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Main research directions:
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(2) Mean field theory: justification of the approximation:
o N-agent problem — mean field: convergence of equilibria / optimal control

o N-agent problem < mean field: e-Nash equilibrium / e-optimality

(3) Characterization of the mean field problems solutions (optimality conditions):
o analytical: partial differential equations (PDEs)
© probabilistic: stochastic differential equations (SDEs)

(4) Computation of solutions
o crucial for applications

o challenging (coupling between optimization & mean-field)
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Optimal Control

Key ingredients:
@ state
@ action
@ cost
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Games

Multiple agents:
e Competition: Nash equilibrium, individual cost — “game”

e Cooperation: Social optimum, social cost — “control”

Example: 2 players, 2 actions each, matrix of costs (to be minimized):

Bob

ap | (4,6) (6,8)
a (7, 5)

Alice
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2. From N to infinity



Intuition
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2. From N to infinity
@ Example 1: Population Distribution
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A Static Example: Towel on the Beach

@ N players (people)

@ State = position of the towel. Space:
S={-M,-M+1,...,-1,0,1,...,M —1,M}

@ Simultaneously choose their location: z*,i=1,..., N
@ Population distribution:

na)=|{j : 2’ =a}/N,  z€S

@ Each player pays a cost:

> density of people at their location
» distance to a point of interest

» mean position of the population
>



A Static Example: Towel on the Beach

@ Infinitely many players (people)
@ Simultaneously choose their location
@ Population distribution ;. on S



A Static Example: Towel on the Beach

9/44



A Static Example: Towel on the Beach

What if people cooperate instead of competing?
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2. From N to infinity

@ Example 2: Flocking



A Dynamic Example: Flocking
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A Dynamic Example: Flocking

Flocking model Cucker & Smale [CS07], ...:

N players (birds)

@ State: (position, velocity). Space: S = R? x R?

@ Player i chooses their acceleration: o’ e R3, i =1,...,N
@ Dynamics:

n+1 =zl + vl At,
n+l - Un + (l,,At + ETLJrl

Each player pays a cost of velocity misalignment:

N i Vi
iz (v' =)
N & (1t fla* —27]?)?

2

fﬂock l(, v

where 8 > 0 is a parameter
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A Dynamic Example: Flocking

Flocking model Cucker & Smale [CS07], ...:

@ N players (birds)
@ State: (position, velocity). Space: S = R? x R?
@ Player i chooses their acceleration: o’ e R3, i =1,...,N
@ Dynamics:
n+1 =zl + vl At,
n+l - Un + anAt + ETLJrl
@ Each player pays a cost of velocity misalignment:
N ) ) 2
1 (vl — vj)
fﬂock i z,v . : /
S 22: (L+ [l —a9]")?
where 8 > 0 is a parameter
@ Population distribution 1YY on S
N
@ New writing for f£°°’

11/44



A Dynamic Example: Flocking

Mean Field Game version (see Nourian, Caines & Malhamé [NCM11], ...):

@ Infinitely many players (birds)
@ Population distribution p on S:

N
Hn —— fin
N— o0
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A Dynamic Example: Flocking

Mean Field Game version (see Nourian, Caines & Malhamé [NCM11], ...):

@ Infinitely many players (birds)
@ Population distribution p on S:

N
Hn —— fin
N— o0

@ Each player pays a cost of velocity misalignment:

_ /
/ (1’—1’)20[#(36"1/)
roxps (14 [z —2]]%)?

2
flock
fﬁ (1% U7lt) =

’

where 5> 0
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A Dynamic Example: Flocking
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@ Example 3: Price Impact



Another Dynamic Example: Price Impact
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Another Dynamic Example: Price Impact

@ N players (traders)
@ State of player i: (5%, X', K') e R®

> Price process:
dSy = ogdW

> Inventory: action = trading speed v;‘
dX} = vidt + cdW}

> Wealth: v v v
dK} = — (0S¢ + |vf]?) dt
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Another Dynamic Example: Price Impact

@ N players (traders)

@ State of player i: (5%, X', K') e R®
N

> Price process: with v = population’s distribution over actions = % ijl O

dSy = oodW? +~ / advi(a)dt
R
> Inventory: action = trading speed v}
dX} = vidt + cdW}

> Wealth: v v v
dK} = — (0S¢ + |vf]?) dt

@ Payoff of player i:

T
Jw 0N = E[V{; — / | X/ |?dt — \X;ﬂ
0

where Vi = K 4+ X} S, = portfolio value
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Another Dynamic Example: Price Impact

MFG version (see Carmona & Lacker [CL15], Carmona & Delarue [CD18], ...):

@ Infinitely many players (traders)
@ State of a typical player: (S, X, K) € R?
> Price process: with v = traders’ distribution of actions,

dS; = oodW? + 'y/ advi(a)dt
R

> Inventory: Typical agent’s inventory:
dXy = vdt + cdWy
> Wealth: Typical agent’s wealth:

AR = —(v:Se + [ve]?) dt
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Another Dynamic Example: Price Impact

MFG version (see Carmona & Lacker [CL15], Carmona & Delarue [CD18], ...):

@ Infinitely many players (traders)
@ State of a typical player: (S, X, K) € R?
> Price process: with v = traders’ distribution of actions,

dS; = oodW? + 'y/ advi(a)dt
R

> Inventory: Typical agent’s inventory:
dXy = vidt + odWy
> Wealth: Typical agent’s wealth:
AR = —(v:Se + [ve]?) dt
@ Payoff of a typical player:

T
Jw,v) = E[Vi - / X2 Pt — X317
0

where V" = K; + X/ S: = portfolio value

15/44



Another Dynamic Example: Price Impact

@ Simpler rewriting:
> By the self-financing condition,

avy = [— [ve)? + A/X;’/ advy (a):| dt 4+ 0S¢ dWy + oo X{ AW
R
> Hence: maximize

T
J(v,v) =E{/ ('YXE’/ath(a) = Jue* = IXZ’|2> dt + IX%Iﬂ
0 R

subject to inventory dynamics:
dXtU = ’l,’[dt + O'th

@ Linear-Quadratic (LQ) structure
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Another Dynamic Example: Price Impact
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More Examples
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3. Warm-up: LQMFG
@ Definition of the Problem



Linear-Quadratic N-Player Game

@ N players
@ State space: S = R%; action space: A = R*
@ Dynamics for player i initial position X¢& ~ N (%o, 03),
dX; = b(X{, [, vp)dt + odW/,  t>0,
with 77 = mean position at time ¢ and
b(z,m,v) = Az + Am + Bv
where X¢ and W are i.i.d.
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Linear-Quadratic N-Player Game

@ N players
@ State space: S = R%; action space: A = R*
@ Dynamics for player i initial position X¢& ~ N (%o, 03),
dX; =b(X}, @y, v))dt + odWi,  t>0,
with 77 = mean position at time ¢ and
b(z,m,v) = Az + Am + Bv
where X¢ and W are i.i.d.
@ Cost for player i:

T
J():E[/ FOKE Y i)t + 9(X i)
0
with

flx,m,v) = [Qx2 +Q(z— Sm)® + 0712]

N = N =

g(z,m) = 5 [Qra” + Qr (x — STm)’]
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Linear-Quadratic N-Player Game

@ N players
@ State space: S = R%; action space: A = R*
@ Dynamics for player i initial position X¢& ~ N (%o, 03),
dX; =b(X}, @y, v))dt + odWi,  t>0,
with 77 = mean position at time ¢ and
b(z,m,v) = Az + Am + Bv

where X¢ and W are i.i.d.

@ Cost for player i:

T o0 U XL vn)dt + g(Xr, 117 )
with
1 _
flx,m,v) = 3 [Qx2 +Q (z — Sm)® +C?12]
1
g(@,m) = 3 [Qra® + Qr (z — Srm)’]
@ Nash equilibrium: o = (¢',...,2") s.t. for all 4, for all v
J @1"“71771717@1:7@#17”” )<Jl( ’“uﬁt 1 1)1‘,’@#17.“’@4\/)
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Linear-Quadratic Mean Field Game

@ Reminder: N player Nash equilibrium: © = (¢',...,2") s.t. for all 4, for all v
JU@, o et ot oMYy < T, L0t o et e

@ By symmetry & homogeneity, we can write J*(v', ... v

20/44



Linear-Quadratic Mean Field Game

@ Reminder: N player Nash equilibrium: o = (' , o) s.t. for all 4, for all v'
JU@, o et ot oMYy < T, L0t o et e
@ By symmetry & homogeneity, we can write J'(v', ..., v") = JMFNE (7N

@ Reformulation: © = o*,...,9" s.t. for all ¢, for all v

L]MFNE(/Z/)1’ﬁN) S JMFNE(U'iyA'N)

where
Y = mean process with (0%, ... o't o' o L oM)
N = mean process with (¢%,..., 0" v%, ottt oY
ILL b b b
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Linear-Quadratic Mean Field Game

@ Reminder: N player Nash equilibrium: © = (¢',...,2") s.t. for all 4, for all v
JU@, o et ot oMYy < T, L0t o et e
@ By symmetry & homogeneity, we can write J'(v', ..., v") = JMFNE (7N

@ Reformulation: © = o*,...,9" s.t. for all ¢, for all v

JMFNE(/ZA/’ﬁN) S JAJFNE(U'iyﬁN)

where
Y = mean process with (o', ..., "', 0%, o't L o)
™ = mean process with (¢*,..., 0"~ o' o L o™

@ Mean Field Nash equilibrium: (9, 7) s.t. for all v

JMFNE( < JMFNE(') —

R) v, 1)

where

I = mean process if everybody uses ©
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Linear-Quadratic Mean Field Game

What does it mean to “solve” this MFG?

@ population behavior 1z = (z,)1eo, 1
@ individual behavior © = (9:).c(0,1)
@ individual value function «

Value function:
u(t,z) = optimal cost-to-go

for a player starting at « at time ¢ while the population flow is at equilibrium
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Explicit Solution

Taking d = 1 to alleviate notation, it can be shown:

ﬁt = Zt,
8(t,2) = —Bpea + 1)/,

1
u(t,z) = §ptx2 + i + st
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Explicit Solution

Taking d = 1 to alleviate notation, it can be shown:

ﬁt = Zt,
o(t,x) = =B(prz +11)/C,
1
u(t,z) = §ptx2 + i + st

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

‘Cl; (A+ A— B2C'py)z — B3O - T,

%—QApt CT +Q+Q, pr = Qr + Qr,

O (A= B2 o (A - Q)2 v = ~@rSrer,
—% = vp; — fB C™ 2 4 reAzy + %SQQ,Z?, st = %QTS%Z%
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Explicit Solution

Taking d = 1 to alleviate notation, it can be shown:

ﬁt = Zt,
8(t,2) = —B(piz +10)/C,
1
u(t,z) = §ptx2 + i + st

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

‘Cl; (A+ A— B2C'py)z — B3O = Fo,

%—QApt CT +Q+Q, pr = Qr + Qr,

O (A= B2 o (A - Q)2 v = ~@rSrer,
—% = vp; — fB C™ 2 4 reAzy + %SQQ,Z?, st = %QTS%Z%

Key points:

@ coupling between z and r
@ forward-backward structure
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3. Warm-up: LQMFG

@ Algorithms



Algorithm 1: Banach-Picard Iterations

2

5

Input: Initial guess (z,7); number of iterations K
Output: Approximation of (2, 7)

Initialize 2 = 2,7 =7

fork =0,1,2,...,K—1do

Let »®&+1 be the solution to:

dr

— = (A P,B*C™Yr, + (P,A—QS)2™,

Let 2V be the solution to:

dz =
dt

return (:®, r®))

2 (A+ A-BC Yz — B2 O Y,

— —QrSra®

20 = To
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Algorithm 1: Banach-Picard lterations — lllustration 1

Test case 1 (see [Lau21]" for more details on the experiments)

10-14 — |2FD — )
\\ P
1073
1075
0 10 20 30 40 50
iteration k
10 x/
057 _
0.0 Te~el
~.
\\
—_ ~
-05 z TS
-—-r ~

time

1 Lauriere, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. arXiv preprint
arXiv:2106.06231.
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Algorithm 1: Banach-Picard Iterations — lllustration 2

Test case 2 (see [L., AMS notes'21])

1024 —— |zlk+ D) — z(0)|
- VW+1)_,M”

10t

0 50 100 150 200
iteration k

=50

time
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Note: Banach-Picard Iterations with Damping

6

Input: Initial guess (z, 7); damping ¢ € [0, 1); number of iterations K
Output: Approximation of (2, 7)

Initialize 2 = 2 = z,+(® =7

fork=0,1,2,...,K—1do

Let r**1 be the solution to:

dr

= P.B*C Y+ (PA-QS5):™,  rp=—QrSrzl

Let 2V be the solution to:

%:(AJrA—BQC) — B,

Z0 = Zo

Let 2+ = 550 4 (1 — §)<FD

return (:®, r®)
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Algorithm 1’: Banach-Picard lterations with Damping — lllustration 1

Test case 2
Damping = 0.1
—_— |z(k+1)_z(ki|
1071 e (kD )
103
103
0 50 100 150 200
iteration k
2
~_
e
1 S~eo
<
.
0 \\
~
~
-_—z \\\
—1{ ==-r M.
00 02 04 06 08 10
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Algorithm 1’: Banach-Picard lterations with Damping — Illustration 2

Test case 2
Damping = 0.01

23x10°f __ee=mmTTT
2.2 x10° 7T
2.1x10°0 | — kD K

2 x 10° J— Ir(k+1)_r(k)|
1.9x10° //
1.8 x10°

0 50 100 150 200
iteration k
_______ . ,
<
2 Sso -—-r )

~

~

~

\\
0 AN 1
\\ \\\
AN \\\
—2 \ 0 \\\\
A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2
time
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Algorithm 2: Fictitious Play

6

Input: Initial guess (z,7); number of iterations K
Output: Approximation of (2, 7)

Initialize 2(» = 20 =z, 7O =7
fork=0,1,2,...,K—1do

Let »®*1) be the solution to:

dr

= A= P,B2C Y + (PLA— Q8)2%,

Let 2V be the solution to:

dt

Let 5041 = k50 4 L 0e)

return (z:®,r®)

© (At A= BPO )z — BRI,

= —QrSrz¥

zZ0 = Xo
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Algorithm 2: Fictitious Play — lllustration

Test case 2

—_— k1) _ k)
lz 2]

10°1 R V“*l)—f“”

1073
10-5 TSselda A
LT PVT R IMN“M"'
0 50 100 150 200
iteration k
2 ~
\\
~.
~~.
1 Bl
\\
\\\
0 o
N
\\
— 7 \\
-1{ === r .

0.0 0.2 0.4 0.6 0.8 1.0
time
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Algorithms 1, 1’ & 2: Common Framework

1
2

6

Input: Initial guess (z, 7); damping 46(-); number of iterations K
Output: Approximation of (2, 7)

Initialize z(® = © = z,+©
fork=0,1,2,...,K—1do
Let »(*1 be the solution to:

=7

_dr
dt

Let 2V be the solution to:

% = (A+A—BQCfl)zt—32071T£k+1), 20 = o

Let 201 = §(x)z™ + (1 — §(x))z*D

return (:®), r®)

= (A-PBB*C Y+ (PA-QS)2"™,  rp = —QrSrz¥

Remark: Could put the damping on r instead of 2.
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Algorithm 3: Shooting Method

@ Intuition: instead of solving a backward equation, choose a starting point and try

to shoot for the right terminal point
@ Concretely: replace the forward-backward system

‘CZ (A+ A— B2C'py)z — B2C

d _
d; (A= B*C7'po)re + (peA — QS) 2,

by the forward-forward system

d _
dﬁ (A+A—B*C™'p,)¢ — B2C™ ' py,

i (A= B*C 'pi)pi + (A — QS)¢r,

and try to ensure: pr = —QrS7(r

20 = ,UJ07
rr = —QrStzr
20 = Mo

po = chosen

32/44



Algorithm 4: Newton Method — Intuition

@ Look for z* such that: £(z*) =0
@ Start from initial guess xo
@ Repeat:

f(:ck)
£ (zx)

Tk+1 = Tk —

33/44



Aside: (Time) Discretization

@ Uniform grid on [0, T, step At

@ Discrete ODE system:

n+l _ mn _
% =(A+A—B*c™'PYyz"t — B2CT'R",
ZO = o,

Rn+1 —_ R" 5 1 _ _ 11
- = (A= BCTPYR + (PPA- Q)27

RNT = —QrSrz™7.

34/44



Algorithm 4: Newton Method — Implementation

@ Recast the problem:

(Z, R) solve forward-forward discrete system < F(Z, R) = 0.

@ F takes into account the initial and terminal conditions.
@ D.F = differential of this operator

Input: Initial guess (Z, R); number of iterations K
Output: Approximation of (Z, 7)

1 Initialize (2@, R®) = (Z, R)

2 fork=0,1,2,..., K—1do

3 Let (Z‘k“), R“‘“)) solve

D]:(z(k)’R(k))(z(kJrl)’R(kJrl)) _ —f(Z(k)7R(k))

4 Let (Z®+D | ROHDY = (Z0HD) REFDY 4 (70 R
5 return (Z®, R®)
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Algorithm 4: Newton Method — lllustration

Test case 2

10-1 |z(k+1i_z(ki|

(k+1) _ p(k)
—_— | —r
1074 ! !

1077
10-10

10—13

iteration

-_—Z N

0.0 0.2 0.4 0.6 0.8 1.0
time
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Algorithm 4: Newton Method — Explanation

Reminder: Discrete ODE system:

Zn+1 - Zn 1 2 1 1 2 1
T:(A+A—B c~'pPMz"tt — B>°CT'R",
Z° = 7o,

Rn+1 7Rn 9 L _ _ 41
== (A—B*C™'P"R" + (P"A—QS)z"t",

RNT = —QrSrZ™T.
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Algorithm 4: Newton Method — Explanation

Reminder: Discrete ODE system:

Zn+1 — Zn 1 2 1 1 2 1
K =A+A-BCT PMZ" ' - B°CT'R",
Z° = 7o,

Rn+1 7Rn 9 L _ _ 41
- =A-BC PMR" + (P"A - Q8)z"*,

RNT = —QrSrZ™T.

Can be rewritten as a linear system:

A
M<R>+B—0
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Outline

3. Warm-up: LQMFG

@ MFC & Price of Anarchy



Linear-Quadratic N-Agent Control

@ N agents
@ State space: S = R?; action space: A = R*
@ Dynamics for player : initial position X§& ~ N (Zo, 0d),
dX; =b(X}, @y, v))dt + odW;, >0,
with 7" = mean position at time ¢ and same b(-, -, -) as in MFG
where X and W* are i.i.d.
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Linear-Quadratic N-Agent Control

@ N agents
@ State space: S = R?; action space: A = R*
@ Dynamics for player : initial position X§& ~ N (Zo, 0d),

dX; =b(X}, @y, v))dt + odW;, >0,
with 7" = mean position at time ¢ and same b(-, -, -) as in MFG
where X and W* are i.i.d.

@ Cost for player i:

T
J’L(/I}17"‘7/UAV) :E {/ f(th7ﬁfv7/U;)dt+g(X%,ﬁ’1]Y)
0

with same f(-,-,-) and g(-,-) as in MFG
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Linear-Quadratic N-Agent Control

@ N agents
@ State space: S = R?; action space: A = R*
@ Dynamics for player : initial position X§& ~ N (Zo, 0d),
dX; =b(X,, @, v)dt + odW;, >0,

with 7" = mean position at time ¢ and same b(-, -, -) as in MFG
where X¢ and W* are i.i.d.
@ Cost for player i:

T
J'',... oY) =E U FOXE ) v dt + g(Xp, i)
0

with same f(-,-,-) and g(-,-) as in MFG
@ Social cost for the population:

N
oc 1 1
T w) = 5 Y J()
=1
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Linear-Quadratic N-Agent Control

@ N agents
@ State space: S = R?; action space: A = R*
@ Dynamics for player : initial position X§& ~ N (Zo, 0d),

dX; =b(X}, @y, v))dt + odW;, >0,
with 7" = mean position at time ¢ and same b(-, -, -) as in MFG
where X and W* are i.i.d.

@ Cost for player i:

T
JZ(WI,...,’UN) =E |:/ f Xtuut 7”1‘)dt+g(X’%,ﬁ7]Y)
0

with same f(-,-,-) and g(-,-) as in MFG
@ Social cost for the population:

N
Soc §

@ Social optimum: v* = (v*', ... v*V) st foralld, allv = (v',...,v")
JSOC( )< JSDC(’U)
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Linear-Quadratic Mean Field Control

@ Infinitely many agents
@ Mean field social cost:

T
JMFSOC(U) - F |:/ f(Xe, Ty, ve)dt + g( X, fip)
0

where
dXt:b(Xt,ﬁt,Ut)dt-‘rUth, tZO,

and
7 =71’ = mean process if everybody uses v
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Linear-Quadratic Mean Field Control

@ Infinitely many agents
@ Mean field social cost:

T
JMFSOC(U) - F |:/ f(Xe, Ty, ve)dt + g( X, fip)
0

where
dXt:b(Xt,ﬁt,Ut)dt-‘rUth, tZO,

and
7=’ = mean process if everybody uses v = E[X]
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Linear-Quadratic Mean Field Control

@ Infinitely many agents
@ Mean field social cost:

T
JMFSOC(U) =E |:/ f(Xt7ﬁt7vt)dt +g(XT7ﬁT)
0
where
dXt:b(Xt,ﬁt,Ut)dt-‘rUth, tZO,
and

v

7=’ = mean process if everybody uses v = E[X]

@ Mean field social optimum: v*, s.t. for all v

J]MFSDC(U*) S JMFSOC(U)
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Linear-Quadratic Mean Field Control

@ Infinitely many agents
@ Mean field social cost:

T
JMFSOC(U) - F |:/ f(Xe, Ty, ve)dt + g( X, fip)
0

where
dXt:b(Xt7ﬁt,7jt)dt+0'th, tZO,

and
U

7=’ = mean process if everybody uses v = E[X]

@ Mean field social optimum: v*, s.t. for all v

J]MFSDC(U*) S JMFSOC(U)

@ Key point: v changes = 1" changes
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Price of Anarchy

@ MFG solution: mean field Nash equilibrium: ¢ s.t. for all v
@ MFC solution: mean field social optimum: v* s.t. for all v

J]WFSOC(U*) S JMFSOC(U)
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Price of Anarchy

@ MFG solution: mean field Nash equilibrium: ¢ s.t. for all v

@ MFC solution: mean field social optimum: v* s.t. for all v

J]WFSOC(U*) S JMFSOC(U)

@ Forany v,

JMFSOC(/U) — JMFNE(U,EW)
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Price of Anarchy

@ MFG solution: mean field Nash equilibrium: ¢ s.t. for all v
JMFNE(,LA)7ﬁ'D) S JMFNE(,U,ﬁ'E')
@ MFC solution: mean field social optimum: v* s.t. for all v

JMFSOC(U*) S JMFSOC(U)

@ Forany v,
JMFSOC(/U) — JMFNE(U,EW)
@ Ingeneral:
DRI
i A
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Price of Anarchy

@ MFG solution: mean field Nash equilibrium: ¢ s.t. for all v

J]WFNE(’LA),ﬁﬁ) S JMFNE(,U’ﬁﬁ)

@ MFC solution: mean field social optimum: v* s.t. for all v

J]WF‘SOC(U*) S J]VIFSOC(U)

@ Forany v,
JMFSOC(/U) — J]\/IFNE( 777)
@ Ingeneral:
DRI
ﬁ'[) ﬁv

@ Price of Anarcy (PoA):
PoA = JMFSoc( )
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Explicit Solution

Mean field social optimum:

where (Z,p

, T, §) solve the following system of ODEs:

=(A+A—-B°C "% — B*C ™',
=24p, — B°CT'5 + Q + Q,
= (A+A—p:B*C i + (200 A — 2QS + Q5?) %,

1 _ - 1 o~
:uﬁt7532c 11*f+nAzt+552 52

Zo = Zo,
pr = Qr + Qr,
¥r = —QrSrir,

. 1= .
St = 5@%5'%2%.
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Price of Anarchy — lllustration

1.03
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1.02
< <
s S1.0135
1.01
1.0130
1.00
0 5 10 15 20 0 5 ]:0 15 20
A Qr
1.06
1.05
< 1.04
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o
1.03
1.02
1.01
0 5 10 15 20

Qr
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Preview of Next Lectures
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