Mean Field Games: Numerical Methods and Applications in Machine Learning

Part 1: Introduction \& LQMFG

Mathieu LaURIÈRE
https://mlauriere.github.io/teaching/MFG-PKU-1.pdf

Peking University
Summer School on Applied Mathematics
July 26 - August 6, 2021

Outline

1. Introduction

- Mean Field Games
- Optimal Control and Games

2. From N to infinity
3. Warm-up: LQMFG

Outline

1. Introduction

- Mean Field Games
- Optimal Control and Games

2. From N to infinity
3. Warm-up: LQMFG

MFGs \& Applied Mathematics

MFGs Research Landscape

Initiated by Lasry \& Lions [LLO7], and Caines, Huang \& Malhamé [HMC06]

Main research directions:

(1) Modeling: economics, crowd motion, flocking, risk management, smart grid, energy production, distributed robotics, opinion dynamics, epidemics, ...

MFGs Research Landscape

Initiated by Lasry \& Lions [LLO7], and Caines, Huang \& Malhamé [HMC06]

Main research directions:

(1) Modeling: economics, crowd motion, flocking, risk management, smart grid, energy production, distributed robotics, opinion dynamics, epidemics, ...
(2) Mean field theory: justification of the approximation:
$\diamond N$-agent problem \rightarrow mean field: convergence of equilibria / optimal control
$\diamond N$-agent problem \leftarrow mean field: ϵ-Nash equilibrium / ϵ-optimality

MFGs Research Landscape

Initiated by Lasry \& Lions [LLO7], and Caines, Huang \& Malhamé [HMC06]

Main research directions:

(1) Modeling: economics, crowd motion, flocking, risk management, smart grid, energy production, distributed robotics, opinion dynamics, epidemics, ...
(2) Mean field theory: justification of the approximation:
$\diamond N$-agent problem \rightarrow mean field: convergence of equilibria / optimal control
$\diamond N$-agent problem \leftarrow mean field: ϵ-Nash equilibrium / ϵ-optimality
(3) Characterization of the mean field problems solutions (optimality conditions):
\diamond analytical: partial differential equations (PDEs)
\diamond probabilistic: stochastic differential equations (SDEs)

MFGs Research Landscape

Initiated by Lasry \& Lions [LLO7], and Caines, Huang \& Malhamé [HMC06]

Main research directions:

(1) Modeling: economics, crowd motion, flocking, risk management, smart grid, energy production, distributed robotics, opinion dynamics, epidemics, ...
(2) Mean field theory: justification of the approximation:
$\diamond N$-agent problem \rightarrow mean field: convergence of equilibria / optimal control
$\diamond N$-agent problem \leftarrow mean field: ϵ-Nash equilibrium / ϵ-optimality
(3) Characterization of the mean field problems solutions (optimality conditions):
\diamond analytical: partial differential equations (PDEs)
\diamond probabilistic: stochastic differential equations (SDEs)
(4) Computation of solutions
\diamond crucial for applications
\diamond challenging (coupling between optimization \& mean-field)

- Introduction to Mean Field Games:
- Pierre-Louis Lions' lectures at Collège de France
https://www.college-de-france.fr/site/pierre-louis-lions/index.htm
- Pierre Cardaliaguet's notes (2013):
https://www.ceremade.dauphine.fr/ cardaliaguet/MFG20130420.pdf
- Cardaliaguet, P., \& Porretta, A. (2020). An Introduction to Mean Field Game Theory. In Mean Field Games (pp. 1-158). Springer, Cham.
- Carmona, Delarue, Graves, Lacker, Laurière, Malhamé \& Ramanan: Lecture notes of the 2020 AMS Short Course on Mean Field Games (American Mathematical Society), organized by François Delarue
- Monographs on Mean Field Games and Mean Field Control:
- [BFY'13]: Bensoussan, A., Frehse, J., \& Yam, P. (2013). Mean field games and mean field type control theory (Vol. 101). New York: Springer.
- [CD'18, Vol. I]: Carmona, R., \& Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games (Vol. 83). Springer.
- [CD'18, Vol. II]: Carmona, R., \& Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations (Vol. 84). Springer.
- Surveys about numerical methods for MFGs:
- Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations, numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.
- Achdou, Y., \& Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects. Mean Field Games: Cetraro, Italy 2019, 2281, 249.
- [L., AMS notes'21]: Lauriere, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. arXiv preprint arXiv:2106.06231.
- Carmona, R., \& Laurière, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance. arXiv preprint arXiv:2107.04568.

Outline

1. Introduction

- Mean Field Games
- Optimal Control and Games

2. From N to infinity
3. Warm-up: LQMFG

Optimal Control

Key ingredients:

- state
- action
- cost

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

		Bob	
	b_{1}		b_{2}
Alice	a_{1}	$(4,6), \mathrm{SC}=5$	$(6,8), \mathrm{SC}=7$
	a_{2}	$(7,5), \mathrm{SC}=6$	

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

Games

Multiple agents:

- Competition: Nash equilibrium, individual cost \rightarrow "game"
- Cooperation: Social optimum, social cost \rightarrow "control"

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

Outline

1. Introduction

2. From N to infinity

- Example 1: Population Distribution
- Example 2: Flocking
- Example 3: Price Impact

3. Warm-up: LQMFG

Outline

1. Introduction

2. From N to infinity

- Example 1: Population Distribution
- Example 2: Flocking
- Example 3: Price Impact

3. Warm-up: LQMFG

A Static Example: Towel on the Beach

A Static Example: Towel on the Beach

A Static Example: Towel on the Beach

- N players (people)
- State = position of the towel. Space:

$$
\mathcal{S}=\{-M,-M+1, \ldots,-1,0,1, \ldots, M-1, M\}
$$

A Static Example: Towel on the Beach

- N players (people)
- State = position of the towel. Space:

$$
\mathcal{S}=\{-M,-M+1, \ldots,-1,0,1, \ldots, M-1, M\}
$$

- Simultaneously choose their location: $x^{i}, i=1, \ldots, N$

A Static Example: Towel on the Beach

- N players (people)
- State = position of the towel. Space:

$$
\mathcal{S}=\{-M,-M+1, \ldots,-1,0,1, \ldots, M-1, M\}
$$

- Simultaneously choose their location: $x^{i}, i=1, \ldots, N$
- Population distribution:

$$
\mu(x)=\left|\left\{j: x^{j}=x\right\}\right| / N, \quad x \in \mathcal{S}
$$

A Static Example: Towel on the Beach

- N players (people)
- State = position of the towel. Space:

$$
\mathcal{S}=\{-M,-M+1, \ldots,-1,0,1, \ldots, M-1, M\}
$$

- Simultaneously choose their location: $x^{i}, i=1, \ldots, N$
- Population distribution:

$$
\mu(x)=\left|\left\{j: x^{j}=x\right\}\right| / N, \quad x \in \mathcal{S}
$$

- Each player pays a cost:
- density of people at their location
- distance to a point of interest
- mean position of the population
- ...

A Static Example: Towel on the Beach

- Infinitely many players (people)
- Simultaneously choose their location
- Population distribution μ on \mathcal{S}

A Static Example: Towel on the Beach

A Static Example: Towel on the Beach

What if people cooperate instead of competing?

A Static Example: Towel on the Beach

What if people cooperate instead of competing?

Outline

1. Introduction

2. From N to infinity

- Example 1: Population Distribution
- Example 2: Flocking
- Example 3: Price Impact

3. Warm-up: LQMFG

A Dynamic Example: Flocking

A Dynamic Example: Flocking

Flocking model Cucker \& Smale [CS07], . . :

- N players (birds)
- State: (position, velocity). Space: $\mathcal{S}=\mathbb{R}^{3} \times \mathbb{R}^{3}$

A Dynamic Example: Flocking

Flocking model Cucker \& Smale [CS07], . . :

- N players (birds)
- State: (position, velocity). Space: $\mathcal{S}=\mathbb{R}^{3} \times \mathbb{R}^{3}$
- Player i chooses their acceleration: $a^{i} \in \mathbb{R}^{3}, i=1, \ldots, N$
- Dynamics:

$$
\left\{\begin{aligned}
x_{n+1}^{i} & =x_{n}^{i}+v_{n}^{i} \Delta t, \\
v_{n+1}^{i} & =v_{n}^{i}+a_{n}^{i} \Delta t+\epsilon_{n+1}^{i}
\end{aligned}\right.
$$

A Dynamic Example: Flocking

Flocking model Cucker \& Smale [CS07], . . :

- N players (birds)
- State: (position, velocity). Space: $\mathcal{S}=\mathbb{R}^{3} \times \mathbb{R}^{3}$
- Player i chooses their acceleration: $a^{i} \in \mathbb{R}^{3}, i=1, \ldots, N$
- Dynamics:

$$
\left\{\begin{aligned}
x_{n+1}^{i} & =x_{n}^{i}+v_{n}^{i} \Delta t, \\
v_{n+1}^{i} & =v_{n}^{i}+a_{n}^{i} \Delta t+\epsilon_{n+1}^{i}
\end{aligned}\right.
$$

- Each player pays a cost of velocity misalignment:

$$
f_{\beta}^{\text {flock }, i}(\underline{x}, \underline{v})=\left\|\frac{1}{N} \sum_{j=1}^{N} \frac{\left(v^{i}-v^{j}\right)}{\left(1+\left\|x^{i}-x^{j}\right\|^{2}\right)^{\beta}}\right\|^{2}
$$

where $\beta \geq 0$ is a parameter

A Dynamic Example: Flocking

Flocking model Cucker \& Smale [CS07], . . :

- N players (birds)
- State: (position, velocity). Space: $\mathcal{S}=\mathbb{R}^{3} \times \mathbb{R}^{3}$
- Player i chooses their acceleration: $a^{i} \in \mathbb{R}^{3}, i=1, \ldots, N$
- Dynamics:

$$
\left\{\begin{array}{l}
x_{n+1}^{i}=x_{n}^{i}+v_{n}^{i} \Delta t \\
v_{n+1}^{i}=v_{n}^{i}+a_{n}^{i} \Delta t+\epsilon_{n+1}^{i}
\end{array}\right.
$$

- Each player pays a cost of velocity misalignment:

$$
f_{\beta}^{\text {flock }, i}(\underline{x}, \underline{v})=\left\|\frac{1}{N} \sum_{j=1}^{N} \frac{\left(v^{i}-v^{j}\right)}{\left(1+\left\|x^{i}-x^{j}\right\|^{2}\right)^{\beta}}\right\|^{2}
$$

where $\beta \geq 0$ is a parameter

- Population distribution μ_{n}^{N} on \mathcal{S}

$$
\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{\left(x_{n}^{j}, v_{n}^{j}\right)}
$$

- New writing for $f_{\beta}^{\text {flock }, i}$

A Dynamic Example: Flocking

Mean Field Game version (see Nourian, Caines \& Malhamé [NCM11], . .):

- Infinitely many players (birds)
- Population distribution μ on \mathcal{S} :

$$
\mu_{n}^{N} \xrightarrow[N \rightarrow \infty]{ } \mu_{n}
$$

A Dynamic Example: Flocking

Mean Field Game version (see Nourian, Caines \& Malhamé [NCM11], ...):

- Infinitely many players (birds)
- Population distribution μ on \mathcal{S} :

$$
\mu_{n}^{N} \xrightarrow[N \rightarrow \infty]{ } \mu_{n}
$$

- Each player pays a cost of velocity misalignment:

$$
f_{\beta}^{\text {fock }}(x, v, \mu)=\left\|\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left(v-v^{\prime}\right)}{\left(1+\left\|x-x^{\prime}\right\|^{2}\right)^{\beta}} d \mu\left(x^{\prime}, v^{\prime}\right)\right\|^{2},
$$

where $\beta \geq 0$

A Dynamic Example: Flocking

Outline

1. Introduction

2. From N to infinity

- Example 1: Population Distribution
- Example 2: Flocking
- Example 3: Price Impact

3. Warm-up: LQMFG

Another Dynamic Example: Price Impact

Another Dynamic Example: Price Impact

- N players (traders)
- State of player $i:\left(S^{i}, X^{i}, K^{i}\right) \in \mathbb{R}^{3}$
- Price process:

$$
d S_{t}=\sigma_{0} d W_{t}^{0}
$$

- Inventory: action $=$ trading speed v_{t}^{i}

$$
d X_{t}^{i}=v_{t}^{i} d t+\sigma d W_{t}^{i}
$$

- Wealth:

$$
d K_{t}^{i}=-\left(v_{t}^{i} S_{t}+\left|v_{t}^{i}\right|^{2}\right) d t
$$

Another Dynamic Example: Price Impact

- N players (traders)
- State of player $i:\left(S^{i}, X^{i}, K^{i}\right) \in \mathbb{R}^{3}$
- Price process:

$$
d S_{t}=\sigma_{0} d W_{t}^{0}
$$

- Inventory: action $=$ trading speed v_{t}^{i}

$$
d X_{t}^{i}=v_{t}^{i} d t+\sigma d W_{t}^{i}
$$

- Wealth:

$$
d K_{t}^{i}=-\left(v_{t}^{i} S_{t}+\left|v_{t}^{i}\right|^{2}\right) d t
$$

- Payoff of player i :

$$
J^{i}\left(v^{i}\right)=\mathbb{E}\left[V_{T}^{i}-\int_{0}^{T}\left|X_{t}^{i}\right|^{2} d t-\left|X_{T}^{i}\right|^{2}\right]
$$

where $V_{t}^{i}=K_{t}^{i}+X_{t}^{i} S_{t}=$ portfolio value

Another Dynamic Example: Price Impact

- N players (traders)
- State of player $i:\left(S^{i}, X^{i}, K^{i}\right) \in \mathbb{R}^{3}$
- Price process: with $\nu=$ population's distribution over actions $=\frac{1}{N} \sum_{j=1}^{N} \delta_{v^{j}}$,

$$
d S_{t}=\sigma_{0} d W_{t}^{0}+\gamma \int_{\mathbb{R}} a d \nu_{t}(a) d t
$$

- Inventory: action $=$ trading speed v_{t}^{i}

$$
d X_{t}^{i}=v_{t}^{i} d t+\sigma d W_{t}^{i}
$$

- Wealth:

$$
d K_{t}^{i}=-\left(v_{t}^{i} S_{t}+\left|v_{t}^{i}\right|^{2}\right) d t
$$

- Payoff of player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[V_{T}^{i}-\int_{0}^{T}\left|X_{t}^{i}\right|^{2} d t-\left|X_{T}^{i}\right|^{2}\right]
$$

where $V_{t}^{i}=K_{t}^{i}+X_{t}^{i} S_{t}=$ portfolio value

Another Dynamic Example: Price Impact

MFG version (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18], ...):

- Infinitely many players (traders)
- State of a typical player: $(S, X, K) \in \mathbb{R}^{3}$
- Price process: with $\nu=$ traders' distribution of actions,

$$
d S_{t}=\sigma_{0} d W_{t}^{0}+\gamma \int_{\mathbb{R}} a d \nu_{t}(a) d t
$$

- Inventory: Typical agent's inventory:

$$
d X_{t}^{v}=v_{t} d t+\sigma d W_{t}
$$

- Wealth: Typical agent's wealth:

$$
d K_{t}^{v}=-\left(v_{t} S_{t}+\left|v_{t}\right|^{2}\right) d t
$$

Another Dynamic Example: Price Impact

MFG version (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18], ...):

- Infinitely many players (traders)
- State of a typical player: $(S, X, K) \in \mathbb{R}^{3}$
- Price process: with $\nu=$ traders' distribution of actions,

$$
d S_{t}=\sigma_{0} d W_{t}^{0}+\gamma \int_{\mathbb{R}} a d \nu_{t}(a) d t
$$

- Inventory: Typical agent's inventory:

$$
d X_{t}^{v}=v_{t} d t+\sigma d W_{t}
$$

- Wealth: Typical agent's wealth:

$$
d K_{t}^{v}=-\left(v_{t} S_{t}+\left|v_{t}\right|^{2}\right) d t
$$

- Payoff of a typical player:

$$
J(v, \nu)=\mathbb{E}\left[V_{T}^{v}-\int_{0}^{T}\left|X_{t}^{v}\right|^{2} d t-\left|X_{T}^{v}\right|^{2}\right]
$$

where $V_{t}^{v}=K_{t}^{v}+X_{t}^{v} S_{t}=$ portfolio value

Another Dynamic Example: Price Impact

- Simpler rewriting:
- By the self-financing condition,

$$
d V_{t}^{v}=\left[-\left|v_{t}\right|^{2}+\gamma X_{t}^{v} \int_{\mathbb{R}} a d \nu_{t}(a)\right] d t+\sigma S_{t} d W_{t}+\sigma_{0} X_{t}^{v} d W_{t}^{0}
$$

- Hence: maximize

$$
J(v, \nu)=\mathbb{E}\left[\int_{0}^{T}\left(\gamma X_{t}^{v} \int_{\mathbb{R}} a d \nu_{t}(a)-\left|v_{t}\right|^{2}-\left|X_{t}^{v}\right|^{2}\right) d t+\left|X_{T}^{v}\right|^{2}\right]
$$

subject to inventory dynamics:

$$
d X_{t}^{v}=v_{t} d t+\sigma d W_{t}
$$

- Linear-Quadratic (LQ) structure

Another Dynamic Example: Price Impact

More Examples

Outline

1. Introduction

2. From N to infinity

3. Warm-up: LQMFG

- Definition of the Problem
- Algorithms
- MFC \& Price of Anarchy

Outline

1. Introduction

2. From N to infinity
3. Warm-up: LQMFG

- Definition of the Problem
- Algorithms
- MFC \& Price of Anarchy

Linear-Quadratic N-Player Game

- N players
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and

$$
b(x, m, v)=A x+\bar{A} m+B v
$$

where X_{0}^{i} and W^{i} are i.i.d.

Linear-Quadratic N-Player Game

- N players
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and

$$
b(x, m, v)=A x+\bar{A} m+B v
$$

where X_{0}^{i} and W^{i} are i.i.d.

- Cost for player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

with

$$
\begin{aligned}
f(x, m, v) & =\frac{1}{2}\left[Q x^{2}+\bar{Q}(x-S m)^{2}+C v^{2}\right] \\
g(x, m) & =\frac{1}{2}\left[Q_{T} x^{2}+\bar{Q}_{T}\left(x-S_{T} m\right)^{2}\right]
\end{aligned}
$$

Linear-Quadratic N-Player Game

- N players
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and

$$
b(x, m, v)=A x+\bar{A} m+B v
$$

where X_{0}^{i} and W^{i} are i.i.d.

- Cost for player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

with

$$
\begin{aligned}
f(x, m, v) & =\frac{1}{2}\left[Q x^{2}+\bar{Q}(x-S m)^{2}+C v^{2}\right] \\
g(x, m) & =\frac{1}{2}\left[Q_{T} x^{2}+\bar{Q}_{T}\left(x-S_{T} m\right)^{2}\right]
\end{aligned}
$$

- Nash equilibrium: $\underline{\hat{v}}=\left(\hat{v}^{1}, \ldots, \hat{v}^{N}\right)$ s.t. for all i, for all v^{i}

$$
J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \leq J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
$$

Linear-Quadratic Mean Field Game

- Reminder: N player Nash equilibrium: $\underline{\hat{v}}=\left(\hat{v}^{1}, \ldots, \hat{v}^{N}\right)$ s.t. for all i, for all v^{i}

$$
J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \leq J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
$$

- By symmetry \& homogeneity, we can write $J^{i}\left(v^{1}, \ldots, v^{N}\right)=J^{M F N E}\left(v^{i}, \bar{\mu}^{N}\right)$

Linear-Quadratic Mean Field Game

- Reminder: N player Nash equilibrium: $\underline{\hat{v}}=\left(\hat{v}^{1}, \ldots, \hat{v}^{N}\right)$ s.t. for all i, for all v^{i}

$$
J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \leq J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
$$

- By symmetry \& homogeneity, we can write $J^{i}\left(v^{1}, \ldots, v^{N}\right)=J^{M F N E}\left(v^{i}, \bar{\mu}^{N}\right)$
- Reformulation: $\hat{\hat{v}}=\hat{v}^{1}, \ldots, \hat{v}^{N}$ s.t. for all i, for all v^{i}

$$
J^{M F N E}\left(\hat{v}^{i}, \bar{\mu}^{N}\right) \leq J^{M F N E}\left(v^{i}, \widetilde{\mu}^{N}\right)
$$

where

$$
\left\{\begin{array}{l}
\bar{\mu}^{N}=\text { mean process with }\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \\
\widetilde{\mu}^{N}=\text { mean process with }\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
\end{array}\right.
$$

Linear-Quadratic Mean Field Game

- Reminder: N player Nash equilibrium: $\underline{\hat{v}}=\left(\hat{v}^{1}, \ldots, \hat{v}^{N}\right)$ s.t. for all i, for all v^{i}

$$
J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \leq J^{i}\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
$$

- By symmetry \& homogeneity, we can write $J^{i}\left(v^{1}, \ldots, v^{N}\right)=J^{M F N E}\left(v^{i}, \bar{\mu}^{N}\right)$
- Reformulation: $\hat{\hat{v}}=\hat{v}^{1}, \ldots, \hat{v}^{N}$ s.t. for all i, for all v^{i}

$$
J^{M F N E}\left(\hat{v}^{i}, \bar{\mu}^{N}\right) \leq J^{M F N E}\left(v^{i}, \widetilde{\mu}^{N}\right)
$$

where

$$
\left\{\begin{array}{l}
\bar{\mu}^{N}=\text { mean process with }\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, \hat{v}^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right) \\
\widetilde{\mu}^{N}=\text { mean process with }\left(\hat{v}^{1}, \ldots, \hat{v}^{i-1}, v^{i}, \hat{v}^{i+1}, \ldots, \hat{v}^{N}\right)
\end{array}\right.
$$

- Mean Field Nash equilibrium: $(\hat{v}, \bar{\mu})$ s.t. for all v

$$
J^{M F N E}(\hat{v}, \bar{\mu}) \leq J^{M F N E}(v, \bar{\mu})
$$

where

$$
\bar{\mu}=\text { mean process if everybody uses } \hat{v}
$$

Linear-Quadratic Mean Field Game

What does it mean to "solve" this MFG?

- population behavior $\bar{\mu}=\left(\bar{\mu}_{t}\right)_{t \in[0, T]}$
- individual behavior $\hat{v}=\left(\hat{v}_{t}\right)_{t \in[0, T]}$
- individual value function u

Value function:

$$
u(t, x)=\text { optimal cost-to-go }
$$

for a player starting at x at time t while the population flow is at equilibrium

Explicit Solution

Taking $d=1$ to alleviate notation, it can be shown:

$$
\left\{\begin{aligned}
\bar{\mu}_{t} & =z_{t} \\
\hat{v}(t, x) & =-B\left(p_{t} x+r_{t}\right) / C \\
u(t, x) & =\frac{1}{2} p_{t} x^{2}+r_{t} x+s_{t}
\end{aligned}\right.
$$

Explicit Solution

Taking $d=1$ to alleviate notation, it can be shown:

$$
\left\{\begin{aligned}
\bar{\mu}_{t} & =z_{t} \\
\hat{v}(t, x) & =-B\left(p_{t} x+r_{t}\right) / C \\
u(t, x) & =\frac{1}{2} p_{t} x^{2}+r_{t} x+s_{t}
\end{aligned}\right.
$$

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

$$
\left\{\begin{aligned}
\frac{d z}{d t} & =\left(A+\bar{A}-B^{2} C^{-1} p_{t}\right) z_{t}-B^{2} C^{-1} r_{t}, & & z_{0}=\bar{\mu}_{0} \\
-\frac{d p}{d t} & =2 A p_{t}-B^{2} C^{-1} p_{t}^{2}+Q+\bar{Q}, & & p_{T}=Q_{T}+\bar{Q}_{T}, \\
-\frac{d r}{d t} & =\left(A-B^{2} C^{-1} p_{t}\right) r_{t}+\left(p_{t} \bar{A}-\bar{Q} S\right) z_{t}, & r_{T} & =-\bar{Q}_{T} S_{T} z_{T} \\
-\frac{d s}{d t} & =\nu p_{t}-\frac{1}{2} B^{2} C^{-1} r_{t}^{2}+r_{t} \bar{A} z_{t}+\frac{1}{2} S^{2} \bar{Q} z_{t}^{2}, & & s_{T}=\frac{1}{2} \bar{Q}_{T} S_{T}^{2} z_{T}^{2}
\end{aligned}\right.
$$

Explicit Solution

Taking $d=1$ to alleviate notation, it can be shown:

$$
\left\{\begin{aligned}
\bar{\mu}_{t} & =z_{t} \\
\hat{v}(t, x) & =-B\left(p_{t} x+r_{t}\right) / C \\
u(t, x) & =\frac{1}{2} p_{t} x^{2}+r_{t} x+s_{t}
\end{aligned}\right.
$$

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

$$
\left\{\begin{aligned}
\frac{d z}{d t} & =\left(A+\bar{A}-B^{2} C^{-1} p_{t}\right) z_{t}-B^{2} C^{-1} r_{t}, & & z_{0}=\bar{\mu}_{0} \\
-\frac{d p}{d t} & =2 A p_{t}-B^{2} C^{-1} p_{t}^{2}+Q+\bar{Q}, & & p_{T}=Q_{T}+\bar{Q}_{T} \\
-\frac{d r}{d t} & =\left(A-B^{2} C^{-1} p_{t}\right) r_{t}+\left(p_{t} \bar{A}-\bar{Q} S\right) z_{t}, & r_{T} & =-\bar{Q}_{T} S_{T} z_{T} \\
-\frac{d s}{d t} & =\nu p_{t}-\frac{1}{2} B^{2} C^{-1} r_{t}^{2}+r_{t} \bar{A} z_{t}+\frac{1}{2} S^{2} \bar{Q} z_{t}^{2}, & & s_{T}=\frac{1}{2} \bar{Q}_{T} S_{T}^{2} z_{T}^{2}
\end{aligned}\right.
$$

Key points:

- coupling between z and r
- forward-backward structure

Outline

1. Introduction

2. From N to infinity

3. Warm-up: LQMFG

- Definition of the Problem
- Algorithms
- MFC \& Price of Anarchy

Algorithm 1: Banach-Picard Iterations

```
Input: Initial guess \((\tilde{z}, \tilde{r})\); number of iterations K
Output: Approximation of \((\hat{z}, \hat{r})\)
Initialize \(z^{(0)}=\tilde{z}, r^{(0)}=\tilde{r}\)
for \(\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1\) do
    Let \(r^{(\mathrm{k}+1)}\) be the solution to:
\(-\frac{d r}{d t}=\left(A-P_{t} B^{2} C^{-1}\right) r_{t}+\left(P_{t} \bar{A}-\bar{Q} S\right) z_{t}^{(\mathrm{k})}, \quad r_{T}=-\bar{Q}_{T} S_{T} z_{T}^{(\mathrm{k})}\)
    Let \(z^{(\mathrm{k}+1)}\) be the solution to:
    \(\frac{d z}{d t}=\left(A+\bar{A}-B^{2} C^{-1}\right) z_{t}-B^{2} C^{-1} r_{t}^{(\mathrm{k}+1)}, \quad z_{0}=\bar{x}_{0}\)
5 return \(\left(z^{(\mathrm{K})}, r^{(\mathrm{K})}\right)\)
```


Algorithm 1: Banach-Picard Iterations - Illustration 1

Test case 1 (see [Lau21] ${ }^{1}$ for more details on the experiments)

${ }^{1}$ Lauriere, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. arXiv preprint arXiv:2106.06231.

Algorithm 1: Banach-Picard Iterations - Illustration 2

Test case 2 (see [L., AMS notes'21])

Input: Initial guess (\tilde{z}, \tilde{r}); damping $\delta \in[0,1)$; number of iterations K
Output: Approximation of (\hat{z}, \hat{r})
Initialize $z^{(0)}=\tilde{z}^{(0)}=\tilde{z}, r^{(0)}=\tilde{r}$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $r^{(k+1)}$ be the solution to:

$$
-\frac{d r}{d t}=\left(A-P_{t} B^{2} C^{-1}\right) r_{t}+\left(P_{t} \bar{A}-\bar{Q} S\right) \tilde{z}_{t}^{(\mathrm{k})}, \quad r_{T}=-\bar{Q}_{T} S_{T} \tilde{z}_{T}^{(\mathrm{k})}
$$

Let $z^{(\mathrm{k}+1)}$ be the solution to:

$$
\frac{d z}{d t}=\left(A+\bar{A}-B^{2} C^{-1}\right) z_{t}-B^{2} C^{-1} r_{t}^{(\mathrm{k}+1)}, \quad z_{0}=\bar{x}_{0}
$$

Let $\tilde{z}^{(\mathrm{k}+1)}=\delta \tilde{z}^{(\mathrm{k})}+(1-\delta) z^{(\mathrm{k}+1)}$
return $\left(z^{(\mathrm{K})}, r^{(\mathrm{K})}\right)$

Algorithm 1': Banach-Picard Iterations with Damping - Illustration 1

Test case 2
Damping $=0.1$

Algorithm 1': Banach-Picard Iterations with Damping - Illustration 2

Test case 2
Damping $=0.01$

Algorithm 2: Fictitious Play

$$
\begin{aligned}
& \text { Input: Initial guess }(\tilde{z}, \tilde{r}) \text {; number of iterations } \mathrm{K} \\
& \text { Output: Approximation of }(\hat{z}, \hat{r}) \\
& \text { Initialize } z^{(0)}=\tilde{z}^{(0)}=\tilde{z}, r^{(0)}=\tilde{r} \\
& \text { for } \mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1 \text { do } \\
& \quad \text { Let } r^{(\mathrm{k}+1)} \text { be the solution to: } \\
& \qquad-\frac{d r}{d t}=\left(A-P_{t} B^{2} C^{-1}\right) r_{t}+\left(P_{t} \bar{A}-\bar{Q} S\right) \tilde{z}_{t}^{(\mathrm{k})}, \quad r_{T}=-\bar{Q}_{T} S_{T} \tilde{z}_{T}^{(\mathrm{k})} \\
& \text { Let } z^{(\mathrm{k}+1)} \text { be the solution to: } \\
& \qquad \frac{d z}{d t}=\left(A+\bar{A}-B^{2} C^{-1}\right) z_{t}-B^{2} C^{-1} r_{t}^{(\mathrm{k}+1)}, \quad z_{0}=\bar{x}_{0} \\
& \text { Let } \tilde{z}^{(\mathrm{k}+1)}=\frac{\mathrm{k}}{\mathrm{k}+1} \tilde{z}^{(\mathrm{k})}+\frac{1}{\mathrm{k}+1} z^{(\mathrm{k}+1)} \\
& \text { return }\left(z^{(\mathrm{K})}, r^{(\mathrm{K})}\right)
\end{aligned}
$$

Algorithm 2: Fictitious Play - Illustration

Test case 2

Algorithms 1, 1' \& 2: Common Framework

```
Input: Initial guess \((\tilde{z}, \tilde{r})\); damping \(\delta(\cdot)\); number of iterations K
Output: Approximation of \((\hat{z}, \hat{r})\)
Initialize \(z^{(0)}=\tilde{z}^{(0)}=\tilde{z}, r^{(0)}=\tilde{r}\)
for \(\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1\) do
    Let \(r^{(k+1)}\) be the solution to:
\(-\frac{d r}{d t}=\left(A-P_{t} B^{2} C^{-1}\right) r_{t}+\left(P_{t} \bar{A}-\bar{Q} S\right) \tilde{z}_{t}^{(\mathrm{k})}, \quad r_{T}=-\bar{Q}_{T} S_{T} \tilde{z}_{T}^{(\mathrm{k})}\)
    Let \(z^{(\mathrm{k}+1)}\) be the solution to:
    \(\frac{d z}{d t}=\left(A+\bar{A}-B^{2} C^{-1}\right) z_{t}-B^{2} C^{-1} r_{t}^{(\mathrm{k}+1)}, \quad z_{0}=\bar{x}_{0}\)
    Let \(\tilde{z}^{(\mathrm{k}+1)}=\delta(\mathrm{k}) \tilde{z}^{(\mathrm{k})}+(1-\delta(\mathrm{k})) z^{(\mathrm{k}+1)}\)
return \(\left(z^{(\mathrm{K})}, r^{(\mathrm{K})}\right)\)
```

Remark: Could put the damping on r instead of z.

Algorithm 3: Shooting Method

- Intuition: instead of solving a backward equation, choose a starting point and try to shoot for the right terminal point
- Concretely: replace the forward-backward system

$$
\left\{\begin{aligned}
\frac{d z}{d t} & =\left(A+\bar{A}-B^{2} C^{-1} p_{t}\right) z_{t}-B^{2} C^{-1} r_{t}, & & z_{0}=\bar{\mu}_{0} \\
-\frac{d r}{d t} & =\left(A-B^{2} C^{-1} p_{t}\right) r_{t}+\left(p_{t} \bar{A}-\bar{Q} S\right) z_{t}, & & r_{T}=-\bar{Q}_{T} S_{T} z_{T}
\end{aligned}\right.
$$

by the forward-forward system

$$
\left\{\begin{aligned}
\frac{d \zeta}{d t} & =\left(A+\bar{A}-B^{2} C^{-1} p_{t}\right) \zeta_{t}-B^{2} C^{-1} \rho_{t}, & & z_{0}=\bar{\mu}_{0}, \\
-\frac{d \rho}{d t} & =\left(A-B^{2} C^{-1} p_{t}\right) \rho_{t}+\left(p_{t} \bar{A}-\bar{Q} S\right) \zeta_{t}, & & \rho_{0}=\text { chosen }
\end{aligned}\right.
$$

and try to ensure: $\rho_{T}=-\bar{Q}_{T} S_{T} \zeta_{T}$

Algorithm 4: Newton Method - Intuition

- Look for x^{*} such that: $£\left(x^{*}\right)=0$
- Start from initial guess x_{0}
- Repeat:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{\mathrm{f}^{\prime}\left(x_{k}\right)}
$$

- Uniform grid on $[0, T]$, step Δt
- Discrete ODE system:

$$
\left\{\begin{array}{l}
\frac{Z^{n+1}-Z^{n}}{\Delta t}=\left(A+\bar{A}-B^{2} C^{-1} P^{n}\right) Z^{n+1}-B^{2} C^{-1} R^{n}, \\
Z^{0}=\bar{x}_{0}, \\
-\frac{R^{n+1}-R^{n}}{\Delta t}=\left(A-B^{2} C^{-1} P^{n}\right) R^{n}+\left(P^{n} \bar{A}-\bar{Q} S\right) Z^{n+1}, \\
R^{N_{T}}=-\bar{Q}_{T} S_{T} Z^{N_{T}} .
\end{array}\right.
$$

Algorithm 4: Newton Method - Implementation

- Recast the problem:
(Z, R) solve forward-forward discrete system $\Leftrightarrow \mathcal{F}(Z, R)=0$.
- \mathcal{F} takes into account the initial and terminal conditions.
- $D \mathcal{F}=$ differential of this operator

Input: Initial guess (\tilde{Z}, \tilde{R}); number of iterations K
Output: Approximation of (\hat{z}, \hat{r})
1 Initialize $\left(Z^{(0)}, R^{(0)}\right)=(\tilde{Z}, \tilde{R})$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
$3 \quad$ Let $\left(\tilde{Z}^{(\mathrm{k}+1)}, \tilde{R}^{(\mathrm{k}+1)}\right)$ solve

$$
D \mathcal{F}\left(Z^{(\mathrm{k})}, R^{(\mathrm{k})}\right)\left(\tilde{Z}^{(\mathrm{k}+1)}, \tilde{R}^{(\mathrm{k}+1)}\right)=-\mathcal{F}\left(Z^{(\mathrm{k})}, R^{(\mathrm{k})}\right)
$$

Let $\left(Z^{(\mathrm{k}+1)}, R^{(\mathrm{k}+1)}\right)=\left(\tilde{Z}^{(\mathrm{k}+1)}, \tilde{R}^{(\mathrm{k}+1)}\right)+\left(Z^{(\mathrm{k})}, R^{(\mathrm{k})}\right)$
4
5 \quad Let $\left(Z^{(\mathrm{k}}{ }^{(\mathrm{K})}, R^{(\mathrm{K})}\right)$

Algorithm 4: Newton Method - Illustration

Test case 2

Algorithm 4: Newton Method - Explanation

Reminder: Discrete ODE system:

$$
\left\{\begin{array}{l}
\frac{Z^{n+1}-Z^{n}}{\Delta t}=\left(A+\bar{A}-B^{2} C^{-1} P^{n}\right) Z^{n+1}-B^{2} C^{-1} R^{n}, \\
Z^{0}=\bar{x}_{0}, \\
-\frac{R^{n+1}-R^{n}}{\Delta t}=\left(A-B^{2} C^{-1} P^{n}\right) R^{n}+\left(P^{n} \bar{A}-\bar{Q} S\right) Z^{n+1}, \\
R^{N_{T}}=-\bar{Q}_{T} S_{T} Z^{N_{T}} .
\end{array}\right.
$$

Algorithm 4: Newton Method - Explanation

Reminder: Discrete ODE system:

$$
\left\{\begin{array}{l}
\frac{Z^{n+1}-Z^{n}}{\Delta t}=\left(A+\bar{A}-B^{2} C^{-1} P^{n}\right) Z^{n+1}-B^{2} C^{-1} R^{n}, \\
Z^{0}=\bar{x}_{0}, \\
-\frac{R^{n+1}-R^{n}}{\Delta t}=\left(A-B^{2} C^{-1} P^{n}\right) R^{n}+\left(P^{n} \bar{A}-\bar{Q} S\right) Z^{n+1}, \\
R^{N_{T}}=-\bar{Q}_{T} S_{T} Z^{N_{T}} .
\end{array}\right.
$$

Can be rewritten as a linear system:

$$
\mathbf{M}\binom{Z}{R}+\mathbf{B}=0
$$

Outline

1. Introduction

2. From N to infinity
3. Warm-up: LQMFG

- Definition of the Problem
- Algorithms
- MFC \& Price of Anarchy

Linear-Quadratic N-Agent Control

- N agents
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and same $b(\cdot, \cdot, \cdot)$ as in MFG where X_{0}^{i} and W^{i} are i.i.d.

Linear-Quadratic N-Agent Control

- N agents
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and same $b(\cdot, \cdot, \cdot)$ as in MFG where X_{0}^{i} and W^{i} are i.i.d.

- Cost for player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

with same $f(\cdot, \cdot, \cdot)$ and $g(\cdot, \cdot)$ as in MFG

Linear-Quadratic N-Agent Control

- N agents
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and same $b(\cdot, \cdot, \cdot)$ as in MFG where X_{0}^{i} and W^{i} are i.i.d.

- Cost for player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

with same $f(\cdot, \cdot, \cdot)$ and $g(\cdot, \cdot)$ as in MFG

- Social cost for the population:

$$
J^{S o c}(\underline{v})=\frac{1}{N} \sum_{i=1}^{N} J^{i}(\underline{v})
$$

Linear-Quadratic N-Agent Control

- N agents
- State space: $\mathcal{S}=\mathbb{R}^{d}$; action space: $\mathcal{A}=\mathbb{R}^{k}$
- Dynamics for player i : initial position $X_{0}^{i} \sim \mathcal{N}\left(\bar{x}_{0}, \sigma_{0}^{2}\right)$,

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+\sigma d W_{t}^{i}, \quad t \geq 0
$$

with $\bar{\mu}_{t}^{N}=$ mean position at time t and same $b(\cdot, \cdot, \cdot)$ as in MFG where X_{0}^{i} and W^{i} are i.i.d.

- Cost for player i :

$$
J^{i}\left(v^{1}, \ldots, v^{N}\right)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, v_{t}^{i}\right) d t+g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)\right]
$$

with same $f(\cdot, \cdot, \cdot)$ and $g(\cdot, \cdot)$ as in MFG

- Social cost for the population:

$$
J^{S o c}(\underline{v})=\frac{1}{N} \sum_{i=1}^{N} J^{i}(\underline{v})
$$

- Social optimum: $\underline{v^{*}}=\left(v^{*, 1}, \ldots, v^{*, N}\right)$ s.t. for all i, all $\underline{v}=\left(v^{1}, \ldots, v^{N}\right)$

$$
J^{S o c}\left(\underline{v}^{*}\right) \leq J^{S o c}(\underline{v})
$$

Linear-Quadratic Mean Field Control

- Infinitely many agents
- Mean field social cost:

$$
J^{M F S o c}(v)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+g\left(X_{T}, \bar{\mu}_{T}\right)\right]
$$

where

$$
d X_{t}=b\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+\sigma d W_{t}, \quad t \geq 0
$$

and

$$
\bar{\mu}=\bar{\mu}^{v}=\text { mean process if everybody uses } v
$$

Linear-Quadratic Mean Field Control

- Infinitely many agents
- Mean field social cost:

$$
J^{M F S o c}(v)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+g\left(X_{T}, \bar{\mu}_{T}\right)\right]
$$

where

$$
d X_{t}=b\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+\sigma d W_{t}, \quad t \geq 0
$$

and

$$
\bar{\mu}=\bar{\mu}^{v}=\text { mean process if everybody uses } v=\mathbb{E}\left[X_{t}\right]
$$

Linear-Quadratic Mean Field Control

- Infinitely many agents
- Mean field social cost:

$$
J^{M F S o c}(v)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+g\left(X_{T}, \bar{\mu}_{T}\right)\right]
$$

where

$$
d X_{t}=b\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+\sigma d W_{t}, \quad t \geq 0
$$

and

$$
\bar{\mu}=\bar{\mu}^{v}=\text { mean process if everybody uses } v=\mathbb{E}\left[X_{t}\right]
$$

- Mean field social optimum: v^{*}, s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

Linear-Quadratic Mean Field Control

- Infinitely many agents
- Mean field social cost:

$$
J^{M F S o c}(v)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+g\left(X_{T}, \bar{\mu}_{T}\right)\right]
$$

where

$$
d X_{t}=b\left(X_{t}, \bar{\mu}_{t}, v_{t}\right) d t+\sigma d W_{t}, \quad t \geq 0
$$

and

$$
\bar{\mu}=\bar{\mu}^{v}=\text { mean process if everybody uses } v=\mathbb{E}\left[X_{t}\right]
$$

- Mean field social optimum: v^{*}, s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

- Key point: v changes $\Rightarrow \bar{\mu}^{v}$ changes
- MFG solution: mean field Nash equilibrium: \hat{v} s.t. for all v

$$
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) \leq J^{M F N E}\left(v, \bar{\mu}^{\hat{v}}\right)
$$

- MFC solution: mean field social optimum: v^{*} s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

- MFG solution: mean field Nash equilibrium: \hat{v} s.t. for all v

$$
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) \leq J^{M F N E}\left(v, \bar{\mu}^{\hat{v}}\right)
$$

- MFC solution: mean field social optimum: v^{*} s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

- For any v,

$$
J^{M F S o c}(v)=J^{M F N E}\left(v, \bar{\mu}^{v}\right)
$$

- MFG solution: mean field Nash equilibrium: \hat{v} s.t. for all v

$$
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) \leq J^{M F N E}\left(v, \bar{\mu}^{\hat{v}}\right)
$$

- MFC solution: mean field social optimum: v^{*} s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

- For any v,

$$
J^{M F S o c}(v)=J^{M F N E}\left(v, \bar{\mu}^{v}\right)
$$

- In general:

$$
\begin{aligned}
\hat{v} & \neq v^{*} \\
\bar{\mu}^{\hat{v}} & \neq \bar{\mu}^{v^{*}} \\
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) & \neq J^{M F S o c}\left(v^{*}\right)
\end{aligned}
$$

- MFG solution: mean field Nash equilibrium: \hat{v} s.t. for all v

$$
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) \leq J^{M F N E}\left(v, \bar{\mu}^{\hat{v}}\right)
$$

- MFC solution: mean field social optimum: v^{*} s.t. for all v

$$
J^{M F S o c}\left(v^{*}\right) \leq J^{M F S o c}(v)
$$

- For any v,

$$
J^{M F S o c}(v)=J^{M F N E}\left(v, \bar{\mu}^{v}\right)
$$

- In general:

$$
\begin{aligned}
\hat{v} & \neq v^{*} \\
\bar{\mu}^{\hat{v}} & \neq \bar{\mu}^{v^{*}} \\
J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right) & \neq J^{M F S o c}\left(v^{*}\right)
\end{aligned}
$$

- Price of Anarcy (PoA):

$$
\operatorname{Po} A=\frac{J^{M F N E}\left(\hat{v}, \bar{\mu}^{\hat{v}}\right)}{J^{M F S o c}\left(v^{*}\right)}
$$

Explicit Solution

Mean field social optimum:

$$
\left\{\begin{aligned}
\bar{\mu}_{t}^{v^{*}} & =\check{z}_{t} \\
v^{*}(t, x) & =-B\left(\check{p}_{t} x+\check{r}_{t}\right) / C
\end{aligned}\right.
$$

where $(\check{z}, \check{p}, \check{r}, \check{s})$ solve the following system of ODEs:

$$
\left\{\begin{array}{rlrl}
\frac{d \check{z}}{d t} & =\left(A+\bar{A}-B^{2} C^{-1}\right) \check{z}_{t}-B^{2} C^{-1} \check{r}_{t}, & \check{z}_{0}=\bar{x}_{0} \\
-\frac{d \check{p}}{d t} & =2 A \check{p}_{t}-B^{2} C^{-1} \check{p}_{t}^{2}+Q+\bar{Q}, & & \check{p}_{T}=Q_{T}+\bar{Q}_{T}, \\
-\frac{d \check{r}}{d t} & =\left(A+\bar{A}-\check{p}_{t} B^{2} C^{-1}\right) \check{r}_{t}+\left(2 \check{p}_{t} \bar{A}-2 \bar{Q} S+\bar{Q} S^{2}\right) \check{z}_{t}, & \check{r}_{T}=-\bar{Q}_{T} S_{T} \check{z}_{T} \\
-\frac{d s}{d t} & =\nu \check{p}_{t}-\frac{1}{2} B^{2} C^{-1} \check{r}_{t}^{2}+\check{r}_{t} \bar{A} \check{z}_{t}+\frac{1}{2} S^{2} \bar{Q} \check{z}_{t}^{2}, & \check{s}_{T}=\frac{1}{2} \bar{Q}_{T} S_{T}^{2} \check{z}_{T}^{2}
\end{array}\right.
$$

References I

[CD18] René Carmona and François Delarue, Probabilistic theory of mean field games with applications. I, Probability Theory and Stochastic Modelling, vol. 83, Springer, Cham, 2018, Mean field FBSDEs, control, and games. MR 3752669
[CL15] René Carmona and Daniel Lacker, A probabilistic weak formulation of mean field games and applications, Ann. Appl. Probab. 25 (2015), no. 3, 1189-1231. MR 3325272
[CS07] Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Transactions on automatic control 52 (2007), no. 5, 852-862.
[HMC06] Minyi Huang, Roland P. Malhamé, and Peter E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst. 6 (2006), no. 3, 221-251. MR 2346927
[Lau21] Mathieu Laurière, Numerical methods for mean field games and mean field type control, arXiv preprint arXiv:2106.06231 (2021).
[LL07] Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Jpn. J. Math. 2 (2007), no. 1, 229-260. MR 2295621
[NCM11] Mojtaba Nourian, Peter E Caines, and Roland P Malhamé, Mean field analysis of controlled cucker-smale type flocking: Linear analysis and perturbation equations, IFAC Proceedings Volumes 44 (2011), no. 1, 4471-4476.

Unless otherwise specified, the images are from https://unsplash.com

