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Some other existing approaches (“What MFGs are not”)

▶ Dynamical systems:
▶ describe the dynamics of one or many agents, sometimes mean field
▶ but usually no rationality (optimization)

▶ Agent based models (ABM):
▶ “Agent-based models are a kind of microscale model that simulate the

simultaneous operations and interactions of multiple agents in an attempt to
re-create and predict the appearance of complex phenomena. ”

▶ “Individual agents are typically characterized as boundedly rational, presumed to
be acting in what they perceive as their own interests, such as reproduction,
economic benefit, or social status, using heuristics or simple decision-making rules.”
(Wikipedia)

▶ Game theory
▶ optimization aspects
▶ notion of Nash equilibrium, social optimum, . . .
▶ but usually limited to a finite (small) number of agents

▶ Evolutionary game theory (EGT)
▶ “application of game theory to evolving populations in biology”
▶ “an evolutionary version of game theory does not require players to act rationally

– only that they have a strategy” (Wikipedia)

▶ Non-atomic anonymous games
▶ continuum of rational players; each player has her own index and own strategy
▶ mostly limited to static games; difficulties for dynamic, stochastic games
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MFG paradigm in a nutshell
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MFG & (R)L: Motivations

Main motivation: real-world applications require methods for large-scale problems

▶ Scaling up population size → Mean Field Games
▶ Initial papers: Lasry & Lions; Caines, Huang & Malhamé (2006-2007)
▶ Books: Bensoussan, Frehse & Yam; Carmona & Delarue; . . .

▶ Scaling up environment complexity → (model-free) Reinforcement Learning
▶ Book: Sutton & Barto; . . .
▶ Applications: Robotics, language processing, games, . . .
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Motivations behind this overview

Rapidly growing literature

Goal: overview of the landscape & codes to make this topic more easily accessible

A few key aspects:

1. Problem setting
→ continuous / discrete time & space, . . .

2. Solution concept
→ cooperative / non-cooperative, . . .

3. Iterative learning methods
→ learning solution with “ideal” updates

4. Reinforcement learning
→ learning solution with model-free updates

5. Implementation
→ code samples (OpenSpiel, . . . )
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Learning

Recent successes of learning in games, e.g.:

Go [SHM+16, SSS+17, SHS+18], Chess [CHJH02], Checkers [SBB+07],
Hex [ATB17], Starcraft II [VBC+19], poker games [BS17, BS19, MSB+17, BBJT15],
Stratego [MLFB20], . . .

At least two interpretations of “learning”:

▶ Game theory, economics, . . . :
Fudenberg & Levine [FL09][frame]Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium.

Annu. Rev. Econ., 1(1), 385-420.: “The theory of learning in games [. . . ] examines how,
which, and what kind of equilibrium might arise as a consequence of a long-run
nonequilibrium process of learning, adaptation, and/or imitation”

▶ Machine Learning, Reinforcement Learning, . . . :
Mitchell [M+97][frame]Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN:

978-0-07-042807-2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”
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N -Player Stochastic Differential Game

For now, continuous time and continuous space:

▶ N players

▶ Player i’s state is Xi
t ∈ Rd

▶ with dynamics:

dXi
t = b(t, Xi

t , αi
t, µN

t )dt + σdW i
t , Xi

0 ∼ m0

▶ W i is an idiosyncratic (individual) noise, independent from other W j ’s

▶ The empirical state distribution is: µN
t = 1

N

∑N

j=1 δ
X

j
t

▶ Instantaneous cost function f and terminal cost function g

▶ Goal for player i: minimize over αi the total expected cost:

J(αi, α−i) = E
[∫ T

0
f(t, Xi

t , αi
t, µN

t )dt + g(Xi
T , µN

T )
]
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N -Player Stochastic Differential Game: Solution Concepts

Two concepts:

▶ Nash equilibrium (α̂1, . . . , α̂N ): for all i = 1, . . . , N and all αi,

J(α̂i, α̂−i) ≤ J(αi, α̂−i)

→ no incentive for unilateral deviations
→ fixed point problem

▶ Social optimum (α∗1, . . . , α∗N ): for all i = 1, . . . , N and all (α1, . . . , αN ),

J̄(α∗1, . . . , α∗N ) = 1
N

∑
i=1

J(α∗i, α∗−i) ≤ J̄(α1, . . . , αN ) = 1
N

∑
i=1

J(αi, α−i)

→ no incentive for joint deviations
→ optimization problem

In general, they are different, which leads to the notion of Price of Anarchy
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Mean Field Limit

Pass to the limit N → +∞?

Key assumptions:
▶ homogeneity: all the agents have the same f, g, b, σ

▶ symmetry/anonymity: interactions are only through the empirical distribution

In the limit, we expect to have: the cost for one representative player is:

J(α, µ) = E
[∫ T

0
f(t, Xt, αt, µt)dt + g(XT , µT )

]
with the dynamics:

dXt = b(t, Xt, αt, µt) + σdWt

where
▶ X and α are respectively the state and the control of the representative player,
▶ µ is the first marginal (state-only distribution)
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Mean Field Solution Concepts

Here again, two concepts:

▶ Nash equilibrium (α̂, µ̂):
▶ Optimality: for all α,

J(α̂, µ̂) ≤ J(α, µ̂)
▶ Consistency: µ̂t = L(Xα̂

t )
→ no incentive for unilateral deviations
→ fixed point problem over the mean field flow µ

▶ Social optimum α∗: for all α,

J(α∗, µα∗
) ≤ J(α, µα)

where µα
t = L(Xα

t )
→ no incentive for joint deviations
→ optimization problem for α 7→ J(α, µα)
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Optimality Conditions

Large(st) part of the MFG literature focuses on equations of the form:

→ Theory: derivation, analysis, . . .
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

▶ Finite difference & Newton method: [ACD10], [ACCD12], . . .
▶ (Semi-)Lagrangian approach: [CS14, CS15], [CS18], [CCS22], . . .
▶ Augmented Lagrangian & ADMM: [BC15], [And17a], [AL16], . . .
▶ Primal-dual algo.: [BnAKS18], [BnAKK+19], . . .
▶ Gradient descent based methods [LP16], [Pfe16], [LP22], . . .
▶ Monotone operators [AFG17], [GS18], [GY20], . . .
▶ Policy iteration [CCG21a], [CK21a], [CT22], [TS22], [LST23], . . .
▶ Finite elements [BC15], [And17b], . . .
▶ Gaussian processes [MYZ22], . . .
▶ Kernel-based representation [LJL+21], . . .
▶ Fourier approximation [N+19], . . .
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

▶ Cubature [dRT15], . . .

▶ Markov chain approximation: [BBC18], . . .

▶ Probabilistic approach and Picard: [CCD19], [AGL+19], . . .

▶ Probabilistic approach and regression: [BHL+19], . . .

▶ . . .
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“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:

▶ (relatively) small dimension

▶ (relatively) simple structure

⇒ motivations to develop deep learning methods
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Deep Learning Numerical Methods for MFG

▶ DL for direct approach for MFG [FZ20], [CL22], . . .

▶ DL for McKean-Vlasov FBSDEs [FZ20], [CL22], [GMW22], . . .

▶ DL for PDE system [AACN+19], [CL21], [ROL+20], [CGL20], . . .

▶ DL for Master equations [GLPW22], [Lau21, Section 7.2], . . .

Pros & Cons:

▶ Scalability in terms of dimension

▶ Much less understood than classical methods

⇒ Lots of open questions for mathematicians!
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Extensions

From the modeling viewpoint, many possible extensions:

▶ More settings, e.g. MFG with ergodic cost [CLLP12], [Fel13], [BP14], [ABC17b],
[AKS23], . . .

▶ Interactions through the action distribution (“extended MFGs”, “MFGs of
controls”, . . . ): [GPV14], [GV16], [CL18], [AK20], [LT22], [Kob22], . . .

▶ Common noise: in the continuous space case see [CD18] and references
therein; in the finite state case, see e.g. [BLL19], [BCCD21], . . .

▶ Several populations MFGs: [HMC+06b], [Fel13], [Cir15], [ABC17a], [BHL18],
. . .

▶ Mean field type games: [DTT17], [BGT21] and references therein; [MP19a],
[CP19], [CLT19a], . . .

▶ Mean field control games: [ADF+22b], [ADF+22a]
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Extensions

▶ Major player: [CZ16], [CK16], [CW17], [LL18], [CCP20], [CD21], [CDL22], . . .

▶ Stackelberg MFGs [BCY15], [MB18], [EMP19], [FSJ21], [ACDL22b], [VB22],
[GHZ22], [DL23],. . .

▶ Graphon games [PO19], [CH19], [CH21], [LS22], [GTC20], [VMV21], [CCGL22],
[ACL22], [ACDL22a], [BWZ23], . . .

▶ Correlated equilibria [CF22], [MRE+21], [MER+22], . . .

▶ . . .
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These lectures

For simplicity, in most of the presentation, we will consider

▶ “plain” MFGs/MFCs,

▶ with discrete time and spaces

but many ideas can be extended in a (more or less) straightforward way.
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Settings: Intuition

With time?

Dynamic settingsStatic setting

Mean field 
changes?

Stationary 
mean field

YesNo

No

Evolutive setting

Discounted 
setting Ergodic setting

Yes
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Settings

4 different settings:

▶ Static:
▶ No states (normal-form game): each player chooses an action a ∼ π(·)
▶ Reward: depends on own action & population’s action distribution
▶ Examples: towel on the beach, urban settlement, . . .

▶ Evolutive:
▶ One-step reward: depends on own state, action & population’s (state,action)

distribution.
▶ Fixed initial state distribution; finite or infinite time horizon.
▶ Policy: time-dependant policy πn(·|x)
▶ Examples: crowd motion, traffic routing, . . .

▶ Infinite horizon discounted & stationary:
▶ One-step reward: similar to Evolutive case.
▶ Total reward: infinite horizon discounted sum.
▶ Initial state distribution = stationary distribution induced by the population’s policy.
▶ Policy: stationary policy π(·|x)
▶ Examples: player joining a crowd already in a steady state

▶ Ergodic:
▶ Similar to infinite horizon discounted & stationary.
▶ But: Total reward = long time average.

▶ Other settings: asymptotic, γ-discounted, . . .
24 / 100
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Static game

Example: Population distribution (towel on the beach, . . . )
▶ action: choice of position
▶ reward: depends on my position and on the density of people

Source: unsplash
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Static setting

▶ Finite action set A (e.g., beach = possible towels’ positions)
▶ Player’s behavior π ∈ ∆A = P(A)
▶ Population’s behavior ξ ∈ ∆A

▶ Player’s reward: for player policy π ∈ ∆A and population behavior ξ ∈ ∆A,

J(π; ξ) = Ea∼π [r(a, ξ)]

(e.g., crowd aversion, ice cream stall attraction, . . . )
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Static game: Solution concepts

▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best response: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂)
2. Consistency: ξ̂ = π̂

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π)

▶ Note: at social optimum, the population distribution is ξ∗ = π∗

▶ But in general π∗ ̸= π̂ so ξ̂ ̸= ξ∗

27 / 100



Static game: Solution concepts

▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best response: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂)
2. Consistency: ξ̂ = π̂

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π)

▶ Note: at social optimum, the population distribution is ξ∗ = π∗

▶ But in general π∗ ̸= π̂ so ξ̂ ̸= ξ∗

27 / 100



Nash Equilibrium vs Social Optimum: Example

Consider: A = {1, 2}, r(a, ξ) = c1a=1 − ξ(a) where
▶ the constant c ∈ (0, 1) gives some attraction to action a = 1
▶ −ξ(a) is a repulsion term (crowd aversion)

Then:
▶ Static MFG Nash equilibrium: (π̂, ξ̂) ∈ ∆A × ∆A s.t.

1. Best resp.: π̂ ∈ BR(ξ̂) := argmaxπ J(π; ξ̂) = π(1)(c − ξ̂(1)) + π(2)(−ξ̂(2))
2. Consistency: ξ̂ = π̂

Is ξ = (ξ(1), ξ(2)) = (1, 0) be a Nash equilibrium? Then
c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!
So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
optimality condition gives:
0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)
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c − ξ(1) = c − 1 < 0 = −ξ(2) so π = (π(1), π(2)) = (0, 1) would be the BR.
Contradiction!

So at equilibrium both actions are optimal: c − ξ̂(1) = −ξ̂(2)
Since ξ̂(1) + ξ̂(2) = 1, the equilibrium distrib. is: ξ̂ = (ξ̂(1), ξ̂(2)) = ( 1+c

2 , 1−c
2 )

▶ Static MFC Social optimum: π∗ ∈ ∆A s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; π) = π(1)(c − π(1)) + π(2)(−π(2))

and since π(2) = 1 − π(1), J(π; π) = −1 + (2 + c)π(1) − 2π(1)2 First order
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0 = d

dπ(1) [−1 + (2 + c)π∗(1) − 2π∗(1)2] = (2 + c) − 4π∗(1)
so the socially optimum distribution is: ξ∗ = (ξ∗(1), ξ∗(2)) = ( 2+c

4 , 2−c
4 )

▶ So, in this example with c ∈ (0, 1), ξ̂ ̸= ξ∗

▶ Nash equilibrium is more concentrated on action 1 than MFC (“selfishness”)
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Nash Equilibrium vs Social Optimum: Potential case

▶ In some cases, the two notions coincide.

▶ Example: Potential MFG with reward: r(a, ξ) = ∇F (ξ)(a) for some F : ∆A → R

▶ The average cost is: J(π, ξ) = Ea∼π[r(a, ξ)] =
∑

a
π(a)∇F (ξ)(a) = π · ∇F (ξ)

▶ Assuming the potential F concave, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≤ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≤ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a maximizer of F

⇔ π̂ is a social optimum

▶ Example: (negative of) entropy: F (ξ) = −
∑

a
ξ(a) log(ξ(a)): encourages agent

to spread throughout the action space A

▶ Note: the link between potential MFGs and MFC can be exploited to design
numerical methods
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Notation for Dynamic Settings

▶ State x ∈ S, action a ∈ A (S, A finite for most of this presentation)
▶ Mean field state µ ∈ ∆S = P(S) (extensions: state-action distrib.)
▶ Discrete time n ∈ N
▶ Player’s transition probability: p(·|x, a, µ)
▶ Player’s reward: r(x, a, µ)
▶ One-step policy: π ∈ Π := (∆A)S , functions S → ∆A

▶ One-step mean field transition matrix: Pµ,π(x, y) =
∑

a∈A
π(a|x)p(y|x, a, µ)

▶ What happens in one time step?
▶ “Each” player selects an action (we focus on one “representative” player)
▶ “Each” player gets a reward
▶ “Each” player state is updated
▶ Mean field is updated

▶ Mathematically: with policy πn and mean field µn

an ∼ πn(·|xn)
r(xn, an, µn)
xn+1 ∼ p(·|xn, an, µn)

µn+1 = P ⊤
µn,πn

µn =
∑
y∈S

µn(y)
∑
a∈A

πn(a|y)p(·|y, a, µn)
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Stationary setting



Stationary game

Example: joining a population in a stationary regime (flocking, economics, . . . )
▶ the population is at equilibrium → MF distribution is stationary
▶ a player wants to join → optimal control problem
▶ but the distribution is the result of the agents’ decisions → fixed point problem

Source: unsplash
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Stationary setting

▶ Stationary setting: NT = ∞
▶ No fixed initial m0 but a stationary distribution
▶ Notation: MF(π) := stationary distribution when using policy π:

µ = P ⊤
µ,πµ =: Pπ(µ)

▶ Player’s reward: for player’s policy π ∈ ∆A and mean field µ ∈ ∆S ,

J(π; µ) = E

[
∞∑

n=0

γnr(xn, an, µ)

]
where γ ∈ (0, 1) is a discount parameter, and

an ∼ π(·|xn), x0 ∼ µ, xn+1 ∼ p(·|xn, an, µ), n ≥ 0
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Stationary setting: Solution concepts

▶ Stationary MFG Nash equilibrium: (π̂, µ̂) ∈ Π × ∆S×A s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field state: µ̂ = MF(π̂)

▶ Fixed point: µ̂ ∈ MF(BR(µ̂))

▶ Stationary MFC Social optimum: π∗ ∈ Π s.t.
▶ Optimality: π∗ ∈ argmaxπ∗ J(π∗; µπ∗

) where µπ∗
= MF(π∗)
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Evolutive setting



Evolutive game

Example: Crowd exiting a room [AL15]
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Evolutive setting

▶ Horizon: NT ∈ N (extensions: p, r depending on n; infinite horizon)
▶ Fixed initial state distribution: m0 ∈ ∆S

▶ The MF evolves in time: µ = (µn)n=0,...,NT ∈ ∆NT
S

▶ Notation MFm0,NT (π) := generated by policy π starting from m0:{
µ0 = m0,

µn+1 = P ⊤
µn,πn

µn, n ≥ 0

▶ Player’s reward: for player’s policy π ∈ ΠNT and mean field µ ∈ ∆NT
S ,

J(π; µ) = E

[
NT∑
n=0

r(xn, an, µn)

]
where

an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0
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Evolutive setting: Solution concepts

▶ Evolutive MFG Nash equilibrium: (π̂, µ̂) ∈ ΠNT × ∆NT
S s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field flow: µ̂ = MFm0,NT (π̂)

▶ Fixed point: µ̂ ∈ MFm0,NT (BR(µ̂))

▶ Evolutive MFC Social optimum: π∗ ∈ ΠNT s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; µπ) where µπ = MFm0,NT (π)
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Value function: stationary case

▶ Value function of a (stationary) policy π given a (stationary) mean field µ:

V µ,π(x) := Eπ

[∑
n≥0 γnr(xn, an, µ)

]
satisfies:

V µ,π(x) = Ea∼π(·|x)

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,π(x′)]︸ ︷︷ ︸

Qµ,π(x,a)

]
V µ,π = T µ,πV µ,π

Qµ,π = Bµ,πQµ,π

▶ Optimal value function given a mean field µ: V µ,∗(x) = maxπ V µ,π(x):

V µ,∗(x) = max
π

Ea∼π(·|x))

[
r(x, a, µ) + γEx′∼p(·|x,a,µ)[V µ,∗(x′)]︸ ︷︷ ︸

Qµ,∗(x,a)

]
V µ,∗ = T µ,∗V µ,∗

Qµ,∗ = Bµ,∗Qµ,∗

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗(·|x)) ⊆ argmax
a∈A

Qµ,∗(x, a)

▶ Bellman equations are fixed point equations
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Value function: finite horizon evolutive case

Finite horizon evolutive case (NT < +∞):

▶ Value function of a policy π given a mean field µ:
V µ,π

n (x) := Eπ[
∑NT

n′=n
r(xn′ , an′ , µn′ )|xn = x] satisfies:

V µ,π
NT +1(x) = 0

V µ,π
n (x) = Ea∼πn(·|x)

[
r(x, a, µn) + Ex′∼p(·|x,a,µn)[V µ,π

n+1(x′)]︸ ︷︷ ︸
Q

µ,π
n (x,a)

]
,

n = NT − 1, . . . , 0

▶ Optimal value function given a mean field µ:

V µ,∗
n (x) = max

π
V µ,π

n (x)

Qµ,∗
n (x, a) = max

π
Qµ,π

n (x, a)

▶ Optimal policy given a mean field µ: single player’s problem:

supp(π∗
n(·|x)) ⊆ argmax

a∈A

Qµ,∗
n (x, a)

▶ Bellman equations are backward induction equations
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MFG Equilibrium Computation: General Principles

We are going to focus mostly on MFG Nash equilibria computation

Two main objects: policy π and population distribution µ

Most basic idea: alternate

1. Update of the policy

2. Update of the population’s distribution

Many other possibilities using optimality conditions, e.g.
▶ traditional methods such as Newton’s method for the PDE system [ACCD12]
▶ deep learning methods for PDE/FBSDE system, see [HL22]

But cannot be directly adapted to the model-free RL setting.
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2. Update of the population’s distribution

Many other possibilities using optimality conditions, e.g.
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Updating the policy

For standard MDPs:
▶ Bellman operators

▶ Optimal Bellman operator:

B∗ : (Q(x, a))x,a 7→ B∗Q =
(

r(x, a) + γEx′∼p(·|x,a)[max
a′

Q(x′, a′)]
)

x,a

▶ Bellman operator associated to a policy π:

Bπ : (Q(x, a))x,a 7→ BπQ =
(

r(x, a) + γEx′∼p(·|x,a),a′∼π [Q(x, a′)]
)

x,a

▶ Iterative learning methods:
▶ Value iteration:

Qk+1 = B∗Qk

▶ Policy iteration:{
Qk+1 = Qπk

(policy evaluation)

πk+1 ∈ argmax Qk+1 (policy improvement)

where the policy evaluation can be done by applying Bπk
many times

→ For MFG: intertwine applications of Bµ,∗ or Bµ,π with MF updates
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Iterative methods for MFG: Stationary case

Goal: find MFG Nash equilibirum (π̂, µ̂) ∈ Π × ∆S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗ = Bµk,∗Qµk,∗

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,∗(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

µk+1

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

= Bµk,πk

Qµk,πk

1.2 Let: πk+1(·|x) ∈ argmaxa Qµk,πk

(x, a)
2. Compute stationary MF: µk+1 = MF(πk+1): µk+1 = Pπk+1

(µk+1)

Sometimes: one application of fixed point operator instead of true fixed point:

▶ µk+1 = Pπk+1
(µk) instead of µk+1 s.t. µk+1 = Pπk+1

(µk+1)
▶ Learning step ≈ time step in the game
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Iterative methods for MFG: Evolutive case

Goal: find MFG Nash equilibrium (π̂, µ̂) ∈ ΠNT × ∆NT
S

▶ Iterations based on Best response computation:

1. Compute best response: πk+1 = BR(µk):
1.1 Compute the optimal value function: Qµk,∗

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,∗

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

▶ Iterations based on Policy evaluation (“policy iteration”):

1. Update policy:

1.1 Evaluate policy: Qµk,πk

1.2 Let: πk+1
n (·|x) ∈ argmaxa Qµk,πk

n (x, a)
2. Compute MF flow: µk+1 = MFm0,NT (πk+1)

Backward equations instead of fixed point equations as in stationary case
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Challenges

Potential issues (for both stationary and evolutive settings):

▶ Non-uniqueness of the equilibrium MF µ̂ or µ̂

▶ Non-uniqueness of the Best Response π ∈ BR(µ̂)
(even though there might be a unique equilibrium policy π̂!)

▶ Lack of convergence (typically if MF ◦ BR is not a strict contraction)

⇒ Oscillations / instabilities

Several variations / improvements have been studied
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Damping / Averaging

Damping / smoothing:
▶ for policies: instead of:

πk+1 = BR(µk)
use:

π̄k+1 =
k∑

i=1

αiBR(µi)

for some coefficients (αi)i, and then:

µk+1 = MF(π̄k+1)
▶ and/or average mean fields, value functions, . . .

▶ tends to avoid oscillations
▶ helps to learn a mixed policy even if every BR is pure
▶ slower convergence if small α’s

→ Encompasses many possible variants such as:
▶ Fixed point iteration / value iteration (no damping):

e.g. [HMC06a, GHXZ19, AKS20b] . . .
▶ Fictitious Play: e.g. [CH17, Had17, MJMdC18, PPL+20, MH21, DV21] . . .
▶ Policy Iteration: e.g. [CCG21b, CT21, LST21] . . .
▶ Online Mirror Descent (OMD): e.g. [Had17, Had18, PPE+21a] . . .
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Smooth policies

Class of smooth(er) policies:
▶ E.g. softmax/Botzmann policies: instead of

πk+1(·|x) ∈ argmax Qk(x, ·)

use:

πk+1(·|x) = softmaxτ Qk(x, ·) = e
1
τ

Q(x,·)∑
a

e
1
τ

Q(x,a)

▶ forces to play every action with a positive probability
▶ temperature τ can be decreased progressively if needed
▶ solves the problem of ambiguity among possible elements of argmax
▶ but the equilibrium policy π̂ is not necessarily of softmax form!
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Reward regularization

Reward regularization:
▶ Modify the reward with a regularizing penalty
▶ For instance, entropy penalty: instead of:

r(x, a, µ)

use:

r(x, a, µ) − η log
(

π(a|x)
π̃(a|x)

)
where π̃ is a reference policy (e.g., uniform)

▶ it depends on the whole policy π(·|x) and not just on the action played
▶ helps to ensure uniqueness of the equilibrium and the BR
▶ but only for the modified game ̸= original game
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Some Canonical Examples

Algorithm: Fixed point iter.
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 πk := BR against µk−1;

4 µk := µπk

;
5 return πK , µK

↓

Algorithm: Fictitious Play
input : Initial policy π0

1 π̄0 := π0;
2 µ̄0 := µπ̄0

;
3 for k = 1, . . . , K: do
4 πk := BR against µ̄k−1;

5 µ̄k := k
k+1 µ̄k−1 + 1

k+1 µπk

;
6 π̄k := policy giving µ̄k;
7 return π̄K , µ̄K

Algorithm: Policy iter.
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 Qk := Q-func. for πk−1 given µk−1;
4 πk := argmax Qk;

5 µk := µπk

;
6 return πK , µK

↓

Algorithm: OMD
input : Initial policy π0

1 µ0 := µπ0
;

2 for k = 1, . . . , K: do
3 Qk := Q-func. for πk−1 given µk−1;
4 Q̄k := Q̄k−1 + αQk;
5 πk := softmaxτ Q̄k;

6 µk := µπk

;
7 return πK , µK
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Assumptions and convergence guarantees

Several classes of assumptions to guarantee convergence of the iterations:

1. "Quantitative" assumptions:

▶ small Lipschitz constants / short time

▶ proof by strict contraction

▶ Ex: [HMC06a, GHXZ19, AKS20b, LST21] . . .

2. "Qualitative/structural" assumptions:

▶ potential structure / monotonicity

▶ proof by Lyapunov stability

▶ Ex: [CH17, Had17, Had18, MJMdC18, PPL+20, PPE+21a] . . .
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Convergence?

How can we check whether the algorithm has converged?

Beware:

▶ Total reward of a player is not a good indicator of convergence
▶ Distance between π and π̂ is not necessarily meaningful

→ Exploitability:
▶ Evaluates the quality of a policy in a game [ZJBP07, LWZB09]
▶ How “far” π is from being a Nash equilibrium policy?

In the context of MFGs:

▶ Definition: The exploitability E(π) of a policy π is defined as:

E(π) := max
π′

J(π′, µπ) − J(π, µπ)

▶ Interpretation: E(π) quantifies the average gain for a representative player to
replace its policy by a best response, while the rest of the population plays with
policy π.

▶ If E(π) = 0, then π is a Nash equilibrium policy.
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OpenSpiel

▶ Open source framework for research in learning in games

▶ Main motivation: multi-agent reinforcement learning (MARL)

▶ Marc Lanctot (Google DeepMind) + many contributors

▶ Mostly in C++ and Python; APIs in Julia, . . .

▶ Various games including zero-sum games, N-player games, imperfect
information, . . .

▶ Chess, Blackjack, Atari, Kuhn poker, Go, . . .

▶ And also: Mean field games
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OpenSpiel

Introduction to OpenSpiel:

▶ https://openspiel.readthedocs.io/en/latest/intro.html

▶ Python notebook:
https://colab.research.google.com/github/deepmind/open_
spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb

▶ Tutorial by Marc Lanctot available online:
https://www.youtube.com/watch?v=8NCPqtPwlFQ

▶ Paper [LLL+19]

▶ Two big components:

▶ Games

▶ Algorithms
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MFG in OpenSpiel

▶ Julien Pérolat, Raphael Marinier, Sertan Girgin & growing number of contributors
Théophille Cabannes, Sarah Perrin, Paul Muller, . . .

▶ For today, three main questions:

▶ How to use the existing material?

▶ How to define a new MFG model (environment/game)?

▶ How to define a new algorithm to learn the MFG solution?
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Existing codes for MFG in OpenSpiel

▶ MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

▶ MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [PPL+20]
▶ Crowd modeling 2D illustrated in [PPL+20, GPL+22]
▶ Dynamic routing illustrated in [CLP+22]
▶ Linear quadratic (1D) illustrated in [LPG+22]
▶ Predator prey (multi-population 2D) illustrated in [PPE+21b]

▶ MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [LPG+22]
▶ Boltzmann policy iteration [CK21a]
▶ Fictitious play [PPL+20], . . .
▶ Fixed point
▶ Mirror descent [PPE+21b]
▶ Munchausen deep mirror descent [LPG+22]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
▶ Some examples: https://github.com/deepmind/open_spiel/tree/

master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!
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MFG in OpenSpiel: Usecase

Q1. How to use existing material?

▶ Install & imports

▶ Creating a game (e.g., grid world)

▶ Running a learning algorithm (e.g., fictitious play)

▶ Plotting the results (e.g., exploitability and distribution)
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Tutorial 1: Introduction to MFG in OpenSpiel

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/16p95oXZGdhzCAX9MTPlcMNnsD3dyW9ur?usp=sharing

▶ Installation and imports

▶ Creating a game

▶ Running an algorithm

▶ Visualizing the results

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook
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Tutorial 2: Comparing Learning Algorithms

Another example of game: 2D crowd modeling in a grid world but with obstacles (4
connected rooms). The performance of several algorithms are compared.

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1L1MIVba_2Wm534TDcGL35W2D5vxCsFeo?usp=sharing

▶ Four room grid world

▶ Running multiple pre-defined algorithms

▶ Comparing their exploitabilities

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook
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Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 1: Noise level = 0.2
State distribution at different time steps (columns) for different algorithms (rows):

Fictitious Play
0 5 10 15 20 25

Online Mirror Descent
0 5 10 15 20 25

Fixed Point
0 5 10 15 20 25

Damped Fixed Point
0 5 10 15 20 25

Softmax Fixed Point
0 5 10 15 20 25

Softmax Fictitious Play
0 5 10 15 20 25

Boltzmann Policy Iteration
0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.055

0.073

0.000

0.008

0.017

0.026

0.034

0.000

0.004

0.008

0.011

0.015

0.000

0.004

0.007

0.010

0.014

0.000

0.004

0.007

0.010

0.014

0.00

0.25

0.50

0.75

1.00

0.000

0.019

0.038

0.056

0.075

0.000

0.008

0.017

0.026

0.034

0.000

0.003

0.006

0.010

0.013

0.000

0.002

0.005

0.008

0.010

0.000

0.002

0.005

0.008

0.010

0.00

0.25

0.50

0.75

1.00

0.000

0.188

0.377

0.566

0.754

0.000

0.188

0.376

0.563

0.751

0.000

0.207

0.414

0.621

0.828

0.000

0.204

0.407

0.610

0.814

0.000

0.188

0.376

0.563

0.751

0.00

0.25

0.50

0.75

1.00

0.000

0.016

0.032

0.048

0.064

0.000

0.008

0.017

0.026

0.034

0.000

0.006

0.012

0.018

0.024

0.000

0.005

0.010

0.016

0.021

0.000

0.004

0.009

0.013

0.018

0.00

0.25

0.50

0.75

1.00

0.000

0.212

0.425

0.638

0.850

0.000

0.212

0.425

0.638

0.850

0.000

0.212

0.425

0.638

0.850

0.000

0.210

0.420

0.629

0.839

0.000

0.216

0.433

0.650

0.866

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.055

0.073

0.000

0.009

0.018

0.026

0.035

0.000

0.004

0.007

0.010

0.014

0.000

0.003

0.006

0.008

0.011

0.000

0.002

0.005

0.008

0.010

0.00

0.25

0.50

0.75

1.00

0.000

0.020

0.041

0.062

0.082

0.000

0.012

0.024

0.036

0.048

0.000

0.010

0.019

0.028

0.038

0.000

0.008

0.017

0.026

0.034

0.000

0.008

0.016

0.024

0.032
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Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 1: Noise level = 0.2
Exploitability vs number of steps:

0.0 20.0 40.0 60.0 80.0 100.0
iterations

0.01

0.1

1.0

10.0

100.0

1000.0

10000.0

ex
pl
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Fictitious Play
Online Mirror Descent
Fixed Point
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Softmax Fixed Point
Softmax Fictitious Play
Boltzmann Policy Iteration
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Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 2: Noise level = 0
State distribution at different time steps (columns) for different algorithms (rows):

Fictitious Play
0 5 10 15 20 25

Online Mirror Descent
0 5 10 15 20 25

Fixed Point
0 5 10 15 20 25

Damped Fixed Point
0 5 10 15 20 25

Softmax Fixed Point
0 5 10 15 20 25

Softmax Fictitious Play
0 5 10 15 20 25

Boltzmann Policy Iteration
0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00
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0.000

0.005
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0.015
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0.015
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0.000

0.012
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0.048

0.000

0.004

0.009

0.013

0.018

0.000

0.002

0.005

0.008

0.010

0.000

0.002

0.005

0.008
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0.25
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0.064
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0.013

0.026

0.039

0.052
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0.007

0.014

0.020

0.027

0.000

0.006

0.012

0.017

0.023

0.000

0.005

0.010

0.015

0.020

0.00

0.25

0.50

0.75

1.00

0.000

0.040

0.080

0.121

0.161

0.000

0.025

0.050

0.075

0.100

0.000
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0.038

0.058
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0.000

0.016

0.032

0.048

0.064

0.000

0.014
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0.042
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0.00

0.25

0.50
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1.00

0.000

0.014

0.029

0.044
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0.000

0.012

0.024

0.037

0.049

0.000

0.005

0.010

0.014

0.019

0.000

0.003

0.006

0.010

0.013

0.000

0.003

0.006

0.010

0.013

0.00

0.25

0.50

0.75

1.00

0.000

0.018

0.036

0.053

0.071

0.000

0.012

0.024

0.036

0.048

0.000

0.007

0.014

0.021

0.028

0.000

0.006

0.012

0.017

0.023

0.000

0.006

0.011

0.016

0.022
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Comparing Learning Algorithms – Results

Game: crowd aversion in a four-room grid world
Test case 2: Noise level = 0
Exploitability vs number of steps:

0.0 20.0 40.0 60.0 80.0 100.0
iterations

0.01

0.1
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MFG model in OpenSpiel: State

Q2. How to define a new MFG model?

▶ State of the game = all the information required to describe the current stage

▶ In an MFG: representative player’s state and mean field state

▶ Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

▶ The state evolves along a tree of possibilities
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MFG model in OpenSpiel: State evolution
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MFG model in OpenSpiel: State types

▶ Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

▶ Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

▶ Chance:
▶ can be viewed as a player with a fixed policy
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

▶ Mean field: no actions
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MFG in OpenSpiel: Distribution

▶ The distribution is something specific to MFGs (compared with other games in
OpenSpiel)

▶ Remember that time is part of the state object. Evaluating the distribution at a
given state means evaluating the distribution at (t, x).

▶ master/open_spiel/python/mfg/algorithms/distribution.py

▶ Computes the distribution of a policy
▶ DistributionPolicy

▶ evaluate: based on the logic behind nodes
▶ _one_forward_step

▶ master/open_spiel/python/mfg/distribution.py

▶ Representation of a distribution for a game
▶ Distribution

▶ master/open_spiel/python/mfg/tabular_distribution.py

▶ Tabular representation of a distribution for a game
▶ TabularDistribution
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MFG model in OpenSpiel: Example

We take a concrete example: crowd modeling in 1D with a grid world

master/open_spiel/python/mfg/games/crowd_modelling.py

3 main classes

▶ MFGCrowdModellingGame:
▶ __init__: initialization
▶ new_initial_state: generate new initial state

▶ MFGCrowdModellingState:
▶ __init__: initialization
▶ _legal_actions: actions that are valid
▶ chance_outcomes: distribution over values of the noise in the dynamics
▶ _apply_action: will be called at each node to modify the state based on the action
▶ _rewards: representative player’s reward

▶ Observer:
▶ defines an observation, here basically t and x
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 master/open_spiel/python/mfg/games/crowd_modelling.py 


MFG algorithms in OpenSpiel: Principles

Q3. How to define a new algorithm?

Simplest one: Fixed point
master/open_spiel/python/mfg/algorithms/fixed_point.py

A bit more involved: Fictitious play
master/open_spiel/python/mfg/algorithms/fictitious_play.py

▶ Main class FictitiousPlay

▶ Main method iteration

▶ Compute the distribution (sequence) associated to the current policy
▶ Update the policy (using fictitious play rule); this uses an auxiliary class

MergedPolicy to mix the previous policy and the new one

▶ get_policy: returns the current policy
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master/open_spiel/python/mfg/algorithms/fixed_point.py
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Tutorial 3: Game construction

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing

▶ Details of the definition of an MFG game in OpenSpiel

▶ Modification of an existing game

▶ Reward function, transitions, . . .

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook

66 / 100

https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing
https://colab.research.google.com/drive/1uIcDYxQ9f7ngqIOo7ittZ4jEmXFOOZs9?usp=sharing


Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG
Model-free RL framework
Model-free RL methods

7. Learning MFC Social Optimum

8. Conclusion



Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG
Model-free RL framework
Model-free RL methods

7. Learning MFC Social Optimum

8. Conclusion



Revisiting Dynamic Programming: Classical Setup

Classical MDP (S, A, p, r, γ):

Qπ(x, a) = (BπQπ)(x, a) = r(x, a) + γEx′∼p(·|x,a),

a′∼π(·|x)

[
Qπ(x′, a′)

]
→ Can be computed by applying repeatedly Bπ

→ But what if p & r are unknown and we can only observe samples (x′, r(x, a))?

Environment

Agent

Reward
rn+1

State
xn+1

Action
an

Reward
rn

State
xn

See e.g. [SB18]
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Revisiting Dynamic Programming: Mean Field Game Setup

MDP parameterized by mean field term (S, A, p(·|·, ·, µ), r(·|·, ·, µ), γ):

Qµ,π(x, a) = (Bµ,πQµ,π)(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

→ What if p & r are unknown and we can only observe samples (x′, r(x, a, µ))?

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µ

Action
an

Reward
rn

State
xn

Note: the agent does not need to observe µ, but it is part of the environment.
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Revisiting Dynamic Programming: Mean Field Game Setup

How to deal with µ in practice? To implement the simulator, we can for instance:

▶ Vector (if finite S); updates using transition matrix

▶ Empirical distribution µN ; updates using individual transitions

▶ Neural network (e.g., normalizing flow); updates by training

▶ . . .
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Policy evaluation

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,π:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing

E

[ ∣∣∣∣∣Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qθk (x′, a′)

]∣∣∣∣∣
2 ]
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Policy evaluation: Model-free

Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]

Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,π:
▶ Observe x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment

▶ Approximate Ex′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
by Monte Carlo

▶ Use similar updates as before (in the ideal case)? For instance with tabular
representation: at a given k, for all (x, a) compute:

Qk+1(x, a) = r(x, a, µ) + γẼB
x′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qk(x′, a′)

]
where ẼB is an empirical expectation based on a batch of B i.i.d samples.

▶ This is model-free (= purely based on samples from the environment) . . .
▶ But this requires: many samples for every (x, a) at every iteration k . . .
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Policy evaluation: given µ, π, evaluate

Qµ,π(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ),

a′∼π(·|x)

[
Qµ,π(x′, a′)

]
Assume we only have access to samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the
environment.

Repeatedly improve estimate Qk of Qµ,π: In practice:
▶ asynchronous updates: follow a trajectory (xk, ak)k≥0:

Qk+1(xk, ak) = r(xk, ak, µ) + γQk(xk+1, ak+1)

where xk+1 ∼ p(·|xk, ak, µ), ak+1 ∼ π(·|xk)
→ addresses the previous point . . . but very unstable

▶ learning rate:

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γQk(xk+1, ak+1)

]
▶ many extra tricks (replay buffer, policy parameterization, . . . )
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Optimal policy computation

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]

Assume we can compute the expectation perfectly.

Repeatedly improve estimate Qk of Qµ,∗:
▶ With tabular representation: pointwise update for (x, a)

Qk+1(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qk(x′, a′)

]
▶ With function approximation: Qk+1 parameterized by θk+1 minimizing∥∥∥(x, a) 7→ Qθk+1 (x, a) − r(x, a, µ) − γEx′∼p(·|x,a,µ)

[
max

a′
Qθk (x′, a′)

]∥∥∥
2
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Optimal policy computation: Model-free

Best response computation: given µ, compute

Qµ,∗(x, a) = r(x, a, µ) + γEx′∼p(·|x,a,µ)

[
max

a′
Qµ,∗(x′, a′)

]
Assume only samples x′ ∼ p(·|x, a, µ), r(x, a, µ) from the environment.

Repeatedly improve estimate Qk of Qµ,∗:

▶ similar as evaluation, using MC samples

▶ computation of max (and argmax to recover an optimal policy) possible by
exhaustive search if the action space A is finite and small

▶ tabular Q-learning [WD92] (with extra µ in the environment):

Qk+1(xk, ak) = (1 − α)Qk(xk, ak) + α
[
r(xk, ak, µ) + γ max

a′
Qk(xk+1, a′)

]
where xk+1 ∼ p(·|xk, ak, µ) and ak ∼ some policy

▶ otherwise: learn an optimal parameterized policy
▶ either along the way, with the Q-function ⇒ actor-critic methods
▶ only the parameterized policy ⇒ policy gradient methods

▶ Ex: DQN, SAC, PPO, . . .
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MFG Nash equilibrium: Model-free

▶ Above: enables the computation of a Best Response
(using for instance model-free versions of value iteration and policy iteration)

▶ Good but not enough for Nash equilibrium!

▶ “Outer loop” to update the mean field µ

▶ Various options, depending on the MFG setting:

▶ Stationary setting: one or many applications of the transition matrix
(ideally: computation of the stationary distribution)

▶ Evolutive setting: application of the transition matrix for each of the time
steps (computation of the MF sequence)

▶ If applying the transition matrix is not an option (e.g., continuous spaces), one
can for instance use an empirical distribution obtained by simulating N agents
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MFG algorithms in OpenSpiel: Reinforcement Learning – Principles

OpenSpiel also contains RL codes for MFGs

Two main building blocks:

▶ Environment (in the sense of RL): in charge of updating the State based on the
based on the Game

▶ Agent: in charge of training the policy by interacting with the environment

76 / 100



MFG algorithms in OpenSpiel: Reinforcement Learning – Examples

Policy update: best respond computation for instance through DQN:
▶ DQN is a variant of Q-learning with a neural network for Q [MKS+15]
▶ Implementation: open_spiel/python/mfg/examples/mfg_dqn_jax.py
▶ neural network implementation through JAX
▶ see the source code for details (hyperparameters etc.)

Mean field update: Example of DQN embedded in Fictitious Play [LPG+22]:
▶ Train a NN for the average policy across iterations
▶ Implem.: open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py
▶ Key steps:

▶ fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)

▶ distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just computed
by fictitious play iteration

▶ env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration

▶ agents[p].step(time_step): train the agent

Alternative: Munchausen Deep Mirror Descent [LPG+22]:
▶ Train a NN for the cumulative Q-function
▶ Implem.: open_spiel/python/mfg/examples/munchausen_deep_

mirror_descent.py
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Tutorial 4: Deep RL for MFG in OpenSpiel

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1rF9DpjO_xTpbBC2Y-6h_7yQ80j75eb6j?usp=sharing

▶ Installation and imports for DRL in OpenSpiel

▶ Munchausen Deep Mirror Descent

▶ Average Network Fictitious Play

* Special thanks to Marc Lanctot, Julien Pérolat, Raphael Marinier, Sertan Girgin,
Sarah Perrin and Kai Shao for this notebook
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A (Non-exhaustive) Glance at the literature: RL for MFG

RL for Mean Field Game:

▶ MARL with mean field approximation: Yang et al. [YLL+18]
▶ Inverse RL: Yang et al. [YYT+17], Chen et al. [CLK21]
▶ Multi-time scales: Subramanian et al. [SM19], Angiuli et

al. [AFL20, AFLZ20, AH21]
▶ Fictitious Play with tabular RL: Pérolat et al. [PPL+20], with deep RL: Elie et

al. [EPL+20, CK21b] and distribution embedding: Perrin et al. [PLP+21b]
▶ Fixed point iterations with Q-learning and variants: Guo et

al. [GHXZ19, GHXZ20], Anahtarci et al. [AKS19, AKS21], Xie et al. [XYWM21]
▶ Entropy regularization: Anahtarci et al. [AKS20a], Cui et al. [CK21b]
▶ LQ MFG with actor-critic: [FYCW19, uZZMB20], or policy gradient: Wang et

al. [WHYW21]
▶ RL for partially observable MFG: Subramanian et al. [STCP20]
▶ Mean field RL for multiple types: Subramabian et al. [SPTH20, uZMB22]
▶ Learning Master policies with deep RL: Perrin et al. [PLP+21a]
▶ Learning with a single agent: [AFL20, ZKBB23]
▶ . . .
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Stationary Setting – Reminder

Setting:
▶ Stationary setting: NT = ∞
▶ No fixed initial m0 but a stationary distribution
▶ Notation: MF(π) := stationary distribution when using policy π:

µ = P ⊤
µ,πµ =: Pπ(µ)

▶ Player’s reward: for player’s policy π ∈ ∆A and mean field µ ∈ ∆S ,

J(π; µ) = E

[
∞∑

n=0

γnr(xn, an, µ)

]
where γ ∈ (0, 1) is a discount parameter, and

an ∼ π(·|xn), x0 ∼ µ, xn+1 ∼ p(·|xn, an, µ), n ≥ 0

Solution concepts:
▶ Stationary MFG Nash equilibrium: (π̂, µ̂) ∈ Π × ∆S×A s.t.

1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field state: µ̂ = MF(π̂)

▶ Fixed point: µ̂ ∈ MF(BR(µ̂))

▶ Stationary MFC Social optimum: π∗ ∈ Π s.t.
▶ Optimality: π∗ ∈ argmaxπ∗ J(π∗; µπ∗

) where µπ∗
= MF(π∗)
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Evolutive Setting – Reminder

Setting:
▶ Horizon: NT ∈ N (extensions: p, r depending on n; infinite horizon)
▶ Fixed initial state distribution: m0 ∈ ∆S

▶ The MF evolves in time: µ = (µn)n=0,...,NT ∈ ∆NT
S

▶ Notation MFm0,NT (π) := generated by policy π starting from m0:

µ0 = m0, µn+1 = P ⊤
µn,πn

µn, n ≥ 0

▶ Player’s reward: for player’s policy π ∈ ΠNT and mean field µ ∈ ∆NT
S ,

J(π; µ) = E

[
NT∑
n=0

r(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts:
▶ Evolutive MFG Nash equilibrium: (π̂, µ̂) ∈ ΠNT × ∆NT

S s.t.
1. Best response: π̂ ∈ BR(µ̂) := argmaxπ J(π; µ̂)
2. Mean field flow: µ̂ = MFm0,NT (π̂)

▶ Fixed point: µ̂ ∈ MFm0,NT (BR(µ̂))

▶ Evolutive MFC Social optimum: π∗ ∈ ΠNT s.t.
▶ Optimality: π∗ ∈ argmaxπ J(π; µπ) where µπ = MFm0,NT (π)
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Evolutive Setting – Infinite Horizon Discounted

Setting:
▶ Horizon: NT = +∞; discount γ ∈ (0, 1)

▶ Notation MFm0,NT (π) := as before generated by policy π starting from m0 (but
now: infinite sequence, NT = ∞)

▶ Player’s reward: for player’s policy π ∈ Π∞ and mean field µ ∈ ∆∞
S ,

J(π; µ) = E

[
+∞∑
n=0

γnr(xn, an, µn)

]
where an ∼ πn(·|xn), x0 ∼ m0, xn+1 ∼ p(·|xn, an, µn), n ≥ 0

Solution concepts: as before (with infinite sequences, NT = ∞)
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From MFC to MFMDP

Let:
JMF C(π) := J(π; MFm0,NT (π))

MFC problem:
π∗ ∈ argmax

π

JMF C(π)

Note: in the definition of J using policy π,

µn = L(xn)
so

JMF C(π) =
+∞∑
n=0

γnr̄(ān, µn)

where r̄(ān, µn) := Exn∼µn,an∼πn(·|xn)[r(xn, an, µn)]

Intuitively, this is an MDP with state = mean field µn: Mean Field MDP

Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄
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Extensions:
▶ common noise: evolution of µn becomes stochastic
▶ π population-dependent policies: π(·|xn, µn)
▶ common randomization [CLT23]: π itself can be random, picked according to a

central planner’s policy π̄
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MFMDP

MFMDP problem:
π̄∗ ∈ argmax

π̄

J̄J(π̄; m0)

where

J̄(π̄; m0) =
+∞∑
n=0

γnr̄(ān, µn)

subject to:
µ0 = m0, µn+1 = P ⊤

µn,π̄n
µn (+ noise), n ≥ 0

Value functions:
▶ V̄ ∗(µ) and Q̄∗(µ, ā)
▶ Dynamic programming equations [CLT23] (see also [GGWX23] without common

noise, and [MP19b] with common noise but no common randomization)
▶ Need to properly define the class of actions and policies [omitted here; see e.g.

[CLT23] for details]

RL:
▶ From here, we can re-use existing RL methods for this MDP of mean-field type
▶ Question 1: What is the environment?
▶ Question 2: How to deal with the (continuous) state?
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▶ Dynamic programming equations [CLT23] (see also [GGWX23] without common

noise, and [MP19b] with common noise but no common randomization)
▶ Need to properly define the class of actions and policies [omitted here; see e.g.

[CLT23] for details]

RL:
▶ From here, we can re-use existing RL methods for this MDP of mean-field type
▶ Question 1: What is the environment?
▶ Question 2: How to deal with the (continuous) state?

84 / 100



MFMDP

MFMDP problem:
π̄∗ ∈ argmax

π̄

J̄J(π̄; m0)

where

J̄(π̄; m0) =
+∞∑
n=0

γnr̄(ān, µn)

subject to:
µ0 = m0, µn+1 = P ⊤

µn,π̄n
µn (+ noise), n ≥ 0

Value functions:
▶ V̄ ∗(µ) and Q̄∗(µ, ā)
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MFMDP: Environment

Mean field MDP (S̄ = ∆S , Ā = ∆S
A, p̄, r̄, γ):

Q̄π̄(µ, ā) = (B̄µ,π̄Q̄π̄)(µ, ā) = r̄(µ, ā) + γEµ′∼p̄(·|µ,ā),

ā′∼π̄(·|µ)

[
Q̄π̄(µ′, ā′)

]
→ What if p̄ & r̄ are unknown and we can only observe samples (x′, r̄(µ, ā))?

Environment

Population

Reward

rn+1

MF State

µn+1

Action

an

Reward

rn

MF State
µn
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Mean Field State

How to deal with the MFMDP value functions (and policies)?

▶ Difficulty: µn takes continuous values in ∆S (likewise for actions ān)

▶ Option 1: discretize the simplex(es) and then use tabular RL methods

▶ Option 2: function approximation Qθ(µ, ā) and then use deep RL methods

▶ Remarks on policy randomization:

▶ Randomization at the agent level is useful to allow agents to have different
trajectories even when start at the same state

▶ There exists an optimal policy which is pure at the pop. level [CLT23]

▶ But common randomization (at the pop. level) helps with exploration
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A (Non-exhaustive) Glance at the literature: RL for MFC

RL for Mean Field Control:

▶ Early works on MDP viewpoint: Gast et al. [GG11, GGLB12]
▶ Policy optimization for stationary MFC: Subramanian et al. [SM19]
▶ Policy gradient for LQ MFC [CLT19b, WHYW21] and zero sum mean field type

game [CHLT20]
▶ Multi-time scale for MFC (and MFG): Angiuli et al. [AFL20, AFLZ20, AH21]:
▶ Mean field MDP: dynamic programming and

RL [CLT23, GGWX23, MP19b, GGWX20, CTSK21]
▶ Decentralized network approach [GGWX21]
▶ Model based RL for MFC: Pasztor et al. [PBK21]
▶ . . .
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Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
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▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 1: m0 = (1/4, 1/4, 1/4, 1/4)
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controlled using the approximate Q-function (mQ)
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(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
88 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 2: m0 = (1, 0, 0, 0)

0 2 4 6 8 10
time

0.0

0.2

0.4

0.6

0.8

1.0

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE ) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Lau21] and section 6.1 of [CLT23])
88 / 100



Tabular Q-Learning for MFMDP: Numerical Illustration

Cyber-security example of [KB16]
▶ MFC viewpoint, MF Q-learning
▶ pure (population and individual) strategies
▶ discretization of S̄ = ∆S , Ā = ∆S×A

Test 3: m0 = (0, 0, 0, 1)
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controlled using the approximate Q-function (mQ)
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From Tabular to Deep RL for MFMDP

▶ Tabular RL is easy to implement and well understood (convergence, etc.)

▶ But:

▶ leads to errors due to projections on the discretized state space

▶ not feasible if the number |S| of (individual) states is large, because µ
becomes high dimensional

▶ Instead of discretizing the distribution, we can:

▶ replace Q̄∗ by a parameterized function, e.g., neural network

▶ train it using a deep RL algorithm, e.g., DDPG, . . .

▶ Deep RL for MFMDP: See sections 6.1, 6.2 and 6.3 of [CLT23]
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing

▶ Same example as above: MFC for cybersecurity

▶ Solved using deep RL with population-dependent controls
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Another Example: Distribution Planning

▶ Goal: match a target distribution.
▶ S = {1, . . . , 10} and A = {−1, 0, +1}.
▶ Transitions: F (x, a, µ, e, e0) = x + a + e0.
▶ Cost:

f(x, a, µ) = |a| +
∑

i

|µ(i) − µtarget(i)|2.

▶ Here we chose: µtarget = (0, 0, 0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0, 0).
▶ No idiosyncratic noise.
▶ Hence in general it is not possible to match the target distribution unless the

agents are allowed to randomize their actions at the individual level.
▶ We use (∆A)S for the level-1 action space.
▶ Without or with common noise ε0

n ∈ A.
▶ It is not feasible to rely on a tabular method. We show deep RL results.
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Another Example: Distribution Planning with Common Noise
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Some Proofs of Convergence

Proof of convergence of RL methods for MFMDP?

▶ Tabular Q-learning after simplex discretization [CLT23]

▶ Policy gradient for LQ MFC [CLT19a]

▶ Still a lot of open questions to study
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Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Unification of Iterations via Two timescales [AFL20]

Reminder:

▶ MFGame: Fix a distribution µ, compute best response πµ, update µ, . . .

▶ MFControl: Fix a policy π, compute induced distribution µπ, update π, . . .

Relaxation: using two-timescale idea

▶ computing best response πµ ≈ many steps of policy improvement

▶ computing stationary distribution µπ ≈ many steps of evolution

▶ rewrite each scheme with 2 nested loops

▶ replace “many steps” of inner loop by “one step but with a larger learning rate”

Unification: update both π, µ simultaneously but at different rates ρπ, ρµ

▶ ρπ < ρµ ⇒ π evolves slowly ⇒ MFControl

▶ ρπ > ρµ ⇒ µ evolves slowly ⇒ MFGame

95 / 100



Definitions & Unification via Two timescales [AFL20]

Policy improvement can be implemented through the Q-function for instance:

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) max
a′

Q(x′, a′).

The scheme (using ideal updates) can be written as: for k ≥ 0{
Qk+1 = Qk + ρQ

k T (Qk, µk)
µk+1 = µk + ρµ

k P(Qk, µk),

where{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) maxa′ Q(x′, a′) − Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x) − µ(x), with P Q,µ(x, x′) = p(x′|x, π̂Q(x), µ)

Extension: sample-based asynchronous (stochastic approximation [Bor09])
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Extension: sample-based asynchronous (stochastic approximation [Bor09])
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Numerical Results on LQ Example [AFL20]

Numerical illustration: Linear-quadratic example
▶ fixed (quadratic) reward function and (linear) drift function
▶ the two notions of solutions (MFG/MFC) are different
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Comments

▶ The distribution can be estimated along the way, using a single agent’s sample
(without “mean field oracle” in the environment)

▶ Theory: Proof of convergence [AFLZ23]

▶ Application: Tuning properly the two learning rates is not trivial!

▶ Extension: this approach also works for other models, such as mean field
control games (MFCG) [ADF+22b, ADF+22a]

→ MFG where each agent is of mean field type (solves an MFC)
→ 3 time scales instead of 2
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Outline

1. Introduction

2. Warm-up: Continuous setting

3. Problem settings

4. Iterative Methods

5. Implementation: MFG in OpenSpiel

6. Reinforcement Learning for MFG

7. Learning MFC Social Optimum

8. Conclusion



Summary

▶ Settings (static, stationary, evolutive, . . . )

▶ Solution concepts (Nash, Social opt., . . . )

▶ Iterative learning methods for MFG (fixed point, fictitious play, . . . )

▶ Model-free RL methods for MFG (intuition, implementation in OpenSpiel, . . . )

▶ MFC and Mean Field MDP

▶ Tabular and Deep RL for MFMDP
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Future Directions

Lot of work to be done! Feel free to reach out if you’re interested in contributing.

▶ Theory:

▶ Convergence of iterative methods in more general settings (e.g., Fictitious
Play)

▶ Convergence rates for iterative methods
▶ Same questions for tabular RL algorithms (sample complexity,

exploration/exploitation, . . . )
▶ . . . for for deep RL algorithms
▶ Extension beyond “plain” MFG/MFC

▶ Applications:

▶ More efficient implementation of existing methods
▶ Contributing to OpenSpiel (more algorithms, more environments, . . . )
▶ Real-world applications (more realistic model, real data, . . . )
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Thank you!
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