationary, evolutive, . . . )

▶ Solution concepts (Nash, Social opt., . . . )

▶ Iterative learning methods for MFG (fixed point, fictitious play, . . . )

▶ Model-free RL methods for MFG (intuition, implementation in OpenSpiel, . . . )

▶ MFC and Mean Field MDP

▶ Tabular and Deep RL for MFMDP

99 / 100



Future Directions

Lot of work to be done! Feel free to reach out if you’re interested in contributing.

▶ Theory:

▶ Convergence of iterative methods in more general settings (e.g., Fictitious
Play)

▶ Convergence rates for iterative methods
▶ Same questions for tabular RL algorithms (sample complexity,

exploration/exploitation, . . . )
▶ . . . for for deep RL algorithms
▶ Extension beyond “plain” MFG/MFC

▶ Applications:

▶ More efficient implementation of existing methods
▶ Contributing to OpenSpiel (more algorithms, more environments, . . . )
▶ Real-world applications (more realistic model, real data, . . . )

100 / 100



Future Directions

Lot of work to be done! Feel free to reach out if you’re interested in contributing.

▶ Theory:

▶ Convergence of iterative methods in more general settings (e.g., Fictitious
Play)

▶ Convergence rates for iterative methods
▶ Same questions for tabular RL algorithms (sample complexity,

exploration/exploitation, . . . )
▶ . . . for for deep RL algorithms
▶ Extension beyond “plain” MFG/MFC

▶ Applications:

▶ More efficient implementation of existing methods
▶ Contributing to OpenSpiel (more algorithms, more environments, . . . )
▶ Real-world applications (more realistic model, real data, . . . )

100 / 100



Future Directions

Lot of work to be done! Feel free to reach out if you’re interested in contributing.

▶ Theory:

▶ Convergence of iterative methods in more general settings (e.g., Fictitious
Play)

▶ Convergence rates for iterative methods
▶ Same questions for tabular RL algorithms (sample complexity,

exploration/exploitation, . . . )
▶ . . . for for deep RL algorithms
▶ Extension beyond “plain” MFG/MFC

▶ Applications:

▶ More efficient implementation of existing methods
▶ Contributing to OpenSpiel (more algorithms, more environments, . . . )
▶ Real-world applications (more realistic model, real data, . . . )

100 / 100



Thank you!



References I

[AACN+19] Ali Al-Aradi, Adolfo Correia, Danilo de Frietas Naiff, Gabriel Jardim, and Yuri
Saporito, Applications of the deep galerkin method to solving partial
integro-differential and hamilton-jacobi-bellman equations, arXiv preprint
arXiv:1912.01455 (2019).

[ABC17a] Yves Achdou, Martino Bardi, and Marco Cirant, Mean field games models of
segregation, Mathematical Models and Methods in Applied Sciences 27 (2017),
no. 01, 75–113.

[ABC17b] Ari Arapostathis, Anup Biswas, and Johnson Carroll, On solutions of mean field
games with ergodic cost, Journal de Mathématiques Pures et Appliquées 107
(2017), no. 2, 205–251.

[ACCD12] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta, Mean field games:
numerical methods for the planning problem, SIAM J. Control Optim. 50 (2012),
no. 1, 77–109. MR 2888257

[ACD10] Yves Achdou and Italo Capuzzo-Dolcetta, Mean field games: numerical methods,
SIAM J. Numer. Anal. 48 (2010), no. 3, 1136–1162. MR 2679575

[ACDL22a] Alexander Aurell, René Carmona, Gökçe Dayanıklı, and Mathieu Laurière, Finite
state graphon games with applications to epidemics, Dynamic Games and
Applications 12 (2022), no. 1, 49–81.

1 / 26



References II

[ACDL22b] Alexander Aurell, Rene Carmona, Gokce Dayanikli, and Mathieu Lauriere, Optimal
incentives to mitigate epidemics: a stackelberg mean field game approach, SIAM
Journal on Control and Optimization 60 (2022), no. 2, S294–S322.

[ACL22] Alexander Aurell, René Carmona, and Mathieu Lauriere, Stochastic graphon
games: Ii. the linear-quadratic case, Applied Mathematics & Optimization 85
(2022), no. 3, 39.

[ADF+22a] Andrea Angiuli, Nils Detering, Jean-Pierre Fouque, Mathieu Lauriere, and Jimin
Lin, Reinforcement learning algorithm for mixed mean field control games, arXiv
preprint arXiv:2205.02330 (2022).

[ADF+22b] Andrea Angiuli, Nils Detering, Jean-Pierre Fouque, Mathieu Laurière, and Jimin
Lin, Reinforcement learning for intra-and-inter-bank borrowing and lending mean
field control game, Proceedings of the Third ACM International Conference on AI
in Finance, 2022, pp. 369–376.

[AFG17] Noha Almulla, Rita Ferreira, and Diogo Gomes, Two numerical approaches to
stationary mean-field games, Dyn. Games Appl. 7 (2017), no. 4, 657–682. MR
3698446

[AFL20] Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Laurière, Unified reinforcement
q-learning for mean field game and control problems, arXiv preprint
arXiv:2006.13912 (2020).

2 / 26



References III

[AFLZ20] Andrea Angiuli, Jean-Pierre Fouque, Mathieu Laurière, and Mengrui Zhang,
Convergence of two-timescale stochastic approximation for learning MFG and
MFC, In preparation., 2020.

[AFLZ23] , Convergence of multi-scale reinforcement q-learning algorithms for mean
field game and control problems, arXiv preprint arXiv:2312.06659 (2023).

[AGL+19] Angiuli, Andrea, Graves, Christy V., Li, Houzhi, Chassagneux, Jean-François,
Delarue, François, and Carmona, René, Cemracs 2017: numerical probabilistic
approach to mfg, ESAIM: ProcS 65 (2019), 84–113.

[AH21] Andrea Angiuli and Ruimeng Hu, Deep reinforcement learning for mean field
games and mean field control problems in continuous spaces, In preparation.,
2021.

[AK20] Yves Achdou and Ziad Kobeissi, Mean field games of controls: Finite difference
approximations, arXiv preprint arXiv:2003.03968 (2020).

[AKS19] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi, Fitted q-learning in
mean-field games, arXiv preprint arXiv:1912.13309 (2019).

[AKS20a] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi, Q-learning in regularized
mean-field games, 2020.

[AKS20b] Berkay Anahtarcı, Can Deha Karıksız, and Naci Saldi, Value iteration algorithm for
mean-field games, Systems & Control Letters 143 (2020), 104744.

3 / 26



References IV

[AKS21] Berkay Anahtarcı, Can Deha Karıksız, and Naci Saldi, Learning in discounted-cost
and average-cost mean-field games, 2021.

[AKS23] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi, Learning mean-field games
with discounted and average costs, Journal of Machine Learning Research 24
(2023), no. 17, 1–59.

[AL15] Yves Achdou and Mathieu Laurière, On the system of partial differential equations
arising in mean field type control, Discrete Contin. Dyn. Syst. 35 (2015), no. 9,
3879–3900. MR 3392611

[AL16] Yves Achdou and Mathieu Laurière, Mean Field Type Control with Congestion (II):
An augmented Lagrangian method, Appl. Math. Optim. 74 (2016), no. 3, 535–578.
MR 3575615

[And17a] Roman Andreev, Preconditioning the augmented Lagrangian method for
instationary mean field games with diffusion, SIAM J. Sci. Comput. 39 (2017),
no. 6, A2763–A2783. MR 3731033

[And17b] , Preconditioning the augmented lagrangian method for instationary mean
field games with diffusion, SIAM Journal on Scientific Computing 39 (2017), no. 6,
A2763–A2783.

[ATB17] Thomas Anthony, Zheng Tian, and David Barber, Thinking fast and slow with deep
learning and tree search, Proceedings of NeurIPS, 2017.

4 / 26



References V

[BBC18] Erhan Bayraktar, Amarjit Budhiraja, and Asaf Cohen, A numerical scheme for a
mean field game in some queueing systems based on markov chain approximation
method, SIAM Journal on Control and Optimization 56 (2018), no. 6, 4017–4044.

[BBJT15] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin, Heads-up
limit hold’em poker is solved, Science 347 (2015), no. 6218.

[BC15] Jean-David Benamou and Guillaume Carlier, Augmented lagrangian methods for
transport optimization, mean field games and degenerate elliptic equations,
Journal of Optimization Theory and Applications 167 (2015), no. 1, 1–26.

[BCCD21] Erhan Bayraktar, Alekos Cecchin, Asaf Cohen, and François Delarue, Finite state
mean field games with wright–fisher common noise, Journal de Mathématiques
Pures et Appliquées 147 (2021), 98–162.

[BCY15] Alain Bensoussan, Michael HM Chau, and Sheung Chi Phillip Yam, Mean field
stackelberg games: Aggregation of delayed instructions, SIAM Journal on Control
and Optimization 53 (2015), no. 4, 2237–2266.

[BGT21] Julian Barreiro-Gomez and Hamidou Tembine, Mean-field-type games for
engineers, CRC Press, 2021.

[BHL18] Alain Bensoussan, Tao Huang, and Mathieu Laurière, Mean field control and mean
field game models with several populations, Minimax Theory and its Applications 3
(2018), no. 2, 173–209.

5 / 26



References VI

[BHL+19] Alessandro Balata, Côme Huré, Mathieu Laurière, Huyên Pham, and Isaque
Pimentel, A class of finite-dimensional numerically solvable mckean-vlasov control
problems, ESAIM: Proceedings and Surveys 65 (2019), 114–144.

[BLL19] Charles Bertucci, Jean-Michel Lasry, and Pierre-Louis Lions, Some remarks on
mean field games, Communications in Partial Differential Equations 44 (2019),
no. 3, 205–227.

[BnAKK+19] Luis M. Briceño Arias, Dante Kalise, Ziad Kobeissi, Mathieu Laurière, Álvaro
Mateos González, and Francisco J. Silva, On the implementation of a primal-dual
algorithm for second order time-dependent mean field games with local couplings,
ESAIM: ProcS 65 (2019), 330–348.

[BnAKS18] Luis M. Briceño Arias, Dante Kalise, and Francisco J. Silva, Proximal methods for
stationary mean field games with local couplings, SIAM J. Control Optim. 56
(2018), no. 2, 801–836. MR 3772008

[Bor09] Vivek S Borkar, Stochastic approximation: a dynamical systems viewpoint, vol. 48,
Springer, 2009.

[BP14] Martino Bardi and Fabio S Priuli, Linear-quadratic n-person and mean-field games
with ergodic cost, SIAM Journal on Control and Optimization 52 (2014), no. 5,
3022–3052.

[BS17] Noam Brown and Tuomas Sandholm, Superhuman AI for heads-up no-limit poker:
Libratus beats top professionals, Science 360 (2017), no. 6385.

6 / 26



References VII

[BS19] Noam Brown and Tuomas Sandholm, Superhuman AI for multiplayer poker,
Science 365 (2019), no. 6456.

[BWZ23] Erhan Bayraktar, Ruoyu Wu, and Xin Zhang, Propagation of chaos of
forward–backward stochastic differential equations with graphon interactions,
Applied Mathematics & Optimization 88 (2023), no. 1, 25.

[CCD19] Jean-François Chassagneux, Dan Crisan, and François Delarue, Numerical
method for FBSDEs of McKean-Vlasov type, Ann. Appl. Probab. 29 (2019), no. 3,
1640–1684. MR 3914553

[CCG21a] Simone Cacace, Fabio Camilli, and Alessandro Goffi, A policy iteration method for
mean field games, ESAIM: Control, Optimisation and Calculus of Variations 27
(2021), 85.

[CCG21b] Cacace, Simone, Camilli, Fabio, and Goffi, Alessandro, A policy iteration method
for mean field games, ESAIM: COCV 27 (2021), 85.

[CCGL22] René Carmona, Daniel B Cooney, Christy V Graves, and Mathieu Lauriere,
Stochastic graphon games: I. the static case, Mathematics of Operations
Research 47 (2022), no. 1, 750–778.

[CCP20] Pierre Cardaliaguet, Marco Cirant, and Alessio Porretta, Remarks on Nash
equilibria in mean field game models with a major player, Proceedings of the
American Mathematical Society 148 (2020), no. 10, 4241–4255.

7 / 26



References VIII

[CCS22] Elisa Calzola, Elisabetta Carlini, and Francisco J Silva, A high-order
lagrange-galerkin scheme for a class of fokker-planck equations and applications
to mean field games, arXiv preprint arXiv:2207.08463 (2022).

[CD18] René Carmona and François Delarue, Probabilistic theory of mean field games
with applications. II, Probability Theory and Stochastic Modelling, vol. 84, Springer,
Cham, 2018, Mean field games with common noise and master equations. MR
3753660

[CD21] René Carmona and Gökçe Dayanıklı, Mean field game model for an advertising
competition in a duopoly, International Game Theory Review 23 (2021), no. 04,
2150024.

[CDL22] René Carmona, Gökçe Dayanıklı, and Mathieu Laurière, Mean field models to
regulate carbon emissions in electricity production, Dynamic Games and
Applications 12 (2022), no. 3, 897–928.

[CF22] Luciano Campi and Markus Fischer, Correlated equilibria and mean field games: a
simple model, Mathematics of Operations Research 47 (2022), no. 3, 2240–2259.

[CGL20] Haoyang Cao, Xin Guo, and Mathieu Laurière, Connecting gans, mfgs, and ot,
arXiv preprint arXiv:2002.04112 (2020).

[CH17] Pierre Cardaliaguet and Saeed Hadikhanloo, Learning in mean field games: the
fictitious play, ESAIM Cont. Optim. Calc. Var. (2017). MR 3608094

8 / 26



References IX

[CH19] Peter E Caines and Minyi Huang, Graphon mean field games and the GMFG
equations: ε-Nash equilibria, 2019 IEEE 58th conference on decision and control
(CDC), IEEE, 2019, pp. 286–292.

[CH21] , Graphon mean field games and their equations, SIAM Journal on Control
and Optimization 59 (2021), no. 6, 4373–4399.

[CHJH02] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu, Deep Blue, Artificial
intelligence 134 (2002), no. 1-2.

[CHLT20] René Carmona, Kenza Hamidouche, Mathieu Laurière, and Zongjun Tan, Policy
optimization for linear-quadratic zero-sum mean-field type games, 2020 59th IEEE
Conference on Decision and Control (CDC), IEEE, 2020, pp. 1038–1043.

[Cir15] Marco Cirant, Multi-population mean field games systems with neumann boundary
conditions, Journal de Mathématiques Pures et Appliquées 103 (2015), no. 5,
1294–1315.

[CK16] Peter E Caines and Arman C Kizilkale, ϵ-Nash equilibria for partially observed lqg
mean field games with a major player, IEEE Transactions on Automatic Control 62
(2016), no. 7, 3225–3234.

[CK21a] Kai Cui and Heinz Koeppl, Approximately solving mean field games via
entropy-regularized deep reinforcement learning, International Conference on
Artificial Intelligence and Statistics, PMLR, 2021, pp. 1909–1917.

9 / 26



References X

[CK21b] , Approximately solving mean field games via entropy-regularized deep
reinforcement learning, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics (Arindam Banerjee and Kenji Fukumizu, eds.),
Proceedings of Machine Learning Research, vol. 130, PMLR, 13–15 Apr 2021,
pp. 1909–1917.

[CL18] Pierre Cardaliaguet and Charles-Albert Lehalle, Mean field game of controls and
an application to trade crowding, Mathematics and Financial Economics 12 (2018),
335–363.

[CL21] René Carmona and Mathieu Laurière, Convergence analysis of machine learning
algorithms for the numerical solution of mean field control and games i: The
ergodic case, SIAM Journal on Numerical Analysis 59 (2021), no. 3, 1455–1485.

[CL22] , Convergence analysis of machine learning algorithms for the numerical
solution of mean field control and games: Ii—the finite horizon case, The Annals of
Applied Probability 32 (2022), no. 6, 4065–4105.

[CLK21] Yang Chen, Jiamou Liu, and Bakhadyr Khoussainov, Maximum entropy inverse
reinforcement learning for mean field games, arXiv preprint arXiv:2104.14654
(2021).

[CLLP12] Pierre Cardaliaguet, Jean-Michael Lasry, Pierre-Louis Lions, and Alessio Porretta,
Long time average of mean field games., Networks & Heterogeneous Media 7
(2012), no. 2.

10 / 26



References XI

[CLP+22] Theophile Cabannes, Mathieu Laurière, Julien Perolat, Raphael Marinier, Sertan
Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M Bayen, Eric Goubault, and
Romuald Elie, Solving n-player dynamic routing games with congestion: A
mean-field approach, Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, 2022, pp. 1557–1559.

[CLT19a] René Carmona, Mathieu Laurière, and Zongjun Tan, Linear-quadratic mean-field
reinforcement learning: convergence of policy gradient methods, arXiv preprint
arXiv:1910.04295 (2019).

[CLT19b] , Linear-quadratic mean-field reinforcement learning: Convergence of
policy gradient methods, Preprint, September 2019.

[CLT23] , Model-free mean-field reinforcement learning: mean-field mdp and
mean-field q-learning, The Annals of Applied Probability 33 (2023), no. 6B,
5334–5381.

[CP19] Andrea Cosso and Huyên Pham, Zero-sum stochastic differential games of
generalized mckean–vlasov type, Journal de Mathématiques Pures et Appliquées
129 (2019), 180–212.

[CS14] Elisabetta Carlini and Francisco J. Silva, A fully discrete semi-Lagrangian scheme
for a first order mean field game problem, SIAM J. Numer. Anal. 52 (2014), no. 1,
45–67. MR 3148086

11 / 26



References XII

[CS15] , A semi-Lagrangian scheme for a degenerate second order mean field
game system, Discrete Contin. Dyn. Syst. 35 (2015), no. 9, 4269–4292. MR
3392626

[CS18] Elisabetta Carlini and Francisco J Silva, On the discretization of some nonlinear
fokker–planck–kolmogorov equations and applications, SIAM Journal on
Numerical Analysis 56 (2018), no. 4, 2148–2177.

[CT21] Fabio Camilli and Qing Tang, Rates of convergence for the policy iteration method
for mean field games systems, arXiv preprint arXiv:2108.00755 (2021).

[CT22] , Rates of convergence for the policy iteration method for mean field games
systems, Journal of Mathematical Analysis and Applications 512 (2022), no. 1,
126138.

[CTSK21] Kai Cui, Anam Tahir, Mark Sinzger, and Heinz Koeppl, Discrete-time mean field
control with environment states, 2021 60th IEEE Conference on Decision and
Control (CDC), IEEE, 2021, pp. 5239–5246.

[CW17] Rene Carmona and Peiqi Wang, An alternative approach to mean field game with
major and minor players, and applications to herders impacts, Applied
Mathematics & Optimization 76 (2017), 5–27.

[CZ16] René Carmona and Xiuneng Zhu, A probabilistic approach to mean field games
with major and minor players., Annals of applied probability: an official journal of
the Institute of Mathematical Statistics 26 (2016), no. 3, 1535–1580.

12 / 26



References XIII

[DL23] Gokce Dayanikli and Mathieu Lauriere, A machine learning method for stackelberg
mean field games, arXiv preprint arXiv:2302.10440 (2023).

[dRT15] PE Chaudru de Raynal and CA Garcia Trillos, A cubature based algorithm to solve
decoupled mckean–vlasov forward–backward stochastic differential equations,
Stochastic Processes and their Applications 125 (2015), no. 6, 2206–2255.

[DTT17] Boualem Djehiche, Alain Tcheukam, and Hamidou Tembine, Mean-field-type
games in engineering, AIMS Electronics and Electrical Engineering 1 (2017),
no. 1, 18–73.

[DV21] François Delarue and Athanasios Vasileiadis, Exploration noise for learning
linear-quadratic mean field games, arXiv preprint arXiv:2107.00839 (2021).

[EMP19] Romuald Elie, Thibaut Mastrolia, and Dylan Possamaï, A tale of a principal and
many, many agents, Mathematics of Operations Research 44 (2019), no. 2,
440–467.

[EPL+20] Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier
Pietquin, On the convergence of model free learning in mean field games,
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 7143–7150.

[Fel13] Ermal Feleqi, The derivation of ergodic mean field game equations for several
populations of players, Dynamic Games and Applications 3 (2013), 523–536.

13 / 26



References XIV

[FL09] Drew Fudenberg and David K Levine, Learning and equilibrium, Annu. Rev. Econ.
1 (2009), no. 1, 385–420.

[FSJ21] Dena Firoozi, Arvind V Shrivats, and Sebastian Jaimungal, Principal agent mean
field games in rec markets, arXiv preprint arXiv:2112.11963 (2021).

[FYCW19] Zuyue Fu, Zhuoran Yang, Yongxin Chen, and Zhaoran Wang, Actor-critic provably
finds nash equilibria of linear-quadratic mean-field games, 2019.

[FZ20] Jean-Pierre Fouque and Zhaoyu Zhang, Deep learning methods for mean field
control problems with delay, Frontiers in Applied Mathematics and Statistics 6
(2020), 11.

[GG11] Nicolas Gast and Bruno Gaujal, A mean field approach for optimization in discrete
time, Discrete Event Dynamic Systems 21 (2011), no. 1, 63–101.

[GGLB12] Nicolas Gast, Bruno Gaujal, and Jean-Yves Le Boudec, Mean field for markov
decision processes: from discrete to continuous optimization, IEEE Transactions
on Automatic Control 57 (2012), no. 9, 2266–2280.

[GGWX20] Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu, Mean-field controls with
q-learning for cooperative marl: Convergence and complexity analysis, arXiv
preprint arXiv:2002.04131 (2020).

[GGWX21] , Mean-field multi-agent reinforcement learning: A decentralized network
approach, arXiv preprint arXiv:2108.02731 (2021).

14 / 26



References XV

[GGWX23] , Dynamic programming principles for mean-field controls with learning,
Operations Research (2023).

[GHXZ19] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang, Learning mean-field games,
proc. of NeurIPS, 2019.

[GHXZ20] , A general framework for learning mean-field games, arXiv preprint
arXiv:2003.06069 (2020).

[GHZ22] Xin Guo, Anran Hu, and Jiacheng Zhang, Optimization frameworks and sensitivity
analysis of stackelberg mean-field games, arXiv preprint arXiv:2210.04110 (2022).

[GLPW22] Maximilien Germain, Mathieu Laurière, Huyên Pham, and Xavier Warin, Deepsets
and their derivative networks for solving symmetric pdes, Journal of Scientific
Computing 91 (2022), no. 2, 63.

[GMW22] Maximilien Germain, Joseph Mikael, and Xavier Warin, Numerical resolution of
mckean-vlasov fbsdes using neural networks, Methodology and Computing in
Applied Probability 24 (2022), no. 4, 2557–2586.

[GPL+22] Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin,
Oliver Bachem, Rémi Munos, and Olivier Pietquin, Concave utility reinforcement
learning: The mean-field game viewpoint, Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, 2022, pp. 489–497.

15 / 26



References XVI

[GPV14] Diogo A Gomes, Stefania Patrizi, and Vardan Voskanyan, On the existence of
classical solutions for stationary extended mean field games, Nonlinear Analysis:
Theory, Methods & Applications 99 (2014), 49–79.

[GS18] Diogo A. Gomes and João Saúde, Numerical methods for finite-state mean-field
games satisfying a monotonicity condition, Applied Mathematics & Optimization
(2018).

[GTC20] Shuang Gao, Rinel Foguen Tchuendom, and Peter E Caines, Linear quadratic
graphon field games, arXiv preprint arXiv:2006.03964 (2020).

[GV16] Diogo A Gomes and Vardan K Voskanyan, Extended deterministic mean-field
games, SIAM Journal on Control and Optimization 54 (2016), no. 2, 1030–1055.

[GY20] Diogo A Gomes and Xianjin Yang, The hessian riemannian flow and newton’s
method for effective hamiltonians and mather measures, ESAIM: Mathematical
Modelling and Numerical Analysis 54 (2020), no. 6, 1883–1915.

[Had17] Saeed Hadikhanloo, Learning in anonymous nonatomic games with applications to
first-order mean field games, arXiv preprint arXiv:1704.00378 (2017).

[Had18] , Learning in mean field games, Ph.D. thesis, PSL Research University,
2018.

[HL22] Ruimeng Hu and Mathieu Laurière, Recent developments in machine learning
methods for stochastic control and games, SSRN preprint:4096569 (2022).

16 / 26



References XVII

[HMC06a] Minyi Huang, Roland P. Malhamé, and Peter E. Caines, Nash certainty
equivalence in large population stochastic dynamic games: connections with the
physics of interacting particle systems, Proceedings of the 45th IEEE conference
on decision and control, IEEE, 2006, pp. 4921–4926.

[HMC+06b] Minyi Huang, Roland P Malhamé, Peter E Caines, et al., Large population
stochastic dynamic games: closed-loop mckean-vlasov systems and the nash
certainty equivalence principle, Communications in Information & Systems 6
(2006), no. 3, 221–252.

[KB16] Vassili N. Kolokoltsov and Alain Bensoussan, Mean-field-game model for botnet
defense in cyber-security, Appl. Math. Optim. 74 (2016), no. 3, 669–692. MR
3575619

[Kob22] Ziad Kobeissi, Mean field games with monotonous interactions through the law of
states and controls of the agents, Nonlinear Differential Equations and
Applications NoDEA 29 (2022), no. 5, 52.

[Lau21] Mathieu Laurière, Numerical methods for mean field games and mean field type
control, arXiv preprint arXiv:2106.06231 (2021).

[LJL+21] Siting Liu, Matthew Jacobs, Wuchen Li, Levon Nurbekyan, and Stanley J Osher,
Computational methods for first-order nonlocal mean field games with
applications, SIAM Journal on Numerical Analysis 59 (2021), no. 5, 2639–2668.

17 / 26



References XVIII

[LL18] Jean-Michel Lasry and Pierre-Louis Lions, Mean-field games with a major player,
Comptes Rendus Mathematique 356 (2018), no. 8, 886–890.

[LLL+19] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki
Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls,
Shayegan Omidshafiei, et al., Openspiel: A framework for reinforcement learning
in games, arXiv preprint arXiv:1908.09453 (2019).

[LP16] Mathieu Laurière and Olivier Pironneau, Dynamic programming for mean-field type
control, J. Optim. Theory Appl. 169 (2016), no. 3, 902–924. MR 3501391

[LP22] Pierre Lavigne and Laurent Pfeiffer, Generalized conditional gradient and learning
in potential mean field games, arXiv preprint arXiv:2209.12772 (2022).

[LPG+22] Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile
Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Elie, Olivier Pietquin,
et al., Scalable deep reinforcement learning algorithms for mean field games,
International Conference on Machine Learning, PMLR, 2022, pp. 12078–12095.

[LS22] Daniel Lacker and Agathe Soret, A label-state formulation of stochastic graphon
games and approximate equilibria on large networks, Mathematics of Operations
Research (2022).

[LST21] Mathieu Laurière, Jiahao Song, and Qing Tang, Policy iteration method for
time-dependent mean field games systems with non-separable hamiltonians, arXiv
preprint arXiv:2110.02552 (2021).

18 / 26



References XIX

[LST23] , Policy iteration method for time-dependent mean field games systems
with non-separable hamiltonians, Applied Mathematics & Optimization 87 (2023),
no. 2, 17.

[LT22] Mathieu Laurière and Ludovic Tangpi, Convergence of large population games to
mean field games with interaction through the controls, SIAM Journal on
Mathematical Analysis 54 (2022), no. 3, 3535–3574.

[LWZB09] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling, Monte carlo
sampling for regret minimization in extensive games, vol. 22, 2009, pp. 1078–1086.

[M+97] Tom M Mitchell et al., Machine learning.

[MB18] Jun Moon and Tamer Başar, Linear quadratic mean field stackelberg differential
games, Automatica 97 (2018), 200–213.

[MER+22] Paul Muller, Romuald Elie, Mark Rowland, Mathieu Lauriere, Julien Perolat, Sarah
Perrin, Matthieu Geist, Georgios Piliouras, Olivier Pietquin, and Karl Tuyls,
Learning correlated equilibria in mean-field games, arXiv preprint
arXiv:2208.10138 (2022).

[MH21] Ming Min and Ruimeng Hu, Signatured deep fictitious play for mean field games
with common noise, 2021.

[MJMdC18] David Mguni, Joel Jennings, and Enrique Munoz de Cote, Decentralised learning
in systems with many, many strategic agents, Proceedings of AAAI, 2018.

19 / 26



References XX

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al., Human-level control through deep reinforcement learning, nature
518 (2015), no. 7540, 529–533.

[MLFB20] Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi, Pipeline PSRO: A
scalable approach for finding approximate Nash equilibria in large games,
Proceedings of NeurIPS, 2020.

[MP19a] Enzo Miller and Huyen Pham, Linear-quadratic mckean-vlasov stochastic
differential games, Modeling, Stochastic Control, Optimization, and Applications
(2019), 451–481.

[MP19b] Médéric Motte and Huyên Pham, Mean-field markov decision processes with
common noise and open-loop controls, arXiv preprint arXiv:1912.07883 (2019).

[MRE+21] Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Perolat,
Mathieu Lauriere, Raphael Marinier, Olivier Pietquin, and Karl Tuyls, Learning
equilibria in mean-field games: Introducing mean-field PSRO, arXiv preprint
arXiv:2111.08350 (2021).

[MSB+17] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling, Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker, Science 356 (2017),
no. 6337.

20 / 26



References XXI

[MYZ22] Chenchen Mou, Xianjin Yang, and Chao Zhou, Numerical methods for mean field
games based on gaussian processes and fourier features, Journal of
Computational Physics 460 (2022), 111188.

[N+19] Levon Nurbekyan et al., Fourier approximation methods for first-order nonlocal
mean-field games, Portugaliae Mathematica 75 (2019), no. 3, 367–396.

[PBK21] Barna Pasztor, Ilija Bogunovic, and Andreas Krause, Efficient model-based
multi-agent mean-field reinforcement learning, arXiv preprint arXiv:2107.04050
(2021).

[Pfe16] Laurent Pfeiffer, Numerical methods for mean-field type optimal control problems,
Pure Appl. Funct. Anal. 1 (2016), no. 4, 629–655. MR 3619691

[PLP+21a] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and
Olivier Pietquin, Generalization in mean field games by learning master policies,
arXiv preprint arXiv:2109.09717 (2021).

[PLP+21b] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, and
Olivier Pietquin, Mean field games flock! the reinforcement learning way, arXiv
preprint arXiv:2105.07933 (2021).

[PO19] Francesca Parise and Asuman Ozdaglar, Graphon games, Proceedings of the
2019 ACM Conference on Economics and Computation, 2019, pp. 457–458.

21 / 26



References XXII

[PPE+21a] Julien Perolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,
Matthieu Geist, Karl Tuyls, and Olivier Pietquin, Scaling up mean field games with
online mirror descent, arXiv preprint arXiv:2103.00623 (2021).

[PPE+21b] , Scaling up mean field games with online mirror descent, arXiv preprint
arXiv:2103.00623 (2021).

[PPL+20] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and
Olivier Pietquin, Fictitious play for mean field games: Continuous time analysis
and applications, Advances in Neural Information Processing Systems (2020).

[ROL+20] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu
Fung, A machine learning framework for solving high-dimensional mean field
game and mean field control problems, Proceedings of the National Academy of
Sciences 117 (2020), no. 17, 9183–9193.

[SB18] Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An introduction,
2nd ed., The MIT Press, 2018.

[SBB+07] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen, Checkers is solved, Science 317
(2007), no. 5844.

22 / 26



References XXIII

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al., Mastering the game of Go with deep neural
networks and tree search, Nature 529 (2016), no. 7587.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis, A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play, Science
632 (2018), no. 6419.

[SM19] Jayakumar Subramanian and Aditya Mahajan, Reinforcement learning in
stationary mean-field games, AAMAS, 2019.

[SPTH20] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E. Taylor, and Nidhi
Hegde, Multi type mean field reinforcement learning, CoRR abs/2002.02513
(2020).

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al., Mastering the game of Go without human knowledge, Nature 550 (2017),
no. 7676.

23 / 26



References XXIV

[STCP20] Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pascal
Poupart, Partially observable mean field reinforcement learning, CoRR
abs/2012.15791 (2020).

[TS22] Qing Tang and Jiahao Song, Learning optimal policies in potential mean field
games: Smoothed policy iteration algorithms, arXiv preprint arXiv:2212.04791
(2022).

[uZMB22] Muhammad Aneeq uz Zaman, Erik Miehling, and Tamer Başar, Reinforcement
learning for non-stationary discrete-time linear–quadratic mean-field games in
multiple populations, Dynamic Games and Applications (2022), 1–47.

[uZZMB20] Muhammad Aneeq uz Zaman, Kaiqing Zhang, Erik Miehling, and Tamer Bas, ar,
Reinforcement learning in non-stationary discrete-time linear-quadratic mean-field
games, 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020,
pp. 2278–2284.

[VB22] Deepanshu Vasal and Randall Berry, Master equation for discrete-time stackelberg
mean field games with a single leader, 2022 IEEE 61st Conference on Decision
and Control (CDC), IEEE, 2022, pp. 5529–5535.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al., Grandmaster level in StarCraft II using multi-agent reinforcement
learning, Nature 575 (2019), no. 7782.

24 / 26



References XXV

[VMV21] Deepanshu Vasal, Rajesh Mishra, and Sriram Vishwanath, Sequential
decomposition of graphon mean field games, 2021 American Control Conference
(ACC), IEEE, 2021, pp. 730–736.

[WD92] Christopher JCH Watkins and Peter Dayan, Q-learning, Machine learning 8
(1992), 279–292.

[WHYW21] Weichen Wang, Jiequn Han, Zhuoran Yang, and Zhaoran Wang, Global
convergence of policy gradient for linear-quadratic mean-field control/game in
continuous time, International Conference on Machine Learning, PMLR, 2021,
pp. 10772–10782.

[XYWM21] Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca, Learning while
playing in mean-field games: Convergence and optimality, Proceedings of the 38th
International Conference on Machine Learning (Marina Meila and Tong Zhang,
eds.), Proceedings of Machine Learning Research, vol. 139, PMLR, 18–24 Jul
2021, pp. 11436–11447.

[YLL+18] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang,
Mean field multi-agent reinforcement learning, Proceedings of ICML, 2018.

[YYT+17] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha, Deep
mean field games for learning optimal behavior policy of large populations, CoRR
abs/1711.03156 (2017).

25 / 26



References XXVI

[ZJBP07] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione,
Regret minimization in games with incomplete information, vol. 20, 2007,
pp. 1729–1736.

[ZKBB23] Muhammad Aneeq Uz Zaman, Alec Koppel, Sujay Bhatt, and Tamer Basar,
Oracle-free reinforcement learning in mean-field games along a single sample
path, International Conference on Artificial Intelligence and Statistics, PMLR,
2023, pp. 10178–10206.

26 / 26




	Introduction
	Warm-up: Continuous setting
	Problem settings
	Static setting
	Dynamic settings
	Value functions

	Iterative Methods
	General principles
	Variations and improvements

	Implementation: MFG in OpenSpiel
	Reinforcement Learning for MFG
	Model-free RL framework
	Model-free RL methods

	Learning MFC Social Optimum
	From MFC to MFMDP
	RL for MFMDP
	Unified algorithm for MFG and MFC

	Conclusion
	Appendix

