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Today

How can we characterize MFG solutions?
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MFG Definition

State space: S = Rd; action space: A = Rk

Dynamics for typical player: initial position X0 ∼ m0,

dXt = b(Xt, µt, vt)dt+ σdWt, t ≥ 0,

with µt = (mean field) population distribution at time t

Cost for typical player :

J(v;µ) = E
[∫ T

0
f(Xt, µt, vt)dt+ g(XT , µT )

]

Mean Field Nash equilibrium: (v̂, µ̂) s.t. for all v

J(v̂; µ̂) ≤ J(v; µ̂)

where

µ̂ = (mean field) population distribution if everybody uses v̂
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Many Possible Extensions
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Outline

1. Equilibrium conditions for MFG
PDE viewpoint
SDE viewpoint

2. Optimality conditions for MFC

3. Example: Crowd Motion with Congestion

4. Example: Systemic Risk

5. Towards Algorithms
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Single agent control problem

Assuming population at equilibrium, i.e., µ̂, optimal control problem: min. over v

J(v; µ̂) = E
[∫ T

0
f(Xt, µ̂t, vt)dt+ g(XT , µ̂T )

]
subject to:

dXt = b(Xt, µ̂t, vt)dt+ σdWt, t ≥ 0, X0 ∼ m0

Value function: u(T, x) = g(x, µ̂T ),

u(t, x) = inf
v

E
[∫ T

t

f(Xs, µ̂s, vs)ds+ g(XT , µ̂T ) |Xt = x

]

Dynamic programming (see e.g., Yong & Zhou [YZ99, §4])1

Hamilton-Jacobi-Bellman (HJB) PDE (ν = 1
2σ

2):

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x, m̂(t, ·),∇u(t, x))

where H is the Hamiltonian: H(x,m, p) = maxv∈Rk{−L(x,m, v, p)},
and L is the Lagrangian: L(x,m, v, p) = f(x,m, v) + 〈b(x,m, v), p〉.

1
Yong, Jiongmin, & Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43. Springer Science &

Business Media, 1999.
5 / 35



Single agent control problem

Assuming population at equilibrium, i.e., µ̂, optimal control problem: min. over v

J(v; µ̂) = E
[∫ T

0
f(Xt, µ̂t, vt)dt+ g(XT , µ̂T )

]
subject to:

dXt = b(Xt, µ̂t, vt)dt+ σdWt, t ≥ 0, X0 ∼ m0

Value function: u(T, x) = g(x, µ̂T ),

u(t, x) = inf
v

E
[∫ T

t

f(Xs, µ̂s, vs)ds+ g(XT , µ̂T ) |Xt = x

]
Dynamic programming (see e.g., Yong & Zhou [YZ99, §4])1

Hamilton-Jacobi-Bellman (HJB) PDE (ν = 1
2σ

2):

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x, m̂(t, ·),∇u(t, x))

where H is the Hamiltonian: H(x,m, p) = maxv∈Rk{−L(x,m, v, p)},
and L is the Lagrangian: L(x,m, v, p) = f(x,m, v) + 〈b(x,m, v), p〉.

1
Yong, Jiongmin, & Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43. Springer Science &

Business Media, 1999.
5 / 35



Single agent control problem

Assuming population at equilibrium, i.e., µ̂, optimal control problem: min. over v

J(v; µ̂) = E
[∫ T

0
f(Xt, µ̂t, vt)dt+ g(XT , µ̂T )

]
subject to:

dXt = b(Xt, µ̂t, vt)dt+ σdWt, t ≥ 0, X0 ∼ m0

Value function: u(T, x) = g(x, µ̂T ),

u(t, x) = inf
v

E
[∫ T

t

f(Xs, µ̂s, vs)ds+ g(XT , µ̂T ) |Xt = x

]
Dynamic programming (see e.g., Yong & Zhou [YZ99, §4])1

Hamilton-Jacobi-Bellman (HJB) PDE (ν = 1
2σ

2):

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x, m̂(t, ·),∇u(t, x))

where H is the Hamiltonian: H(x,m, p) = maxv∈Rk{−L(x,m, v, p)},
and L is the Lagrangian: L(x,m, v, p) = f(x,m, v) + 〈b(x,m, v), p〉.

1
Yong, Jiongmin, & Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43. Springer Science &

Business Media, 1999.
5 / 35



PDE for Population Evolution

N particles controlled by v:

dXi
t = b(Xi

t , v(t,Xi
t))dt+ σdW i

t , t ≥ 0, Xi
0 ∼ m0

where Xj
0 ’s and W j ’s are independent, with empirical distribution

µNt = 1
N

N∑
j=1

δ
X

j
t

Propagation of chaos (see Kac [Kac56] and Sznitman [Szn91]2)

µNt −−−−−→
N→+∞

µt = MF population distribution

µt = L(Xt) where X is a typical particle:

dXt = b(Xt, v(t,Xt))dt+ σdWt, t ≥ 0, X0 ∼ m0

µ driven by control v solves Kolmogorov-Fokker-Planck (KFP) equation:

0 = ∂µ

∂t
(t, x)− ν∆µ(t, x) + div (µ(t, ·)b(·, v(t, ·))) (x), µ0 = m0

2
Sznitman, A. S. (1991). Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIX–1989 (pp.

165-251). Springer, Berlin, Heidelberg.
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PDE for Population Evolution for MKV Dynamics

N interacting particles controlled by v:

dXi
t = b(Xi

t , µ
N
t , v(t,Xi

t))dt+ σdW i
t , t ≥ 0, Xi

0 ∼ m0

where Xj
0 ’s and W j ’s are independent, with empirical distribution

µNt = 1
N

N∑
j=1

δ
X

j
t

Propagation of chaos (see Kac [Kac56] and Sznitman [Szn91])

µNt −−−−−→
N→+∞

µt = MF population distribution

µt = L(Xt) where X is a typical particle with McKean-Vlasov (MKV) dynamics:

dXt = b(Xt,L(Xt), v(t,Xt))dt+ σdWt, t ≥ 0, X0 ∼ m0

µ driven by control v solves Kolmogorov-Fokker-Planck (KFP) equation:

0 = ∂µ

∂t
(t, x)− ν∆µ(t, x) + div (µ(t, ·)b(·, µ(t), v(t, ·))) (x), µ0 = m0
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MFG PDE system

It can be shown (see e.g., [BFY13, §3.1]3) that a necessary condition for v̂ to be an
equilibrium control for MFG is that:

v̂(t, x) = argmax
v∈Rk

{
− L(x,m(t, ·), v,∇u(t, x))

}
,

where (u,m) solves the following forward-backward PDE system:
0 = −∂u

∂t
(t, x)− ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x)− ν∆m(t, x)− div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Coupling:

Hamilton-Jacobi-Bellman (HJB) PDE for the value function

Kolmogorov-Fokker-Planck (KFP) PDE for the population distribution (density)

Notation: v∗(x,m, p) = argmaxv∈Rk

{
− L(x,m, v, p)

}
So: v̂(t, x) = v∗(x,m(t, ·),∇u(t, x))

3
Bensoussan, A., Frehse, J., & Yam, P. (2013). Mean field games and mean field type control theory (Vol. 101). New York:

Springer.
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LQ MFG

Setting: d = 1,

b(x, µ, v) = b(x, µ, v) = Ax+ Āµ+Bv

f(x, µ, v) = f(x, µ, v) = 1
2
[
Qx2 + Q̄ (x− Sµ)2 + Cv2]

g(x, µ) = g(x, µ) = 1
2
[
QTx

2 + Q̄T (x− STµ)2]

Lagrangian:

L(x, µ, v, p) = L(x, µ, v, p) = f(x, µ, v) + b(x, µ, v)p

Hamiltonian:
H(x, µ, p) = H(x, µ, p) = max

v∈Rk
{−L(x, µ, v, p)}

Optimal control:
v̂(t, x) = . . .
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LQ Case – ODE system

Mean process: multiply by x and integrate KFP on S

0 = ∂m

∂t
(t, x)− ν∆m(t, x)− div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x)

Value function: plug the following ansatz

u(t, x) = 1
2ptx

2 + rtx+ st

in the HJB equation:

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)).

Then, identify terms

(see e.g., [BFY13, §6.2])
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Stochastic Optimal Control – Bellman viewpoint

Consider Xt following: X0 ∼ m0, dXt = b(Xt, µ̂t, v̂t)dt+ σdWt

Let Yt = u(t,Xt)
It solves the backward stochastic differential equation (BSDE):{

YT = g(XT , µ̂T ),
dYt = −f(Xt, µ̂t, v̂t)dt+ ZtdWt

Optimality condition (from Bellman dynamic programming principle):

v̂t = v∗(Xt,L(Xt), σ−1Zt)

where (X,Y, Z) solves the McKean-Vlasov (MKV) FBSDE system:
dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ σdWt

dYt = −f(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ ZtdWt

X0 ∼ m0, YT = g(XT ,L(XT ))

(see e.g., [CD18, §4.4]4; for classical FBSDEs, see e.g. Ma & Yong [MY07])

4
Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs,

Control, and Games (Vol. 83). Springer.
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Stochastic Optimal Control – Pontryagin viewpoint

Consider Xt following: X0 ∼ m0, dXt = b(Xt, µ̂t, v̂t)dt+ σdWt

Let Yt = ∂xu(t,Xt)
It solves the backward stochastic differential equation (BSDE):{

YT = ∂xg(XT , µ̂T ),
dYt = −∂xH(Xt, µ̂t, v̂t)dt+ ZtdWt

Optimality condition (from Pontryagin stochastic maximum principle):

v̂t = v∗(Xt,L(Xt), Yt)

where (X,Y, Z) solves the McKean-Vlasov (MKV) FBSDE system:
dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ σdWt

dYt = −∂xH(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ ZtdWt

X0 ∼ m0, YT = ∂xg(XT ,L(XT ))

(see e.g., [BFY13, §3.2], [CD18, §4.5])
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McKean-Vlasov FBSDE systems

Summary: two possible MKV FBSDE systems:
dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ σdWt

dYt = −f(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ ZtdWt

X0 ∼ m0, YT = g(XT ,L(XT ))
or 

dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ σdWt

dYt = −∂xH(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ ZtdWt

X0 ∼ m0, YT = ∂xg(XT ,L(XT ))

BSame notation (X,Y, Z) but different meaning for Y (and Z)!

Generic form of a MKV FBSDE system:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt

X0 ∼ m0, YT = G(XT ,L(XT ))

Rich theory; in particular: existence of solution:
Banach fixed point theorem (short time)
Schauder’s fixed point theorem (see e.g., [CD18, §4.3])
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Distribution control problem

Mean field control problem: minimize

J(v) = E
[∫ T

0
f(Xt, µvt , vt)dt+ g(XT , µvT )

]
subject to:

dXt = b(Xt, µvt , vt)dt+ σdWt, t ≥ 0, X0 ∼ m0

Population distribution µv = L(Xt) driven by control v:

0 = ∂mv

∂t
(t, x)− ν∆mv(t, x)− div (mv(t, ·)b(·,mv(t), v(t, ·))) (x)

Value function?

Dynamic programming? L. & Pironneau [LP16], Pham & Wei [PW17],
Bensoussan et al. [BFY17], Carmona & Delarue [CD18, §6.5.1]
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MFC PDE system

It can be shown (see e.g., [BFY13, §3.1]) that a necessary condition for v∗ to be an
optimal control for MFC is that:

v∗(t, x) = argmax
v∈Rk

{
− L(x,m(t, ·), v,∇u(t, x))

}
,

where (u,m) solves the following forward-backward PDE system:

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x,m(t, ·),∇u(t, x))

+
∫
S

∂H

∂m
(ξ,m(t, ·),∇u(t, ξ))(x)m(t, ξ)dξ,

0 = ∂m

∂t
(t, x)− ν∆m(t, x)− div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·))+
∫
S

∂g

∂m
(ξ,m(T, ·))(x)m(T, ξ)dξ, m(0, x) = m0(x)

where ∂H/∂m:
Gâteaux derivative if density in L2: see e.g., [BFY13, §4.1]
L-derivative if measure: see e.g., [CD18, §5 and §6]

Coupling:
Hamilton-Jacobi-Bellman (HJB) PDE for uB

Kolmogorov-Fokker-Planck (KFP) PDE for the population distribution (density)
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Stochastic Optimal Control – “Bellman” viewpoint

Consider Xt following the MKV dynamics:{
X0 ∼ m0,

dXt = b(Xt, µ∗t , v∗t )dt+ σdWt

where µ∗t = µv
∗
t = L(Xt)

Let
Yt = u(t,Xt)

It solves the backward stochastic differential equation (BSDE):{
YT = g(XT , µ∗T ) + . . . ,

dYt = −f(Xt, µ∗t , v∗t )dt+ · · ·+ ZtdWt

Optimality condition:

v∗t = v∗(Xt,L(Xt), σ−1Zt)

where (X,Y, Z) solves the McKean-Vlasov (MKV) FBSDE system:
dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ σdWt

dYt = −f(Xt,L(Xt),v∗(Xt,L(Xt), σ−1Zt))dt+ · · ·+ ZtdWt

X0 ∼ m0, YT = g(XT ,L(XT )) + . . .
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Stochastic Optimal Control – Pontryagin viewpoint

Consider Xt following {
X0 ∼ m0,

dXt = b(Xt, µ∗t , v∗t )dt+ σdWt

Let
Yt = ∂xu(t,Xt)

It solves the BSDE:{
YT = ∂xg(XT , µ∗T ) + Ẽ[∂µg(X̃T , µ∗T )(XT )],
dYt = −∂xH(Xt, µ∗t , v∗t )dt+ · · ·+ ZtdWt

Optimality condition (from Pontryagin stochastic maximum principle):

v∗t = v∗(Xt,L(Xt), Yt)
where (X,Y, Z) solves the McKean-Vlasov (MKV) FBSDE system:

dXt = b(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ σdWt

dYt = −∂xH(Xt,L(Xt),v∗(Xt,L(Xt), Yt))dt+ · · ·+ ZtdWt

X0 ∼ m0, YT = ∂xg(XT ,L(XT )) + Ẽ[∂µg(X̃T , µ∗T )(XT )]

(see e.g., [BFY13, §4.3], [CD18, §6.2])
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MKV FBSDE systems for MFC
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Crowd models with Congestion effects

Agents = people (pedestrians, . . . )

Dynamics / decision, planning

Geometry: possibly complex (building, . . . )

Crowd aversion: not comfortable when density is high

Congestion: difficult to move quickly when the density is high
I slower movement→ drift function
I more effort (“soft” congestion)→ cost function
I maximum density (“hard” congestion)→ density constraint
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Mean Field Model

Given population density flow m = (mt)t∈[0,T ], minimize over v:

J(v;µ) = E
[∫ T

0
f(Xt,m(t, x), vt)dt+ g(XT ,m(T, x))

]
subject to: dXt = b(Xt,m(t, x), vt)dt+ σdWt, t ≥ 0, X0 ∼ m0

Players directly control their velocity: b(x,m, v) = v

and pay a running cost:

f(x,m, v) = Cβ(1 +m)γ |v|β
∗

+ `(x,m), (x,m, v) ∈ Rd × R+ × Rd

where
β∗ = β

β − 1 , Cβ = (β − 1)β−β
∗
, γ = α

β − 1
with

1 < β ≤ 2, 0 ≤ α < 1

` and g: spatial preferences, interactions with m
Remarks:

I local dependence on m through m(t, x) only
I non-local variant: (1 + ρ ? mt(x))γ , ρ = regularizing kernel
I congestion VS aversion→ roles of γ and α VS `
I case β = 2, γ = 1: f(x,m, v) = 1

2 (1 +m)|v|2 + `(x,m)
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N -Player Model
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PDE system

Hamiltonian:

H(x,m, p) = max
v∈Rk
{−L(x,m, v, p)} = |p|β

(1 +m)α − `(x,m)

Take β = 2 for simplicity

MFG PDE system:
0 = −∂u

∂t
(t, x)− ν∆u(t, x) + |∇u(t, x)|2

(1 +m(t, x))α − `(x,m),

0 = ∂m

∂t
(t, x)− ν∆m(t, x)− 2 div

(
m(t, ·)(1 +m(t, ·))−α∇u(t, ·)

)
(x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

MFC PDE system: analogous but with an extra term
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Example: Exit of a Room – Distribution

Example: evacuation of a room with obstacles and congestion [AL15]5

Geometry of the room

5
Achdou, Y., & Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete

& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room – Distribution

Example: evacuation of a room with obstacles and congestion [AL20]6
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Example: Exit of a Room – Velocity
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Example: Exit of a Room – Price of Anarchy
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Outline

1. Equilibrium conditions for MFG

2. Optimality conditions for MFC

3. Example: Crowd Motion with Congestion

4. Example: Systemic Risk

5. Towards Algorithms



MFG for Systemic risk

MFG for inter-bank borrowing/lending of Carmona, Fouque & Sun [CFS15]7

State X = log-monetary reserve ∈ R,

Control v = rate of borrowing (> 0) or lending (< 0) to central bank ∈ R

Dynamics:
dXt = [a(µt −Xt) + vt]dt+ σdWt

where µ = (µt)t≥0 is the mean log-reserve

Cost:

J(v;µ) = E
[∫ T

0

[1
2vt

2 − qvt(µt −Xt) + ε

2(µt −Xt)
2
]
dt+ c

2(µT −XT )2
]

Interpretation:
I a(µt −Xt) with a > 0: borrowing or lending between banks
I qvt(µt −Xt) with q > 0: incentive to borrow if Xt is below the mean µt
I q can be viewed as chosen by the regulator (q large⇒ low fees)
I (µt −Xt)2: penalizes departure from the average
I running cost is convex in v provided q2 ≤ ε

7
Carmona, R., Fouque, J. P., & Sun, L. H. (2015). Mean Field Games and systemic risk. Communications in Mathematical

Sciences, 13(4), 911-933.
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FBSDE system

Hamiltonian:

H(x, µ, p) = max
v∈R

{[1
2v

2 − qv(µ− x) + ε

2(µ− x)2
]

+ [a(µ− x) + v]p
}

so
v̂t = q(µt −Xt)− Yt

where (X,Y, Z) solves:

MKV FBSDE from Pontryagin principle for MFG:
dXt =

[
(a+ q)(E[Xt]−Xt)− Yt

]
dt+ σdWt

dYt =
[
(a+ q)Yt + (ε− q2)(E[Xt]−Xt)

]
dt+ ZtdWt

X0 ∼ m0, YT = c(XT − E[Xt])

Or Bellman principle: MKV FBSDE with Yt = value function

See Carmona, Fouque & Sun [CFS15] for more details and a discussion about
open-loop versus closed-loop controls
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Outline
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Numerical Aspects: Algorithms

Reminder: Forward-Backward system of equations

Based on the LQ examples seen in Part I, we can think about using:

Fixed point iterations

I pure Banach-Picard iterations
I damped version
I Fictitious Play

Newton’s method
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Numerical Aspects: Main Challenges

Backward equation

I HJB PDE
I BSDE

Discretization of time and space
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