Mean Field Games:
 Numerical Methods and Applications in Machine Learning

Part 3: Numerical Schemes for MF PDE Systems

Mathieu LaURIÈRE

```
https://mlauriere.github.io/teaching/MFG-PKU-3.pdf
```

Peking University
Summer School on Applied Mathematics
July 26 - August 6, 2021

Outline

\author{

1. Introduction
}
2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme

4. Optimization Methods for MFC and Variational MFG

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{S}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{S}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
\Rightarrow Needs a careful discretization

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{S}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
\Rightarrow Needs a careful discretization
For (2): Once we have a discrete system, how can we compute its solution?

Outline

1. Introduction

2. A Finite Difference Scheme

- FD Scheme
- Algorithms

3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

Outline

1. Introduction

2. A Finite Difference Scheme

- FD Scheme
- Algorithms

3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

Discretization

Semi-implicit finite difference scheme from Achdou \& Capuzzo-Dolcetta [ACD10] ${ }^{1}$ Discretization:

- For simplicity we consider the domain $\mathbb{T}=$ one-dimensional (unit) torus.
- Let $\nu=\sigma^{2} / 2$.
- We consider N_{h} and N_{T} steps respectively in space and time.
- Let $h=1 / N_{h}$ and $\Delta t=T / N_{T}$. Let $\mathbb{T}_{h}=$ discretized torus.
- We approximate $m_{0}\left(x_{i}\right)$ by ρ_{i}^{0} such that $h \sum_{i} \rho_{i}^{0}=1$.

Discretization

Semi-implicit finite difference scheme from Achdou \& Capuzzo-Dolcetta [ACD10] ${ }^{1}$ Discretization:

- For simplicity we consider the domain $\mathbb{T}=$ one-dimensional (unit) torus.
- Let $\nu=\sigma^{2} / 2$.
- We consider N_{h} and N_{T} steps respectively in space and time.
- Let $h=1 / N_{h}$ and $\Delta t=T / N_{T}$. Let $\mathbb{T}_{h}=$ discretized torus.
- We approximate $m_{0}\left(x_{i}\right)$ by ρ_{i}^{0} such that $h \sum_{i} \rho_{i}^{0}=1$.

Then we introduce the following discrete operators : for $\varphi \in \mathbb{R}^{N_{T}+1}$ and $\psi \in \mathbb{R}^{N_{h}}$

- time derivative :
- Laplacian :

$$
\begin{array}{rlrl}
\left(D_{t} \varphi\right)^{n} & :=\frac{\varphi^{n+1}-\varphi^{n}}{\Delta t}, & 0 \leq n & \leq N_{T}-1 \\
\left(\Delta_{h} \psi\right)_{i} & :=-\frac{1}{h^{2}}\left(2 \psi_{i}-\psi_{i+1}-\psi_{i-1}\right), & 0 & \leq i \leq N_{h} \\
\left(D_{h} \psi\right)_{i} & :=\frac{\psi_{i+1}-\psi_{i}}{h}, & 0 \leq i \leq N_{h} \\
{\left[\nabla_{h} \psi\right]_{i}} & :=\left(\left(D_{h} \psi\right)_{i},\left(D_{h} \psi\right)_{i-1}\right), & 0 \leq i \leq N_{h}
\end{array}
$$

- partial derivative :
- gradient :

[^0]
Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

$$
b(x, m, v)=v, \quad f(x, m, v)=L(x, v)+\mathrm{f}_{0}(x, m), \quad g(x, m)=\mathrm{g}_{0}(x, m)
$$

where $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$. Then

$$
H(x, m, p)=\max _{v}\{-L(x, v)-\langle v, p\rangle\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to v :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{v}\{\langle v, p\rangle-L(x, v)\}
$$

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

$$
b(x, m, v)=v, \quad f(x, m, v)=L(x, v)+\mathrm{f}_{0}(x, m), \quad g(x, m)=\mathrm{g}_{0}(x, m)
$$

where $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$. Then

$$
H(x, m, p)=\max _{v}\{-L(x, v)-\langle v, p\rangle\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to v :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{v}\{\langle v, p\rangle-L(x, v)\}
$$

Discrete Hamiltonian: $\left(x, p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ satisfying:

- Monotonicity: decreasing w.r.t. p_{1} and increasing w.r.t. p_{2}
- Consistency with H_{0} : for every $x, p, \tilde{H}_{0}(x, p, p)=H_{0}(x, p)$
- Differentiability: for every $x,\left(p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ is \mathcal{C}^{1}
- Convexity: for every $x,\left(p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ is convex

Example: if $H_{0}(x, p)=|p|^{2}$, a possible choice is $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\left(p_{1}{ }^{-}\right)^{2}+\left(p_{2}{ }^{+}\right)^{2}$

Discrete HJB

Discrete solution: We replace $u, m:[0, T] \times \mathbb{T} \rightarrow \mathbb{R}$ by vectors

$$
U, M \in \mathbb{R}^{\left(N_{T}+1\right) \times N_{h}}
$$

Discrete HJB

Discrete solution: We replace $u, m:[0, T] \times \mathbb{T} \rightarrow \mathbb{R}$ by vectors

$$
U, M \in \mathbb{R}^{\left(N_{T}+1\right) \times N_{h}}
$$

The HJB equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+\nu \Delta u(t, x)+H_{0}(x, \nabla u(t, x))=\mathrm{f}_{0}(x, m(t, x)) \\
u(T, x)=\mathrm{g}_{0}(x, m(T, x))
\end{array}\right.
$$

is discretized as:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=f_{0}\left(x_{i}, M_{i}^{n+1}\right) \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right)
\end{array}\right.
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$ is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$
is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Here we use the discrete transport operator $\approx-\operatorname{div}(\ldots)$

$$
\mathcal{T}_{i}(U, M):=\frac{1}{h}\binom{M_{i} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)-M_{i-1} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i-1},\left[\nabla_{h} U\right]_{i-1}\right)}{+M_{i+1} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i+1},\left[\nabla_{h} U\right]_{i+1}\right)-M_{i} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)}
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$
is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Here we use the discrete transport operator $\approx-\operatorname{div}(\ldots)$

$$
\mathcal{T}_{i}(U, M):=\frac{1}{h}\binom{M_{i} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)-M_{i-1} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i-1},\left[\nabla_{h} U\right]_{i-1}\right)}{+M_{i+1} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i+1},\left[\nabla_{h} U\right]_{i+1}\right)-M_{i} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)}
$$

Intuition: weak formulation \& integration by parts

$$
\int_{\mathbb{T}} \operatorname{div}\left(m \partial_{p} H_{0}(x, \nabla u)\right) w=-\int_{\mathbb{T}} m \partial_{p} H_{0}(x, \nabla u) \cdot \nabla w
$$

is discretized as

$$
-h \sum_{i} \mathcal{T}_{i}(U, M) W_{i}=h \sum_{i} M_{i} \nabla_{q} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right) \cdot\left[\nabla_{h} W\right]_{i}
$$

Discrete System - Properties

Discrete forward-backward system:

$$
\begin{cases}-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, M_{i}^{n+1}\right), & \forall n \leq N_{T}-1 \\ \left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, & \forall n \leq N_{T}-1 \\ M_{i}^{0}=\rho_{i}^{0}, \quad U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right), & i=0, \ldots, N_{h}\end{cases}
$$

${ }^{2}$ Achdou, Y., \& Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), 1136-1162.
${ }^{3}$ Achdou, Y., Camilli, F., \& Capuzzo-Dolcetta, I. (2012). Mean field games: numerical methods for the planning problem. SIAM Journal on Control and Optimization, 50(1), 77-109.
${ }^{4}$ Achdou, Y., \& Porretta, A. (2016). Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM Journal on Numerical Analysis, 54(1), 161-186.

Discrete System - Properties

Discrete forward-backward system:

$$
\begin{cases}-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, M_{i}^{n+1}\right), & \forall n \leq N_{T}-1 \\ \left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, & \forall n \leq N_{T}-1 \\ M_{i}^{0}=\rho_{i}^{0}, \quad U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right), & i=0, \ldots, N_{h}\end{cases}
$$

This scheme enjoys many nice properties, among which:

- It yields a monotone scheme for the KFP equation: mass and positivity are preserved
- Convergence to classical solution if monotonicity [ACD10, ACCD12] ${ }^{23}$
- Can sometimes be used to show existence of a weak solution [AP16] ${ }^{4}$
- The discrete KFP operator is the adjoint of the linearized Bellman operator
- Existence and uniqueness result for the discrete system
- It corresponds to the optimality condition of a discrete optimization problem (details later)

[^1]
Outline

1. Introduction

2. A Finite Difference Scheme

- FD Scheme
- Algorithms

3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

Algo 1: Fixed Point Iterations

Input: Initial guess (\tilde{M}, \tilde{U}); damping $\delta(\cdot)$; number of iterations K
Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
Initialize $M^{(0)}=\tilde{M}^{(0)}=\tilde{M}, U^{(0)}=\tilde{U}$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $U^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), n+1}\right), \quad n \leq N_{T}-1 \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), N_{T}}\right)
\end{array}\right.
$$

Let $M^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{(\mathrm{k}+1), n}, M^{n+1}\right)=0, \quad n \leq N_{T}-1 \\
M_{i}^{0}=\rho_{i}^{0}
\end{array}\right.
$$

$$
\text { Let } \tilde{M}^{(\mathrm{k}+1)}=\delta(\mathrm{k}) \tilde{M}^{(\mathrm{k})}+(1-\delta(\mathrm{k})) M^{(\mathrm{k}+1)}
$$

return $\left(M^{(\mathrm{K})}, U^{(\mathrm{K})}\right)$

Algo 1: Fixed Point Iterations

Input: Initial guess (\tilde{M}, \tilde{U}); damping $\delta(\cdot)$; number of iterations K
Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
Initialize $M^{(0)}=\tilde{M}^{(0)}=\tilde{M}, U^{(0)}=\tilde{U}$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{k}-1$ do
Let $U^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}, n+1}\right), \quad n \leq N_{T}-1 \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), N_{T}}\right)
\end{array}\right.
$$

Let $M^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{(k+1), n}, M^{n+1}\right)=0, \quad n \leq N_{T}-1 \\
M_{i}^{0}=\rho_{i}^{0}
\end{array}\right.
$$

$$
\text { Let } \tilde{M}^{(\mathrm{k}+1)}=\delta(\mathrm{k}) \tilde{M}^{(\mathrm{k})}+(1-\delta(\mathrm{k})) M^{(\mathrm{k}+1)}
$$

return $\left(M^{(\mathrm{K})}, U^{(\mathrm{K})}\right)$
Remark: the HJB equation is non-linear

- Idea 1: replace $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)$ by $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{(\mathrm{k}), n}\right]_{i}\right)$

Algo 1: Fixed Point Iterations

Input: Initial guess (\tilde{M}, \tilde{U}); damping $\delta(\cdot)$; number of iterations K
Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
Initialize $M^{(0)}=\tilde{M}^{(0)}=\tilde{M}, U^{(0)}=\tilde{U}$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{k}-1$ do
Let $U^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}, n+1}\right), \quad n \leq N_{T}-1 \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), N_{T}}\right)
\end{array}\right.
$$

Let $M^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{(\mathrm{k}+1), n}, M^{n+1}\right)=0, \quad n \leq N_{T}-1 \\
M_{i}^{0}=\rho_{i}^{0}
\end{array}\right.
$$

$$
\text { Let } \tilde{M}^{(\mathrm{k}+1)}=\delta(\mathrm{k}) \tilde{M}^{(\mathrm{k})}+(1-\delta(\mathrm{k})) M^{(\mathrm{k}+1)}
$$

return $\left(M^{(\mathrm{K})}, U^{(\mathrm{K})}\right)$
Remark: the HJB equation is non-linear

- Idea 1: replace $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)$ by $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{(\mathrm{k}), n}\right]_{i}\right)$
- Idea 2: use non linear solver to find a zero of $\mathbb{R}^{N_{h} \times\left(N_{T}+1\right)} \ni U \mapsto \varphi(U) \in \mathbb{R}^{N_{h} \times N_{T}}$,

$$
\varphi(U)=\left(-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)-f_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), n+1}\right)\right)_{i=0, \ldots, N_{h}-1}^{n=0, \ldots, N_{T}-1}
$$

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{U}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$

Algo 2: Newton's Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{u}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$
- Or rather: $J_{\varphi}\left(X^{(k)}\right) Y=-\varphi\left(X^{(k)}\right)$, then $X^{(k+1)}=Y+X^{(k)}$

Algo 2: Newton's Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{u}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$
- Or rather: $J_{\varphi}\left(X^{(k)}\right) Y=-\varphi\left(X^{(k)}\right)$, then $X^{(k+1)}=Y+X^{(k)}$

Key step: Solve a linear system of the form

$$
\left(\begin{array}{cc}
A_{\mathcal{U}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\
A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}
\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}
$$

where $A_{\mathcal{U}, \mathcal{M}}(U, M)=\nabla_{U} \varphi_{\mathcal{M}}(U, M), \quad A_{\mathcal{U}, \mathcal{U}}(U, M)=\nabla_{U} \varphi_{\mathcal{U}}(U, M), \quad \ldots$

Newton Method - Implementation

Linear system to be solved: $\left(\begin{array}{cc}A_{\mathcal{U}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\ A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}$
Structure: $A_{\mathcal{U}, \mathcal{M}}, A_{\mathcal{M}, \mathcal{U}}$ are block-diagonal, $A_{\mathcal{U}, \mathcal{U}}=A_{\mathcal{M}, \mathcal{M}}^{\top}$, and

$$
A_{\mathcal{U}, \mathcal{U}}=\left(\begin{array}{ccccc}
D_{1} & 0 & \cdots & \cdots & 0 \\
-\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{2} & \ddots & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ddots & 0 & -\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{N_{T}}
\end{array}\right)
$$

where D_{n} corresponds to the discrete operator

$$
Z=\left(Z_{i, j}\right)_{i, j} \mapsto\left(\frac{1}{\Delta t} Z_{i, j}-\nu\left(\Delta_{h} Z\right)_{i, j}+\left[\nabla_{h} Z\right]_{i, j} \cdot \nabla_{p} \tilde{H}_{0}\left(x_{i, j},\left[\nabla_{h} U^{(k), n}\right]_{i, j}\right)\right)_{i, j}
$$

[^2]
Newton Method - Implementation

Linear system to be solved: $\left(\begin{array}{ll}A_{\mathcal{U}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\ A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}$
Structure: $A_{\mathcal{U}, \mathcal{M}}, A_{\mathcal{M}, \mathcal{U}}$ are block-diagonal, $A_{\mathcal{U}, \mathcal{U}}=A_{\mathcal{M}, \mathcal{M}}^{\top}$, and

$$
A_{\mathcal{U}, \mathcal{U}}=\left(\begin{array}{ccccc}
D_{1} & 0 & \cdots & \cdots & 0 \\
-\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{2} & \ddots & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ddots & 0 & -\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{N_{T}}
\end{array}\right)
$$

where D_{n} corresponds to the discrete operator

$$
Z=\left(Z_{i, j}\right)_{i, j} \mapsto\left(\frac{1}{\Delta t} Z_{i, j}-\nu\left(\Delta_{h} Z\right)_{i, j}+\left[\nabla_{h} Z\right]_{i, j} \cdot \nabla_{p} \tilde{H}_{0}\left(x_{i, j},\left[\nabla_{h} U^{(k), n}\right]_{i, j}\right)\right)_{i, j}
$$

Rem. Initial guess $\left(U^{(0)}, M^{(0)}\right)$ is important for Newton's method

- Idea 1: initialize with the ergodic solution
- Idea 2: continuation method w.r.t. ν (converges more easily with a large viscosity) See Achdou [Ach13] ${ }^{5}$ for more details.

[^3]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Geometry of the room

[^4]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Initial density (left) and final cost (right)
${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^5]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^6]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^7]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^8]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^9]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^10]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^11]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^12]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^13]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^14]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^15]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^16]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Density in MFGame (left) and MFControl (right)

[^17]
Example: Exit of a Room - Distribution

Example: evacuation of a room with obstacles and congestion [AL15] ${ }^{6}$

Remaining mass inside the room
${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

Example: Exit of a Room - Remaining Mass

Example: evacuation of a room with obstacles and congestion [AL20] ${ }^{7}$

Remaining mass inside the room
${ }^{7}$ Achdou, Y., \& Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects. Mean Field Games: Cetraro, Italy 2019, 2281, 249-307.

Outline

1. Introduction

2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme

4. Optimization Methods for MFC and Variational MFG

MFG Setup

- Scheme introduced by Carlini \& Silva [CS14] ${ }^{8}$
- For simplicity: $d=1$, domain $\mathcal{S}=\mathbb{R}, \mathcal{A}=\mathbb{R}$
- $\nu=0$ (degenerate second order case also possible; see $[C S 15]^{9}$)
- Model:

$$
\begin{aligned}
& b(x, m, v)=v \\
& f(x, m, v)=\frac{1}{2}|v|^{2}+f_{0}(x, m), \quad g(x, m)
\end{aligned}
$$

where f_{0} and g depend on $m \in \mathcal{P}_{1}(\mathbb{R})$ in a potentially non-local way

[^18]
MFG Setup

- Scheme introduced by Carlini \& Silva [CS14] ${ }^{8}$
- For simplicity: $d=1$, domain $\mathcal{S}=\mathbb{R}, \mathcal{A}=\mathbb{R}$
- $\nu=0$ (degenerate second order case also possible; see $[C S 15]^{9}$)
- Model:

$$
\begin{aligned}
& b(x, m, v)=v \\
& f(x, m, v)=\frac{1}{2}|v|^{2}+f_{0}(x, m), \quad g(x, m)
\end{aligned}
$$

where f_{0} and g depend on $m \in \mathcal{P}_{1}(\mathbb{R})$ in a potentially non-local way

- MFG PDE system:

$$
\begin{cases}-\frac{\partial u}{\partial t}(t, x)+\frac{1}{2}|\nabla u(t, x)|^{2}=f_{0}(x, m(t, \cdot)), & \text { in }[0, T) \times \mathbb{R} \\ \frac{\partial m}{\partial t}(t, x)-\operatorname{div}(m(t, \cdot) \nabla u(t, \cdot))(x)=0, & \text { in }(0, T] \times \mathbb{R} \\ u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x), & \text { in } \mathbb{R} .\end{cases}
$$

[^19]- Dynamics:

$$
X_{t}^{v}=X_{0}^{v}+\int_{0}^{t} v(s) d s, \quad t \geq 0
$$

- Representation formula for the value function given $m=\left(m_{t}\right)_{t \in[0, T]}$:

$$
\begin{aligned}
& u[m](t, x)=\inf _{v \in L^{2}([t, T] ; \mathbb{R})}\left\{\int_{t}^{T}\left[\frac{1}{2}|v(s)|^{2}+f_{0}\left(X_{s}^{v, t, x}, m(s, \cdot)\right)\right] d s\right. \\
&\left.+g\left(X_{T}^{v, t, x}, m(T, \cdot)\right)\right\}
\end{aligned}
$$

where $X^{v, t, x}$ starts from x at time t and is controlled by v

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

$$
\begin{cases}U_{i}^{n}=S_{\Delta t, h}[m]\left(U^{n+1}, i, n\right), & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z}, \\ U_{i}^{N_{T}}=g\left(x_{i}, m(T, \cdot)\right), & i \in \mathbb{Z},\end{cases}
$$

where

- $S_{\Delta t, h}$ is defined as

$$
S_{\Delta t, h}[m](W, n, i)=\inf _{v \in \mathbb{R}}\left\{\left(\frac{1}{2}|v|^{2}+f_{0}\left(x_{i}, m\left(t_{n}, \cdot\right)\right)\right) \Delta t+I[W]\left(x_{i}+v \Delta t\right)\right\}
$$

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

$$
\begin{cases}U_{i}^{n}=S_{\Delta t, h}[m]\left(U^{n+1}, i, n\right), & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z} \\ U_{i}^{N_{T}}=g\left(x_{i}, m(T, \cdot)\right), & i \in \mathbb{Z},\end{cases}
$$

where

- $S_{\Delta t, h}$ is defined as

$$
S_{\Delta t, h}[m](W, n, i)=\inf _{v \in \mathbb{R}}\left\{\left(\frac{1}{2}|v|^{2}+f_{0}\left(x_{i}, m\left(t_{n}, \cdot\right)\right)\right) \Delta t+I[W]\left(x_{i}+v \Delta t\right)\right\}
$$

- with $I: \mathcal{B}(\mathbb{Z}) \rightarrow \mathcal{C}_{b}(\mathbb{R})$ is the interpolation operator defined as

$$
I[W](\cdot)=\sum_{i \in \mathbb{Z}} W_{i} \beta_{i}(\cdot)
$$

- where $\mathcal{B}(\mathbb{Z})$ is the set of bounded functions from \mathbb{Z} to \mathbb{R}
- and $\beta_{i}=\left[1-\frac{\left|x-x_{i}\right|}{h}\right]_{+}$: triangular function with support $\left[x_{i-1}, x_{i+1}\right]$ and s.t. $\beta_{i}\left(x_{i}\right)=1$.

Discrete HJB equation - cont.

Before moving to the KFP equation:

- Interpolation: from $U=\left(U_{i}^{n}\right)_{n, i}$, construct the function

$$
u_{\Delta t, h}[m](x, t):[0, T] \times \mathbb{R} \rightarrow \mathbb{R}
$$

$$
u_{\Delta t, h}[m](t, x)=I\left[U^{\left[\frac{t}{\Delta t}\right]}\right](x), \quad(t, x) \in[0, T] \times \mathbb{R}
$$

Discrete HJB equation - cont.

Before moving to the KFP equation:

- Interpolation: from $U=\left(U_{i}^{n}\right)_{n, i}$, construct the function $u_{\Delta t, h}[m](x, t):[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
u_{\Delta t, h}[m](t, x)=I\left[U^{\left[\frac{t}{\Delta t}\right]}\right](x), \quad(t, x) \in[0, T] \times \mathbb{R}
$$

- Regularization of HJB solution with a mollifier ρ_{ϵ} :

$$
u_{\Delta t, h}^{\epsilon}[m](t, \cdot)=\rho_{\epsilon} * u_{\Delta t, h}[m](t, \cdot), \quad t \in[0, T] .
$$

- Eulerian viewpoint:
- focus on a location
- look at the flow passing through it
- evolution characterized by the velocity at (t, x)
- Lagrangian viewpoint:
- focus on a fluid parcel
- look at how it flows
- evolution characterized by the position at time t of a particle starting at x
- Eulerian viewpoint:
- focus on a location
- look at the flow passing through it
- evolution characterized by the velocity at (t, x)
- Lagrangian viewpoint:
- focus on a fluid parcel
- look at how it flows
- evolution characterized by the position at time t of a particle starting at x
- Here, in our model:

$$
X_{t}^{v}=X_{0}^{v}+\int_{0}^{t} v(s) d s, \quad t \geq 0
$$

- Time and space discretization?

Bottom: time t_{n}; top: time t_{n+1}.

Movement of the mass when using control $v\left(t_{n}, x_{i}\right)=\alpha_{i}^{n}$.
Bottom: time t_{n}; top: time t_{n+1}.

Movement of the mass when using control $v\left(t_{n}, x_{i}\right)=\alpha_{i}^{n}$.
Bottom: time t_{n}; top: time t_{n+1}.

- Control induced by value function:

$$
\hat{v}_{\Delta t, h}^{\epsilon}[m](t, x)=-\nabla u_{\Delta t, h}^{\epsilon}[m](t, x)
$$

and its discrete counter part: $\hat{v}_{n, i}^{\epsilon}=\hat{v}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right)$.

- Discrete flow:

$$
\Phi_{n, n+1, i}^{\epsilon}[m]=x_{i}+\hat{v}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right) \Delta t
$$

Discrete KFP equation

- Control induced by value function:

$$
\hat{v}_{\Delta t, h}^{\epsilon}[m](t, x)=-\nabla u_{\Delta t, h}^{\epsilon}[m](t, x),
$$

and its discrete counter part: $\hat{v}_{n, i}^{\epsilon}=\hat{v}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right)$.

- Discrete flow:

$$
\Phi_{n, n+1, i}^{\epsilon}[m]=x_{i}+\hat{v}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right) \Delta t .
$$

- Discrete KFP equation: for $M^{\epsilon}[m]=\left(M_{i}^{\epsilon, n}[m]\right)_{n, i}$:

$$
\begin{cases}M_{i}^{\epsilon, n+1}[m]=\sum_{j} \beta_{i}\left(\Phi_{n, n+1, j}^{\epsilon}[m]\right) M_{j}^{\epsilon, n}[m], & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z} \\ M_{i}^{\epsilon, 0}[m]=\int_{\left[x_{i}-h / 2, x_{i}+h / 2\right]} m_{0}(x) d x, & i \in \mathbb{Z}\end{cases}
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \mathbb{N} N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \llbracket N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

- Goal: Fixed-point problem: Find $\hat{M}=\left(\hat{M}_{i}^{n}\right)_{i, n}$ such that:

$$
\hat{M}_{i}^{n}=M_{i}^{n}\left[m_{\Delta t, h}^{\epsilon}[\hat{M}]\right] .
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \llbracket N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

- Goal: Fixed-point problem: Find $\hat{M}=\left(\hat{M}_{i}^{n}\right)_{i, n}$ such that:

$$
\hat{M}_{i}^{n}=M_{i}^{n}\left[m_{\Delta t, h}^{\epsilon}[\hat{M}]\right] .
$$

- Solution strategy: Fixed point iterations for example
- See [CS14] for more details

Numerical Illustration

Costs:

$$
g \equiv 0, \quad f(x, m, v)=\frac{1}{2}|v|^{2}+\left(x-c^{*}\right)^{2}+\kappa_{M F} V(x, m)
$$

with

$$
V(x, m)=\rho_{\sigma_{V}} *\left(\rho_{\sigma_{V}} * m\right)(x)
$$

Numerical Illustration

Costs:

$$
g \equiv 0, \quad f(x, m, v)=\frac{1}{2}|v|^{2}+\left(x-c^{*}\right)^{2}+\kappa_{M F} V(x, m)
$$

with

$$
V(x, m)=\rho_{\sigma_{V}} *\left(\rho_{\sigma_{V}} * m\right)(x)
$$

Experiments: target $c^{*}=0, m_{0}=$ unif. on $[-1.25,-0.75]$ and on $[0.75,1.25]$

(See [Lau21] for more details on the experiments)

Outline

1. Introduction
2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

Outline

1. Introduction

2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

Variational MFGs

Key ideas:

- Variational MFG
- Duality
- Optimization techniques

A Variational MFG

- $d=1$, domain $=\mathbb{T}$
- drift and costs:

$$
b(x, m, v)=v, \quad f(x, m, v)=L(x, v)+\mathrm{f}_{0}(x, m), \quad g(x, m)=g_{0}(x)
$$

where $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$.

- Then

$$
H(x, m, p)=\sup _{v}\{-L(x, v)-v p\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-f_{0}(x, m)
$$

- where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to v :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{v}\{v p-L(x, v)\}
$$

- Further assume (for simplicity)

$$
L(x, v)=\frac{1}{2}|v|^{2}, \quad H_{0}(x, p)=\frac{1}{2}|p|^{2}
$$

A Variational MFG

- $d=1$, domain $=\mathbb{T}$
- drift and costs:

$$
b(x, m, v)=v, \quad f(x, m, v)=L(x, v)+\mathrm{f}_{0}(x, m), \quad g(x, m)=g_{0}(x)
$$

where $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$.

- Then

$$
H(x, m, p)=\sup _{v}\{-L(x, v)-v p\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

- where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to v :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{v}\{v p-L(x, v)\}
$$

- Further assume (for simplicity)

$$
L(x, v)=\frac{1}{2}|v|^{2}, \quad H_{0}(x, p)=\frac{1}{2}|p|^{2}
$$

- Claim:

MFG PDE system \Leftrightarrow optimality condition of two optimization problems in duality Lasry \& Lions [LL07], Cardaliaguet et al. [Car15, CG15, CGPT15], Benamou et al. [BCS17]

A Variational Problem

- At equilibrium, $\mathcal{L}\left(X_{t}\right)=\hat{\mu}_{t}$ and

$$
\begin{aligned}
J(\hat{v} ; \hat{m}) & =\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \hat{m}\left(t, X_{t}\right), \hat{v}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right] \\
& =\int_{0}^{T} \int_{\mathbb{T}} \underbrace{f(x, \hat{m}(t, x), \hat{v}(t, x))}_{=L(x, \hat{v}(t, x))+£_{0}(x, \hat{m}(t, x))} \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{v}(t, \cdot)}_{=\hat{v}(t, \cdot)}))(x), \quad \hat{m}_{0}=m_{0}
$$

A Variational Problem

- At equilibrium, $\mathcal{L}\left(X_{t}\right)=\hat{\mu}_{t}$ and

$$
\begin{aligned}
J(\hat{v} ; \hat{m}) & =\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \hat{m}\left(t, X_{t}\right), \hat{v}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right] \\
& =\int_{0}^{T} \int_{\mathbb{T}} \underbrace{f(x, \hat{m}(t, x), \hat{v}(t, x))}_{=L(x, \hat{v}(t, x))+\mathrm{f}_{0}(x, \hat{m}(t, x))} \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{v}(t, \cdot)}_{=\hat{v}(t, \cdot)}))(x), \quad \hat{m}_{0}=m_{0}
$$

- Change of variable:

$$
\hat{w}(t, x)=\hat{m}(t, x) \hat{v}(t, x)
$$

$$
\mathcal{B}(\hat{m}, \hat{w})=\int_{0}^{T} \int_{\mathbb{T}}\left[L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right)+\mathrm{f}_{0}(x, \hat{m}(t, x))\right] \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

- Reformulation:

$$
\begin{aligned}
\mathcal{B}(\hat{m}, \hat{w})= & \int_{0}^{T} \int_{\mathbb{T}}[\underbrace{L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right) \hat{m}(t, x)}_{\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))}+\underbrace{f_{0}(x, \hat{m}(t, x)) \hat{m}(t, x)}_{\widetilde{F}(x, \hat{m}(t, x))}] d x d t \\
& +\int_{\mathbb{T}} \underbrace{g(x) \hat{m}(T, x)}_{\widetilde{G}(x, \hat{m}(t, x))} d x \\
= & \int_{0}^{T} \int_{\mathbb{T}}[\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))+\widetilde{F}(x, \hat{m}(t, x))] d x d t+\int_{\mathbb{T}} \widetilde{G}(x, \hat{m}(t, x)) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

Reformulation

- Reformulation:

$$
\left.\begin{array}{rl}
\mathcal{B}(\hat{m}, \hat{w})= & \int_{0}^{T} \int_{\mathbb{T}}
\end{array}\right] \underbrace{L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right) \hat{m}(t, x)}_{\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))}+\underbrace{f_{0}(x, \hat{m}(t, x)) \hat{m}(t, x)}_{\widetilde{F}(x, \hat{m}(t, x))}] d x d t] .
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

- Convex problem under a linear constraint, provided $\widetilde{L}, \widetilde{F}, \widetilde{G}$ are convex

Primal Optimization Problem

Primal problem: Minimize over $(m, w)=(m, m v)$:
$\mathcal{B}(m, w)=\int_{0}^{T} \int_{\mathbb{T}}(\widetilde{L}(x, m(t, x), w(t, x))+\widetilde{F}(x, m(t, x))) d x d t+\int_{\mathbb{T}} \widetilde{G}(x, m(T, x)) d x$
subject to the constraint:

$$
\partial_{t} m-\nu \Delta m+\operatorname{div}(w)=0, \quad m(0, x)=m_{0}(x)
$$

Primal Optimization Problem

Primal problem: Minimize over $(m, w)=(m, m v)$:
$\mathcal{B}(m, w)=\int_{0}^{T} \int_{\mathbb{T}}(\widetilde{L}(x, m(t, x), w(t, x))+\widetilde{F}(x, m(t, x))) d x d t+\int_{\mathbb{T}} \widetilde{G}(x, m(T, x)) d x$
subject to the constraint:

$$
\partial_{t} m-\nu \Delta m+\operatorname{div}(w)=0, \quad m(0, x)=m_{0}(x)
$$

where

$$
\widetilde{F}(x, m)=\left\{\begin{array}{ll}
\int_{0}^{m} \tilde{f}(x, s) d s, & \text { if } m \geq 0, \\
+\infty, & \text { otherwise },
\end{array} \quad \widetilde{G}(x, m)= \begin{cases}m g_{0}(x), & \text { if } m \geq 0 \\
+\infty, & \text { otherwise }\end{cases}\right.
$$

and

$$
\widetilde{L}(x, m, w)= \begin{cases}m L\left(x, \frac{w}{m}\right), & \text { if } m>0 \\ 0, & \text { if } m=0 \text { and } w=0 \\ +\infty, & \text { otherwise }\end{cases}
$$

where $\mathbb{R} \ni m \mapsto \tilde{f}(x, m)=\partial_{m}\left(m f_{0}(x, m)\right)$
is non-decreasing (hence \widetilde{F} convex and l.s.c.) provided $m \mapsto m \mathrm{f}_{0}(x, m)$ is convex.

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\begin{aligned}
& \mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m) \\
& \text { with } \mathcal{A}(\phi, m)=\int_{0}^{T} \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\
& \quad+\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x
\end{aligned}
$$

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m)
$$

$\begin{aligned} \text { with } \mathcal{A}(\phi, m)= & \int_{0}^{T} \\ & \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\ & +\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x .\end{aligned}$
Duality relation: \mathcal{A} and \mathcal{B} satisfy: $(\mathbf{A})=\sup _{\phi} \mathcal{A}(\phi)=\inf _{(m, w)} \mathcal{B}(m, w)=\mathbf{(B)}$

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m)
$$

$$
\begin{aligned}
\text { with } \mathcal{A}(\phi, m)= & \int_{0}^{T} \\
& \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\
& +\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x
\end{aligned}
$$

Duality relation: \mathcal{A} and \mathcal{B} satisfy: $(\mathbf{A})=\sup _{\phi} \mathcal{A}(\phi)=\inf _{(m, w)} \mathcal{B}(m, w)=\mathbf{(B)}$
Proof: Fenchel-Rockafellar duality theorem and observe:

$$
\mathbf{(A)}=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}, \quad \mathbf{(B)}=\inf _{(m, w)}\left\{\mathcal{F}^{*}\left(\Lambda^{*}(m, w)\right)+\mathcal{G}^{*}(-m,-w)\right\}
$$

where $\mathcal{F}^{*}, \mathcal{G}^{*}$ are the convex conjugates of \mathcal{F}, \mathcal{G}, and Λ^{*} is the adjoint operator of Λ, and $\Lambda(\phi)=\left(\frac{\partial \phi}{\partial t}+\nu \Delta \phi, \nabla \phi\right)$,

$$
\begin{gathered}
\mathcal{F}(\phi)=\chi_{T}(\phi)-\int_{\mathbb{T}^{d}} m_{0}(x) \phi(0, x) d x, \quad \chi_{T}(\phi)= \begin{cases}0 & \text { if }\left.\phi\right|_{t=T}=g_{0} \\
+\infty & \text { otherwise }\end{cases} \\
\mathcal{G}\left(\varphi_{1}, \varphi_{2}\right)=-\inf _{0 \leq m \in L^{1}\left((0, T) \times \mathbb{T}^{d}\right)} \int_{0}^{T} \int_{\mathbb{T}^{d}} m(t, x)\left(\varphi_{1}(t, x)-H\left(x, m(t, x), \varphi_{2}(t, x)\right)\right) d x d t .
\end{gathered}
$$

Outline

1. Introduction
2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

Augmented Lagrangian

Reformulation of the primal problem:
$\mathbf{(A)}=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}=-\inf _{\phi} \inf _{q}\{\mathcal{F}(\phi)+\mathcal{G}(q)$, subj. to $q=\Lambda(\phi)\}$.

- The corresponding Lagrangian is

$$
\mathcal{L}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle
$$

Augmented Lagrangian

Reformulation of the primal problem:

$$
\mathbf{(A)}=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}=-\inf _{\phi} \inf _{q}\{\mathcal{F}(\phi)+\mathcal{G}(q) \text {, subj. to } q=\Lambda(\phi)\} \text {. }
$$

- The corresponding Lagrangian is

$$
\mathcal{L}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle .
$$

- We consider the augmented Lagrangian (with parameter $r>0$)

$$
\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{L}(\phi, q, \tilde{q})+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}
$$

- Goal: find a saddle-point of \mathcal{L}^{r}.

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess \(\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)\); number of iterations K
Output: Approximation of a saddle point \((\phi, q, \tilde{q})\) solving the finite difference system
Initialize \(\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)\)
for \(k=0,1,2, \ldots, k-1\) do
    (a) Compute
    \(\phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}\)
```

References: ALG2 in the book of Fortin \& Glowinski [FG83];
\rightarrow in MFG: Benamou \& Carlier [BC15], Andreev [And17]; in MFC: Achdou \& L. [AL16a]

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

Input: Initial guess $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$; number of iterations K
Output: Approximation of a saddle point (ϕ, q, \tilde{q}) solving the finite difference system
1 Initialize $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3
(a) Compute

$$
\phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}
$$

(b) Compute

$$
q^{(\mathrm{k}+1)} \in \underset{q}{\operatorname{argmin}}\left\{\mathcal{G}(q)+\left\langle\tilde{q}^{(\mathrm{k})}, q\right\rangle+\frac{r}{2}\left\|\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q\right\|^{2}\right\}
$$

References: ALG2 in the book of Fortin \& Glowinski [FG83];
\rightarrow in MFG: Benamou \& Carlier [BC15], Andreev [And17]; in MFC: Achdou \& L. [AL16a]

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

Input: Initial guess $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$; number of iterations K
Output: Approximation of a saddle point (ϕ, q, \tilde{q}) solving the finite difference system
1 Initialize $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
(a) Compute

$$
\phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}
$$

(b) Compute

$$
q^{(\mathrm{k}+1)} \in \underset{q}{\operatorname{argmin}}\left\{\mathcal{G}(q)+\left\langle\tilde{q}^{(\mathrm{k})}, q\right\rangle+\frac{r}{2}\left\|\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q\right\|^{2}\right\}
$$

5
(c) Compute

$$
\tilde{q}^{(\mathrm{k}+1)}=\tilde{q}^{(\mathrm{k})}-r\left(\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q^{(\mathrm{k}+1)}\right)
$$

6 return $\left(\phi^{(\mathrm{K})}, q^{(\mathrm{K})}, \tilde{q}^{(\mathrm{K})}\right)$

References: ALG2 in the book of Fortin \& Glowinski [FG83];
\rightarrow in MFG: Benamou \& Carlier [BC15], Andreev [And17]; in MFC: Achdou \& L. [AL16a]

ADMM: Discrete Primal Problem

Notation: N_{h}, N_{T} steps resp. in space and time, $N=\left(N_{T}+1\right) N_{h}, N^{\prime}=N_{T} N_{h}$.
Recall: $H_{0}(x, p)=\frac{1}{2}|p|^{2}$. We take $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\frac{1}{2}\left|\left(p_{1}^{-}, p_{2}^{+}\right)\right|^{2}$.
Discrete version of the dual convex problem:

$$
\left(\mathbf{A}_{\mathbf{h}}\right)=-\inf _{\phi \in \mathbb{R}^{N}}\left\{\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}\left(\Lambda_{h}(\phi)\right)\right\}
$$

where $\Lambda_{h}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{3 N^{\prime}}$ is defined by : $\forall n \in\left\{1, \ldots, N_{T}\right\}, \forall i \in\left\{0, \ldots, N_{h}-1\right\}$,

$$
\left(\Lambda_{h}(\phi)\right)_{i}^{n}=\left(\left(D_{t} \phi_{i}\right)^{n}+\nu\left(\Delta_{h} \phi^{n-1}\right)_{i},\left[\nabla_{h} \phi^{n-1}\right]_{i}\right)
$$

ADMM: Discrete Primal Problem

Notation: N_{h}, N_{T} steps resp. in space and time, $N=\left(N_{T}+1\right) N_{h}, N^{\prime}=N_{T} N_{h}$.
Recall: $H_{0}(x, p)=\frac{1}{2}|p|^{2}$. We take $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\frac{1}{2}\left|\left(p_{1}^{-}, p_{2}^{+}\right)\right|^{2}$.
Discrete version of the dual convex problem:

$$
\left(\mathbf{A}_{\mathbf{h}}\right)=-\inf _{\phi \in \mathbb{R}^{N}}\left\{\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}\left(\Lambda_{h}(\phi)\right)\right\}
$$

where $\Lambda_{h}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{3 N^{\prime}}$ is defined by : $\forall n \in\left\{1, \ldots, N_{T}\right\}, \forall i \in\left\{0, \ldots, N_{h}-1\right\}$,

$$
\left(\Lambda_{h}(\phi)\right)_{i}^{n}=\left(\left(D_{t} \phi_{i}\right)^{n}+\nu\left(\Delta_{h} \phi^{n-1}\right)_{i},\left[\nabla_{h} \phi^{n-1}\right]_{i}\right)
$$

where $\mathcal{F}_{h}, \mathcal{G}_{h}$ are the l.s.c. proper functions defined by:

$$
\begin{gathered}
\mathcal{F}_{h}: \mathbb{R}^{N} \ni \phi \mapsto \chi_{T}(\phi)-h \sum_{i=0}^{N_{h}-1} \rho_{i}^{0} \phi_{i}^{0} \in \mathbb{R} \cup\{+\infty\}, \\
\mathcal{G}_{h}: \mathbb{R}^{3 N^{\prime}} \ni(a, b, c) \mapsto-h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \mathcal{K}_{h}\left(x_{i}, a_{i}^{n}, b_{i}^{n}, c_{i}^{n}\right) \in \mathbb{R} \cup\{+\infty\},
\end{gathered}
$$

with
$\mathcal{K}_{h}\left(x, a_{0}, p_{1}, p_{2}\right)=\min _{m \in \mathbb{R}_{+}}\left\{m\left[a_{0}+\tilde{H}_{0}\left(x, m, p_{1}, p_{2}\right)\right]\right\}, \quad \chi_{T}(\phi)= \begin{cases}0 & \text { if } \phi_{i}^{N_{T}} \equiv g_{0}\left(x_{i}\right) \\ +\infty & \text { otherwise } .\end{cases}$

ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

Input: Initial guess $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$; number of iterations K
Output: Approximation of a saddle point (ϕ, q, \tilde{q})
Initialize $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
$3 \quad(a)$ Compute $\phi^{(k+1)} \in \operatorname{argmin}_{\phi}\left\{\mathcal{F}_{h}(\phi)-\left\langle\tilde{q}^{(k)}, \Lambda_{h}(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda_{h}(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}$
(b) Compute $q^{(k+1)} \in \operatorname{argmin}_{q}\left\{\mathcal{G}_{h}(q)+\left\langle\tilde{q}^{(k)}, q\right\rangle+\frac{r}{2}\left\|\Lambda_{h}\left(\phi^{(k+1)}\right)-q\right\|^{2}\right\}$
(c) Compute $\tilde{q}^{(\mathrm{k}+1)}=\tilde{q}^{(\mathrm{k})}-r\left(\Lambda_{h}\left(\phi^{(\mathrm{k}+1)}\right)-q^{(\mathrm{k}+1)}\right)$
return $\left(\phi^{(\mathrm{K})}, q^{(\mathrm{K})}, \tilde{q}^{(\mathrm{K})}\right)$

ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

Input: Initial guess $\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)$; number of iterations K
Output: Approximation of a saddle point (ϕ, q, \tilde{q})
1 Initialize ($\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}$)
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3
(a) Compute $\phi^{(k+1)} \in \operatorname{argmin}_{\phi}\left\{\mathcal{F}_{h}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda_{h}(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda_{h}(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}$
(b) Compute $q^{(k+1)} \in \operatorname{argmin}_{q}\left\{\mathcal{G}_{h}(q)+\left\langle\tilde{q}^{(k)}, q\right\rangle+\frac{r}{2}\left\|\Lambda_{h}\left(\phi^{(k+1)}\right)-q\right\|^{2}\right\}$
(c) Compute $\tilde{q}^{(\mathrm{k}+1)}=\tilde{q}^{(\mathrm{k})}-r\left(\Lambda_{h}\left(\phi^{(\mathrm{k}+1)}\right)-q^{(\mathrm{k}+1)}\right)$
$\underline{\text { return }\left(\phi^{(\mathrm{K})}, q^{(\mathrm{K})}, \tilde{q}^{(\mathrm{K})}\right)}$

First-order Optimality Conditions:
Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid

ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess \(\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)\); number of iterations K
Output: Approximation of a saddle point \((\phi, q, \tilde{q})\)
Initialize \(\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right)\)
2 for \(\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1\) do
    (a) Compute \(\phi^{(\mathrm{k}+1)} \in \operatorname{argmin}_{\phi}\left\{\mathcal{F}_{h}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda_{h}(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda_{h}(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}\)
    (b) Compute \(q^{(\mathrm{k}+1)} \in \operatorname{argmin}_{q}\left\{\mathcal{G}_{h}(q)+\left\langle\tilde{q}^{(\mathrm{k})}, q\right\rangle+\frac{r}{2}\left\|\Lambda_{h}\left(\phi^{(\mathrm{k}+1)}\right)-q\right\|^{2}\right\}\)
    (c) Compute \(\tilde{q}^{(\mathrm{k}+1)}=\tilde{q}^{(\mathrm{k})}-r\left(\Lambda_{h}\left(\phi^{(\mathrm{k}+1)}\right)-q^{(\mathrm{k}+1)}\right)\)
return \(\left(\phi^{(\mathrm{K})}, q^{(\mathrm{K})}, \tilde{q}^{\text {(K) }}\right)\)
```

First-order Optimality Conditions:
Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid
Rem.: For (a): discrete PDE

- if $\nu=0$, a direct solver can be used
- if $\nu>0$, PDE with $4^{\text {th }}$ order linear elliptic operator \Rightarrow needs preconditioner (See e.g. Achdou \& Perez [AP12], Andreev [And17], Briceño-Arias et al. [BnAKS18])
- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega, \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega .\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=0$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=T / 8$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=T / 4$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=3 T / 8$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=T / 2$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=5 T / 8$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega .\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=3 T / 4$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}:$ opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=7 T / 8$

Numerical Example: Congestion Without Viscosity

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}$: opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.
- Results for the mean field control (MFC) problem, with $\nu=0$ (see [AL16b])

Density at time $t=T$

Outline

1. Introduction
2. A Finite Difference Scheme
3. A Semi-Lagrangian Scheme
4. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

Optimality Conditions and Proximal Operator

- Let $\varphi, \psi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex l.s.c. proper functions.
- Consider the optimization problem

$$
\min _{y \in \mathbb{R}^{N}} \varphi(y)+\psi(y)
$$

and its dual

$$
\min _{\sigma \in \mathbb{R}^{N}} \varphi^{*}(-\sigma)+\psi^{*}(\sigma) .
$$

Optimality Conditions and Proximal Operator

- Let $\varphi, \psi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex l.s.c. proper functions.
- Consider the optimization problem

$$
\min _{y \in \mathbb{R}^{N}} \varphi(y)+\psi(y)
$$

and its dual

$$
\min _{\sigma \in \mathbb{R}^{N}} \varphi^{*}(-\sigma)+\psi^{*}(\sigma)
$$

- The $1^{\text {st }}$-order opt. cond. satisfied by a solution $(\hat{y}, \hat{\sigma})$ are
$\left\{\begin{array}{l}-\hat{\sigma} \in \partial \varphi(\hat{y}) \\ \hat{y} \in \partial \psi^{*}(\hat{\sigma})\end{array} \Leftrightarrow\left\{\begin{array}{l}\hat{y}-\tau \hat{\sigma} \in \tau \partial \varphi(\hat{y})+\hat{y} \\ \hat{\sigma}+\gamma \hat{y} \in \gamma \partial \psi^{*}(\hat{\sigma})+\hat{\sigma}\end{array} \Leftrightarrow\left\{\begin{array}{l}\operatorname{prox}_{\tau \varphi}(\hat{y}-\tau \hat{\sigma})=\hat{y} \\ \operatorname{prox}_{\gamma \psi^{*}}(\hat{\sigma}+\gamma \hat{y})=\hat{\sigma},\end{array}\right.\right.\right.$
where $\gamma>0$ and $\tau>0$ are arbitrary and
- The proximal operator of a l.s.c. convex proper $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ is:

$$
\operatorname{prox}_{\gamma \phi}(x):=\underset{y \in \mathbb{R}^{N}}{\operatorname{argmin}}\left\{\phi(y)+\frac{|y-x|^{2}}{2 \gamma}\right\}=(I+\partial(\gamma \phi))^{-1}(x), \quad \forall x \in \mathbb{R}^{N} .
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle \& Pock [CP11] ${ }^{10}$ It has been proved to converge when $\tau \gamma<1$.

Input: Initial guess $\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right) ; \theta \in[0,1] ; \gamma>0, \tau>0$; number of iterations K
Output: Approximation of $(\hat{\sigma}, \hat{y})$ solving the optimality conditions
1 Initialize $\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right)$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3 (a) Compute

$$
\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right)
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle \& Pock [CP11] ${ }^{10}$ It has been proved to converge when $\tau \gamma<1$.

```
Input: Initial guess ( }\mp@subsup{\sigma}{}{(0)},\mp@subsup{y}{}{(0)},\mp@subsup{\overline{y}}{}{(0)});0\in[0,1];\gamma>0,\tau>0; number of iterations 
Output: Approximation of ( }\hat{\sigma},\hat{y})\mathrm{ solving the optimality conditions
```

1 Initialize $\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right)$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
(a) Compute

$$
\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right)
$$

(b) Compute

$$
y^{(\mathrm{k}+1)}=\operatorname{prox}_{\tau \varphi}\left(y^{(\mathrm{k})}-\tau \sigma^{(\mathrm{k}+1)}\right)
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle \& Pock [CP11] ${ }^{10}$ It has been proved to converge when $\tau \gamma<1$.

```
Input: Initial guess \(\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right) ; \theta \in[0,1] ; \gamma>0, \tau>0\); number of iterations K
    Output: Approximation of \((\hat{\sigma}, \hat{y})\) solving the optimality conditions
1 Initialize \(\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right)\)
2 for \(\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1\) do
3 (a) Compute
    \(\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right)\),
(b) Compute
\[
y^{(\mathrm{k}+1)}=\operatorname{prox}_{\tau \varphi}\left(y^{(\mathrm{k})}-\tau \sigma^{(\mathrm{k}+1)}\right)
\]
5 (c) Compute
\[
\bar{y}^{(\mathrm{k}+1)}=y^{(\mathrm{k}+1)}+\theta\left(y^{(\mathrm{k}+1)}-y^{(\mathrm{k})}\right)
\]
6 return \(\left(\sigma^{(\mathrm{K})}, y^{(\mathrm{K})}, \bar{y}^{\mathrm{K})}\right)\)
```

${ }^{10}$ Chambolle, A. \& Thomas P.. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40.1 (2011): 120-145.

Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\},
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
- $\mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
\bullet with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.

Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\},
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
$\bullet \mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
\bullet with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.
Rem.: The max can be costly to compute but in some cases \tilde{L}_{h} has a closed-form expression. Finally $\Lambda_{h}^{*}: \mathbb{R}^{3 N^{\prime}} \rightarrow \mathbb{R}^{N}$ denotes the adjoint of Λ_{h} : for all $(m, y, z) \in \mathbb{R}^{3 N^{\prime}}, \phi \in \mathbb{R}^{N}$:

$$
\left\langle\Lambda_{h}^{*}(m, y, z), \phi\right\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}=\left\langle(m, y, z), \Lambda_{h}(\phi)\right\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}
$$

Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\}
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
$\bullet \mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
- with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.

Rem.: The max can be costly to compute but in some cases \tilde{L}_{h} has a closed-form expression. Finally $\Lambda_{h}^{*}: \mathbb{R}^{3 N^{\prime}} \rightarrow \mathbb{R}^{N}$ denotes the adjoint of Λ_{h} : for all $(m, y, z) \in \mathbb{R}^{3 N^{\prime}}, \phi \in \mathbb{R}^{N}$:

$$
\left\langle\Lambda_{h}^{*}(m, y, z), \phi\right\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}=\left\langle(m, y, z), \Lambda_{h}(\phi)\right\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}
$$

Rem.: We have $\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(m, y, z)\right)= \begin{cases}h \sum_{i=0}^{N_{h}-1} m_{i}^{N_{T}} \mathrm{~g}_{0}\left(x_{i}\right), & \text { if }(m, y, z) \text { satisfies }(\star) \text { below, } \\ +\infty, & \text { otherwise, }\end{cases}$
with $\forall i \in\left\{0, \ldots, N_{h}-1\right\}, m_{i}^{0}=\rho_{i}^{0}$, and $\forall n \in\left\{0, \ldots, N_{T}-1\right\}$:

$$
\left(D_{t} m_{i}\right)^{n}-\nu\left(\Delta_{h} m^{n+1}\right)_{i}+\frac{y_{i}^{n+1}-y_{i-1}^{n+1}}{h}+\frac{z_{i+1}^{n+1}-z_{i}^{n+1}}{h}=0 .
$$

Reformulation

The discrete dual problem can be recast as:

$$
\begin{equation*}
\inf _{(m, w)} \underbrace{\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m)}_{\varphi(m, w)}+\underbrace{\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)}_{\psi(m, w)} \tag{h}
\end{equation*}
$$

with the costs

$$
\begin{aligned}
& \qquad \mathbb{F}_{h}(m):=\sum_{i, n} \widetilde{F}\left(x_{i}, m_{i}^{n}\right)+\frac{1}{\Delta t} \sum_{i} \widetilde{G}\left(x_{i}, m_{i}^{N_{T}}\right), \quad \mathbb{B}_{h}(m, w):=\sum_{i, n} \hat{b}\left(m_{i}^{n}, w_{i}^{n-1}\right), \\
& \qquad \hat{b}(m, w):= \begin{cases}m L\left(x,-\frac{w}{m}\right), & \text { if } m>0, w \in K=\mathbb{R}_{-} \times \mathbb{R}_{+}, \\
0, & \text { if }(m, w)=(0,0), \\
+\infty, & \text { otherwise, }\end{cases} \\
& \text { and } \mathbb{G}(m, w):=\left(m_{0},\left(A m^{n+1}+B w^{n}\right)_{\left.0 \leq n \leq N_{T}-1\right) \text { with }}\right. \\
& \qquad(A m)_{i}^{n+1}:=\left(D_{t} m\right)_{i}^{n}-\nu\left(\Delta_{h} m\right)_{i}^{n+1}, \quad(B w)_{i}^{n}:=\left(D_{h} w^{1}\right)_{i-1}^{n}+\left(D_{h} w^{2}\right)_{i}^{n} .
\end{aligned}
$$

Reformulation

The discrete dual problem can be recast as:

$$
\begin{equation*}
\inf _{(m, w)} \underbrace{\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m)}_{\varphi(m, w)}+\underbrace{\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)}_{\psi(m, w)} \tag{h}
\end{equation*}
$$

with the costs

$$
\begin{aligned}
& \qquad \mathbb{F}_{h}(m):=\sum_{i, n} \widetilde{F}\left(x_{i}, m_{i}^{n}\right)+\frac{1}{\Delta t} \sum_{i} \widetilde{G}\left(x_{i}, m_{i}^{N_{T}}\right), \quad \mathbb{B}_{h}(m, w):=\sum_{i, n} \hat{b}\left(m_{i}^{n}, w_{i}^{n-1}\right), \\
& \qquad \hat{b}(m, w):= \begin{cases}m L\left(x,-\frac{w}{m}\right), & \text { if } m>0, w \in K=\mathbb{R}-\times \mathbb{R}_{+}, \\
0, & \text { if }(m, w)=(0,0), \\
+\infty, & \text { otherwise, }\end{cases} \\
& \text { and } \mathbb{G}(m, w):=\left(m_{0},\left(A m^{n+1}+B w^{n}\right)_{\left.0 \leq n \leq N_{T}-1\right) \text { with }}\right.
\end{aligned}
$$

Rem.: The optimality conditions of this problem correspond to the finite-difference system So we can apply Chambolle-Pock's method for $\left(P_{h}\right)$ with

$$
y=(m, w), \quad \varphi(m, w)=\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m), \quad \psi(m, w)=\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)
$$

See Briceño-Arias et al. [BnAKS18] ${ }^{11}$ and $\left[B_{n A K K}+19\right]^{12}$ in stationary and dynamic cases.

[^20]
Numerical Example

Setting: $g \equiv 0$ and $\mathbb{R}^{2} \times \mathbb{R} \ni(x, m) \mapsto f(x, m):=m^{2}-\bar{H}(x)$, with

$$
\bar{H}(x)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(2 \pi x_{1}\right)
$$

We solve the corresponding MFG and obtain the following evolution of the density:

Evolution of the density

Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta, Zuazua]

- the mass starts from an initial density;
- it converges to a steady state, influenced only by the running cost;
- as $t \rightarrow T$, the mass is influenced by the final cost and converges to a final state.

L^{2} distance between dynamic and stationary solutions

Summary

References I

[ACCD12] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem, SIAM J. Control Optim. 50 (2012), no. 1, 77-109. MR 2888257
[ACD10] Yves Achdou and Italo Capuzzo-Dolcetta, Mean field games: numerical methods, SIAM J. Numer. Anal. 48 (2010), no. 3, 1136-1162. MR 2679575
[Ach13] Yves Achdou, Finite difference methods for mean field games, Hamilton-Jacobi equations: approximations, numerical analysis and applications, Lecture Notes in Math., vol. 2074, Springer, Heidelberg, 2013, pp. 1-47. MR 3135339
[AL15] Yves Achdou and Mathieu Laurière, On the system of partial differential equations arising in mean field type control, Discrete Contin. Dyn. Syst. 35 (2015), no. 9, 3879-3900. MR 3392611
[AL16a] Yves Achdou and Mathieu Laurière, Mean field type control with congestion (ii): An augmented lagrangian method, Applied Mathematics \& Optimization 74 (2016), no. 3, 535-578.
[AL16b] , Mean Field Type Control with Congestion (II): An augmented Lagrangian method, Appl. Math. Optim. 74 (2016), no. 3, 535-578. MR 3575615
[AL20] , Mean field games and applications: Numerical aspects, Mean Field Games: Cetraro, Italy 20192281 (2020), 249-307.

References II

[And17] Roman Andreev, Preconditioning the augmented lagrangian method for instationary mean field games with diffusion, SIAM Journal on Scientific Computing 39 (2017), no. 6, A2763-A2783.
[AP12] Yves Achdou and Victor Perez, Iterative strategies for solving linearized discrete mean field games systems, Netw. Heterog. Media 7 (2012), no. 2, 197-217. MR 2928376
[AP16] Yves Achdou and Alessio Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games, SIAM J. Numer. Anal. 54 (2016), no. 1, 161-186. MR 3452251
[BC15] Jean-David Benamou and Guillaume Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl. 167 (2015), no. 1, 1-26. MR 3395203
[BCS17] Jean-David Benamou, Guillaume Carlier, and Filippo Santambrogio, Variational mean field games, Active Particles, Volume 1, Springer, 2017, pp. 141-171.
[BnAKK+ 19] Luis M. Briceño Arias, Dante Kalise, Ziad Kobeissi, Mathieu Laurière, Álvaro Mateos González, and Francisco J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings, ESAIM: ProcS 65 (2019), 330-348.

References III

[BnAKS18] Luis M. Briceño Arias, Dante Kalise, and Francisco J. Silva, Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim. 56 (2018), no. 2, 801-836. MR 3772008
[Car15] Pierre Cardaliaguet, Weak solutions for first order mean field games with local coupling, Analysis and geometry in control theory and its applications, Springer, 2015, pp. 111-158.
[CG15] Pierre Cardaliaguet and P. Jameson Graber, Mean field games systems of first order, ESAIM Control Optim. Calc. Var. 21 (2015), no. 3, 690-722. MR 3358627
[CGPT15] Pierre Cardaliaguet, P. Jameson Graber, Alessio Porretta, and Daniela Tonon, Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1287-1317. MR 3399179
[CP11] Antonin Chambolle and Thomas Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision 40 (2011), no. 1, 120-145. MR 2782122
[CS14] Elisabetta Carlini and Francisco J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field game problem, SIAM J. Numer. Anal. 52 (2014), no. 1, 45-67. MR 3148086

References IV

[CS15] _ A semi-Lagrangian scheme for a degenerate second order mean field game system, Discrete Contin. Dyn. Syst. 35 (2015), no. 9, 4269-4292. MR 3392626
[FG83] Michel Fortin and Roland Glowinski, Augmented lagrangian methods: applications to the numerical solution of boundary-value problems, North-Holland, 1983.
[Lau21] Mathieu Laurière, Numerical methods for mean field games and mean field type control, arXiv preprint arXiv:2106.06231 (2021).
[LL07] Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Jpn. J. Math. 2 (2007), no. 1, 229-260. MR 2295621

Unless otherwise specified, the images are from https://unsplash.com

[^0]: ${ }^{1}$ Achdou, Y., \& Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), 1136-1162.

[^1]: ${ }^{2}$ Achdou, Y., \& Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48(3), 1136-1162.
 ${ }^{3}$ Achdou, Y., Camilli, F., \& Capuzzo-Dolcetta, I. (2012). Mean field games: numerical methods for the planning problem. SIAM Journal on Control and Optimization, 50(1), 77-109.
 ${ }^{4}$ Achdou, Y., \& Porretta, A. (2016). Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM Journal on Numerical Analysis, 54(1), 161-186.

[^2]: ${ }^{5}$ Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations, numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.

[^3]: ${ }^{5}$ Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations, numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.

[^4]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^5]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^6]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^7]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^8]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^9]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^10]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^11]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^12]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^13]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^14]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^15]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^16]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^17]: ${ }^{6}$ Achdou, Y., \& Laurière, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete \& Continuous Dynamical Systems, 35(9), 3879.

[^18]: ${ }^{8}$ Carlini, E., \& Silva, F. J. (2014). A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM Journal on Numerical Analysis, 52(1), 45-67.
 ${ }^{9}$ Carlini, E., and Silva, F. J. (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete \& Continuous Dynamical Systems 35.9: 4269.

[^19]: ${ }^{8}$ Carlini, E., \& Silva, F. J. (2014). A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM Journal on Numerical Analysis, 52(1), 45-67.
 ${ }^{9}$ Carlini, E., and Silva, F. J. (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete \& Continuous Dynamical Systems 35.9: 4269.

[^20]: ${ }^{11}$ Briceno-Arias, L., Kalise, D. \& Silva, J.. Proximal methods for stationary mean field games with local couplings. SIAM Journal on Control and Optimization 56.2 (2018): 801-836.
 ${ }^{12}$ Briceño-Arias, L, et al. On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: Proceedings and Surveys 65 (2019): 330-348.

