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1. Introduction



MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

0= —%(t, x) — vAu(t,z) + H(z,m(t,-), Vu(t, z)),
0= %—?(t, x) — vAm(t,z) — div (m(t,)OpH (-, m(t), Vu(t,-))) (z),

u(T7 I) = g(x7m(T7 ))7 m(O,I) = mo(m)
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= T (t,z) — vAu(t,z) + H(z,m(t,-), Vu(t,z)),
0= %—?(t, x) — vAm(t,z) — div (m(t,)OpH (-, m(t), Vu(t,-))) (z),

u(T,m) :g(x7m(T7~))7 m(O,m) zmo(m)
Desirable properties for (1):

e Mass and positivity of distribution: [ m(t,z)dz =1, m >0

e Convergence of discrete solution to continuous solution as mesh step — 0
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
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0= %—T(t, x) — vAm(t,z) — div (m(t,)OpH (-, m(t), Vu(t,-))) (z),

u(T,m) :g(x7m(T7~))7 m(ovm) zmo(m)
Desirable properties for (1):

e Mass and positivity of distribution: [ m(t,z)dz =1, m >0
e Convergence of discrete solution to continuous solution as mesh step — 0
e The KFP equation is the adjoint of the linearized HJB equation

e Link with optimality condition of a discrete problem

= Needs a careful discretization
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= T (t,z) — vAu(t,z) + H(z,m(t,-), Vu(t,z)),
0= %—T(t, x) — vAm(t,z) — div (m(t,)OpH (-, m(t), Vu(t,-))) (z),

w(T,x) = g(z,m(T,-)),  m(0,z) =mo(x)
Desirable properties for (1):
e Mass and positivity of distribution: [ m(t,z)dz =1, m >0
e Convergence of discrete solution to continuous solution as mesh step — 0
e The KFP equation is the adjoint of the linearized HJB equation

e Link with optimality condition of a discrete problem

= Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?
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2. A Finite Difference Scheme
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2. A Finite Difference Scheme
@ FD Scheme



Discretization

Semi-implicit finite difference scheme from Achdou & Capuzzo-Dolcetta [ACD10]'
Discretization:

e For simplicity we consider the domain T = one-dimensional (unit) torus.
o Letv =0?%/2.

e We consider N;, and N steps respectively in space and time.

Let h =1/Ny and At = T/Nr. Let T, = discretized torus.

o We approximate mo(z;) by p? suchthath > p? = 1.

1Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis,
48(3), 1136-1162.
3
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Discretization

Semi-implicit finite difference scheme from Achdou & Capuzzo-Dolcetta [ACD10]'
Discretization:

e For simplicity we consider the domain T = one-dimensional (unit) torus.
o Letv =0?%/2.

e We consider Ny, and N steps respectively in space and time.

o Leth=1/N;, and At =T/Nr. Let T}, = discretized torus.

o We approximate mo(z;) by p? suchthath > p? = 1.
Then we introduce the following discrete operators : for o ¢ RY7*! and ¢ ¢ RV»

o time derivative : (D)™ = W, 0<n<Nr-1
e Laplacian : (Apy), := —i (2¢; — Yit1 —Yi-1), 0<i< Ny
o partial derivative :  (Dyv); := Ujl“h % 0<i< Ny
e gradient : [Vit]i := ((Drt))i, (Dn)i-1) , 0<i< N

1Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis,
48(3), 1136-1162.
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Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form
b(z,m,v) = v, f(z,m,v) = L(z,v) + £o(z,m), g(z,m) = go(x,m).
where z € R%, v € RY, m € Ry. Then
H(z,m,p) = m?X{—L(:E,U) — (v,p)} — fo(z,m) = Ho(z,p) — fo(z,m)

where H is the convex conjugate (also denoted L*) of L with respect to v:

Ho(x,p) = L"(z,p) = Sl{p{<v,p> — L(z,v)}



Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

b(:c,m,v) =, f(:mm,v) :L(I,U)+fo($,m)7 g(mam) = gO(Iﬁm)'

where z € R%, v € RY, m € Ry. Then

H(z,m,p) = max{—L(z,v) — (v,p)} — fo(x,m) = Ho(x,p) — fo(z,m)
where H is the convex conjugate (also denoted L*) of L with respect to v:

Ho(x,p) = L"(z,p) = Sl{p{<’v,p> — L(z,v)}

Discrete Hamiltonian: (z,p:, p2) — Ho(z,p1, p2) satisfying:
e Monotonicity: decreasing w.r.t. p; and increasing w.r.t. p2
o Consistency with Hy: for every =, p, Ho(z, p, p) = Ho(z,p)
o Differentiability: for every x, (p1,p2) — Ho(z,p1,p2) is C!
o Convexity: for every x, (p1, p2) — Ho(x, p1,p2) is convex

Example: if Hy(z,p) = |p|?, a possible choice is Ho(x, p1.p2) = (p1 )% + (p21)?



Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U, M € RNTTD>*Nn



Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U, M € RNTTD>*Nn

The HJB equation

{Btu(t, x) + vAu(t, z) + Ho(z, Vu(t,z)) = fo(x, m(t, x))
u(T, ) = go(z, m(T, x))

is discretized as:

_(Dt(/;j)n — I/(Ah( n)i + ﬁo(.’l}i, [D;L(/‘vn],j) = fo(:ri,MinJrl)
UM = go(@i, M)



Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div (m([, x)0gH (x, m(t), Vu(t, z))) =0, m(0,x) = mo(x)

is discretized as

(DeMi)" = v(AM™™ ), = (U, M"Y =0,  M{ =p}
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Discrete KFP

The KFP equation

dem(t, @) —vAm(t, ©)+div <m(z,,w)e'){,H(I.m(z). Vault, m)) =0,  m(0,z)=mo(z)

is discretized as
(D M) —v(ARM™ Y, — T (U™, M™ )y =0, M =p)
Here we use the discrete transport operator ~ — div(...)

Ti(U, M) == 1 Miaplﬁo(x¢,~[VhU}i) — Mi_18p1ﬁo(xi—1,~[vhU}i—1)
R " h + Mi+1ap2H0(l'i+1, [VhU]¢+1) — Miaszo(ﬂfi, [VhU]i)
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Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div ( (t,2)0q H (z,m(t), V u(t, z))) =0, m(0,x) = mo(x)

is discretized as
(DeMi)" = v(AM™™ ), = (U, M"Y =0,  M{ =p}
Here we use the discrete transport operator ~ — div(...)

1 < M;0p, H()({ci, [VrU]i) — M;—10p, f{o(xi_l, [VaU]i=1) )

(U, M) = — S -
7il ) h + Mi110p, Ho(wit1, [VaUlit1) — MiOp, Ho(z4, [VaU]:)

Intuition: weak formulation & integration by parts

/di\‘(m(‘,),,][”( . Vu))u /m@ Ho(z,Vu) - Vw
T

is discretized as

—hZT(( V%—hZMVqu(xZ,[VhU]) VW]

2
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Discrete System — Properties

Discrete forward-backward system:

7(DtUz‘)n — I/(Ah[fn)i + H()(:Ei, []_)},,UHL') = fo(l’i, ]\4-1-"+1)7

(Dth)n _ V(AhM"+1)i _ 7—/((;” M'n+1) — 07

TN N -
MY =8, UM = goan MYTY, =0, N,

VHSNTfl
Vn < Np —1

2Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis,

48(3), 1136-1162.

Achdou, Y., Camilli, F., & Capuzzo-Dolcetta, I. (2012). Mean field games: numerical methods for the planning problem.

SIAM Journal on Control and Optimization, 50(1), 77-109.

4Achd0u, Y., & Porretta, A. (2016). Convergence of a finite difference scheme to weak solutions of the system of partial
differential equations arising in mean field games. SIAM Journal on Numerical Analysis, 54(1), 161-186.



Discrete System — Properties

Discrete forward-backward system:

7(Dt(/"i)n — I/(Ah(i'n)i + H()(:Ei, [D;,,UHL) = fo(wi, M-"+1), Vn < Np—1

(D M)™ — v(ARM™ ), — T (U™, M™Th) =0, vn < Nr—1
MY =p?, UM =go(w, MIT),  i=0,..., Ny

This scheme enjoys many nice properties, among which:
e |t yields a monotone scheme for the KFP equation: mass and positivity are preserved
e Convergence to classical solution if monotonicity [ACD10, ACCD12]?3
e Can sometimes be used to show existence of a weak solution [AP16]*
e The discrete KFP operator is the adjoint of the linearized Bellman operator
o Existence and uniqueness result for the discrete system
e |t corresponds to the optimality condition of a discrete optimization problem (details later)

2Achdou, Y., & Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal on Numerical Analysis,
48(3), 1136-1162.

3Achdou, Y., Camilli, F., & Capuzzo-Dolcetta, |. (2012). Mean field games: numerical methods for the planning problem.
SIAM Journal on Control and Optimization, 50(1), 77-109.

4Achdou, Y., & Porretta, A. (2016). Convergence of a finite difference scheme to weak solutions of the system of partial
differential equations arising in mean field games. SIAM Journal on Numerical Analysis, 54(1), 161-186.
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2. A Finite Difference Scheme

@ Algorithms



Algo 1:

Fixed Point lterations

1
2

6

Input: Initial guess (M, U); damping 4(-); number of iterations K
Output: Approximation of (M1, U) solving the finite difference system
Initialize M(© = M@ = 3, U@ =T

fork=0,1,2,...,K—1do

Let U+ be the solution to:

—(DU)" = v(ARU™); + Ho (i, [DAU]) = £o(zs, ME™Y), n < Np—1
UNT = go (s, MINT)
Let MV be the solution to:

{(DtMi)" —v(A M"Y = T(UED M) =0, n< Np—1
MY = p}

| Let MO = §()M® + (1 — 5(k))M )
return (M®, U®)




Algo 1: Fixed Point lterations

1
2

5

Input: Initial guess (M, U); damping 4(-); number of iterations K
Output: Approximation of (M1, U) solving the finite difference system
Initialize M(© = M@ = 3, U@ =T

fork=0,1,2,...,K—1do

Let U**1) be the solution to:

—(DeU)"™ = v(ARU™)s + Ho(z, [DAU") = £o(ai, MI™), n < Np —1
UNT = go(wi, MINT)

Let M **V be the solution to:

{(DtMi)" — (A MY, = (U M) =0, n< Np—1
M} = p?

Let M) = §(k)NT® + (1 — 5(k)) M)

6 return (M® ®)

Remark: the HJB equation is non-linear
e Idea 1: replace Ho(x;, (D), U™];) by Ho(xz;, [Dp U 7];)



Algo 1:

Fixed Point lterations

1
2

Input: Initial guess (M, U); damping 4(-); number of iterations K
Output: Approximation of (M1, U) solving the finite difference system
Initialize M(© = M@ = 3, U@ =T

fork=0,1,2,...,K—1do

Let U+ be the solution to:

3
—(DeU)" = v(ARU™ )i + Ho(ai, [DAU"]) = £olws, M), n < Nr—1
UNT = go(wi, MINT)
4 Let MV be the solution to:
(DeM)™ — U(Ah]\'[n-'—l)l — T (UGt A,{n+ly> =0, n<Nr—1
M = pg
5 | Let M) = §k) MW + (1 — 5(k)) M

6

return (M ® 7®)

Remark: the HJB equation is non-linear
e Idea 1: replace Ho(x;, [D,U"];) by Ho(x;, [DyUX)7];)

o Idea 2: use non linear solver to find a zero of RVNx X (NT+1) 5 U/ 1y (U) € RNRXNT |

oU) = ( — (DeUs)™ — v(ARU™); + Ho (i, (D U™];) — fo(l’ivf\;fi(k)’nﬂ))

n=0,...,Np—1
i=0,...,Np—1
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Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, o) " With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X — (U(k)7M(k))T
@ lterate: X*+D) — x () _ JW(X(k:))flw(X(k))

9/43



Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, o) " With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (U™, p*)T
@ lterate: X*+1) = x® _ (xR~ 1o xRy
@ Orrather: J,(X")Y = —p(X®), then Xk =y 4 x*
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Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (v, om) " with ¢y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (U™, p*)T
@ lterate: X*+1) = x® _ (xR~ 1o xRy
@ Orrather: J,(X")Y = —p(X®), then Xk =y 4 x*

Key step: Solve a linear system of the form

Auu  Aum U\ _ ([ Gu
AM,L{ AM,M M Gm

where Ay m(U, M) =Vuom(U, M), Auu(U,M)=YVueu(U, M),

/43



Newton Method — Implementation

; N Auu Aum U\ _ ([ Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, and

Dy 0o ... 0
1 .
-y, Do . 0
Auu = 0
: 0
. . )
0 -0 —ZFZldy, Dy

where D,, corresponds to the discrete operator

1 r'7 c),n
ApZid V(ARZ)i g+ [VaZlij - VpHo(xi s, [VaU™” ]”')).

2%

Z = (Zij)ij— (

5Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations,
numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.
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Newton Method — Implementation

; N Auu Aum U\ _ ([ Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, and

Dy 0o ... 0
1 T :
-y, Do . 0
Auu = 0
: 0
. . )
0 -0 —ZFZldy, Dy

where D,, corresponds to the discrete operator

1 r'7 c),n
Z = (Zij)ij— (EZM —v(AnZ)ij + [VaZlij - VpHo(zi g, [VaU™ ]m‘))

irj
Rem. Initial guess (U®), M () is important for Newton’s method

e |dea 1: initialize with the ergodic solution
e l|dea 2: continuation method w.r.t. v (converges more easily with a large viscosity)

See Achdou [Ach13]® for more details.

5Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations,
numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®

exit exit

Geometry of the room

6Achdou, Y., & Lauriére, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete

& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®

o kN ow e
S ninw e

Initial density (left) and final cost (right)

6Achd0u, Y., & Lauriére, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete
& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®

(SR ARG

.
o =™
o-=NnwsG

Density in MFGame (left) and MFControl (right)

6Achdou, Y., & Lauriére, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete
& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®

(=R VAN NG

T
oSN WwhO
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o =N wh,Oa

Density in MFGame (left) and MFControl (right)

6Achdou, Y., & Lauriere, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete
& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®
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Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®
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Example: Exit of a Room — Distribution

Example: evacuation of a room with obstacles and congestion [AL15]®

3000 4

2500 1

2000 4

1500 1

number of people

1000 4

Remaining mass inside the room

6Achdou, Y., & Lauriére, M. (2015). On the system of partial differential equations arising in mean field type control. Discrete
& Continuous Dynamical Systems, 35(9), 3879.
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Example: Exit of a Room — Remaining Mass

Example: evacuation of a room with obstacles and congestion [AL20]”

3000 1

2500 1

2000 1

1500 1

number of people

Remaining mass inside the room

7Achdou, Y., & Lauriére, M. (2020). Mean Field Games and Applications: Numerical Aspects. Mean Field Games: Cetraro,
Italy 2019, 2281, 249-307.
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3. A Semi-Lagrangian Scheme



MFG Setup

@ Scheme introduced by Carlini & Silva [CS14]®

@ For simplicity: d =1, domain S =R, A =R

@ v =0 (degenerate second order case also possible; see [CS15]°)
@ Model:

b(z,m,v) =v
1
Flem) = Lol + folwm).  glam)

where fo and g depend on m € P1(R) in a potentially non-local way

8Carlini, E., & Silva, F. J. (2014). A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM
Journal on Numerical Analysis, 52(1), 45-67.
QCarIini, E., and Silva, F. J. (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete & Continuous Dynamical Systems 35.9: 4269.
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MFG Setup

Scheme introduced by Carlini & Silva [CS14]8

For simplicity: d = 1, domain S =R, A =R

v = 0 (degenerate second order case also possible; see [CS15]°)
Model:

b(z,m,v) =v
1
Flem) = Lol + folwm).  glam)

where fo and g depend on m € P1(R) in a potentially non-local way
@ MFG PDE system:

~ S t,a) + o Vult, ) = fola,m(t, ), in[0,7) %,

—(t,z) — div (m(t, ) Vu(t,-)) (z) =0, in (0,7] x R,
u(T,z) = g(z,m(T, ")), m(0,z) = mo(z), in R.

SCarIini, E., & Silva, F. J. (2014). A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM
Journal on Numerical Analysis, 52(1), 45-67.

QCarIini, E., and Silva, F. J. (2015). A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete & Continuous Dynamical Systems 35.9: 4269.
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Representation of the Value Function

@ Dynamics:

t
X, =X, Jr/ v(s)ds, t>0.
0

@ Representation formula for the value function given m = (m:).co,17:

u[m](t,z) = inf {/tT [%|v(5)|2 + fo(X;'vt{m(s,.))} ds

veL2([t,T];R)
+9(Xp ", m(T, ) |,

where X*"** starts from 2 at time ¢ and is controlled by v

14/43



Discrete HJB equation

Discrete HJB: Given a flow of densities m,

UZL = SAt,h[m](Un+lai7n)7 (TZ,’L) € [[NT - 1]] X Z7
UZ.NT = g(zi, m(T},-)), i € Z,

where
@ Sa:p is defined as

Sacanm)(W,n,) = inf { (%W ¥ folwi, m(tn, .))) At + I[W](z: + v At)} 7
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Discrete HJB equation

Discrete HJB: Given a flow of densities m,

Ul = Saen[m)(U™i,n),  (n,i) € [Nr — 1] x Z,
UZ_NT = g(zs,m(T, ")), i €7,

where
@ Sa:p is defined as

Sacalm](Wn,i) = inf { (%W + folas, m(t, ‘))) At + I[W](2: + v At)} 7

@ with I : B(Z) — C»(R) is the interpolation operator defined as
W) =Y Wi,
i€EZL
@ where B(Z) is the set of bounded functions from Z to R

@ and f; = [1 - lz52] , triangular function with support [z;—1,zi+1] and s.t
Bi (acz) =1.
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Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;")n,:, construct the function
uagn[m](z,t) 1[0, T] x R = R,

unen[ml(t, z) = IUBT)(z),  (t,x) € [0,T] x R.
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Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;")»,:, construct the function
uagn[m](z,t) 1[0, T] x R = R,

waca[ml(t,x) = U3 (@), (t,2) € [0,T] x R.

@ Regularization of HJB solution with a mollifier p.:

ueAt,h[m](t7 ) = Pe * uAt,h[m](tv ')’ te [07 T]
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Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
> evolution characterized by the velocity at (¢, z)

@ Lagrangian viewpoint:

» focus on a fluid parcel
> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =
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Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
> evolution characterized by the velocity at (¢, z)

@ Lagrangian viewpoint:
» focus on a fluid parcel

> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =

@ Here, in our model:
t
X! =X, +/ v(s)ds, t>0.
0

@ Time and space discretization?
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Discrete KFP equation: intuition — diagram

1
1
1
1
1
1
n+1 n+1 1 n+1
\//7| ]// ) J//7|
X el
|

Tj-1 Zj Tjt1 Tjy2
@ + n”A/
n n ". n
M M MY
. R
Li—1 Tit1

Movement of the mass when using control v(t,,, z;) = af'.

Bottom: time ¢,,; top: time ¢,,41.
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Discrete KFP equation: intuition — diagram

Bi+1

+1 +1
M M7
R
o Tj b Tj x
j—1 J - J+1 Jt+2
[
;A af At
M7 M7 M7,
. R
Ti-1 Tit1

Movement of the mass when using control v(t,, z;) = af.

Bottom: time ¢,,; top: time ¢,,+1.
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Discrete KFP equation: intuition — diagram

5;/' ! ﬁ]+1

/
Tjo1 II i ‘;\ Tj1 Tjt2
1 LA
I s ialAt
, :
L
1 7’
- - -
M, M I M7,

Ti-1 T Tip1

Movement of the mass when using control v(t,, ;) = af.

Bottom: time t,,; top: time ¢,,+1.
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Discrete KFP equation

@ Control induced by value function:

/f}(At,/L [m] (t7 :17) = _vueAt,h[m] (t7 IL’),

and its discrete counter part: 05, ; = 0x, 5, [m](tn, xi).

@ Discrete flow:

D7, r1:m] =z 4+ Oarn[m](tn, Ti) AL .
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Discrete KFP equation

@ Control induced by value function:
/IA}.(At,/L [m] (t7 :17) = _vueAt,h[m] (t7 IL’),

and its discrete counter part: 05, ; = 0x, 5, [m](tn, xi).

@ Discrete flow:
D7, r1:m] =z 4+ Oarn[m](tn, Ti) AL .
@ Discrete KFP equation: for M<[m| = (M;"[m])n,s:
M m] = 3 Bi (Pngri[m]) My [m],  (n,i) € [Nr —1] x Z,

MO [m] = mo(x)dz, i€ Z.
oi—h/2ei+h/2)
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Fixed Point Formulation

@ Function my, ;,[m] : [0,T] x R — R defined as: for n € [Ny — 1], for
t € [tn,tnt1),

1 | tntr — .
misealml(t ) = 3 | S M 1, e (2)
1EZL

t— tn €,n
A E;M Hm) L —n/2ain/21 (@)
1€
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Fixed Point Formulation

@ Function my, ;,[m] : [0,T] x R — R defined as: for n € [Ny — 1], for
t € [tn,tnt1),

. 1 | tpgr —t .
mienm](tx) = ¢ | TR D M Ly ny2e 2 ()

i€EZ

t_tn e,n+1
A E;Mi T m L - ny2a 2 (@)
i€

@ Goal: Fixed-point problem: Find A/ = (M), ., such that:

M} = M [mi,[M])].
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Fixed Point Formulation

@ Function my, ;,[m] : [0,T] x R — R defined as: for n € [Ny — 1], for
t € [tn,tnt1),

. 1 | tpgr —t .
maen[m(t @) = + | 75 M m e, —ny2,2i40/2 (%)
h At

i€EZ

t—tn e,n+1
7 E;Mi (M1, —h/2,0,4h/2) (T)
S

@ Goal: Fixed-point problem: Find A/ = (M), ., such that:

NI = M [ [V].

@ Solution strategy: Fixed point iterations for example
@ See [CS14] for more details
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Numerical Illustration

Costs: 1
9=0,  fla.m,v) = 0P + (= ) +mueV(a,m),
with
V(z,m) = Poy * (va *m)(x),
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Numerical lllustration

Costs: 1
9=0,  flemv) =3 + (@) +raeV(e,m),
with
V(z,m) = poy * (poy xm) (),

Experiments: target ¢* = 0, mo = unif. on [—1.25, —0.75] and on [0.75, 1.25]

— Min=0
16 —— Mg.n=40
— Mgn=80
14 — M;n=120
— M5n=160
— M£,n=200
—— Min=240
—— Mg.n=280
Mg, n=320
—— ME,n=360
— M£,n=400

(See [Lau21] for more details on the experiments)
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Outline

4. Optimization Methods for MFC and Variational MFG



Outline

4. Optimization Methods for MFC and Variational MFG
@ Variational MFGs and Duality



Variational MFGs

Key ideas:

@ Variational MFG

@ Duality

@ Optimization techniques
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A Variational MFG

@ d=1,domain=T
@ drift and costs:
b(z,m,v) = v, flz,m,v) = L(z,v) + £o(z,m), g(z,m) = go(x).
where z € R4, v e R, m € Ry.
@ Then

H(z,m,p) =sup{—L(z,v) —vp} — fo(x,m) = Ho(z,p) — £fo(z,m)
@ where H is the convex conjugate (also denoted L*) of L with respect to v:
Ho(z,p) = L™ (z,p) = sup{ vp — L(z,v)}

@ Further assume (for simplicity)

1 1
L(z,v) = 5\’U|2, Ho(z,p) = §|P|2
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A Variational MFG

@ d=1,domain=T
@ drift and costs:
b(z,m,v) = v, flz,m,v) = L(z,v) + £o(z,m), g(z,m) = go(x).
where z € R4, v e R, m € Ry.
@ Then
H(z,m,p) =sup{—L(z,v) —vp} — fo(x,m) = Ho(z,p) — £fo(z,m)

@ where H is the convex conjugate (also denoted L*) of L with respect to v:

Ho(x,p) = L™ (x,p) = sup{ vp — L(x,v)}

v

@ Further assume (for simplicity)

1 1
L(z,v) = 5\’U|2, Ho(z,p) = §|P|2

@ Claim:
MFG PDE system < optimality condition of two optimization problems in duality
Lasry & Lions [LLO7], Cardaliaguet et al. [Car15, CG15, CGPT15], Benamou et al. [BCS17]
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A Variational Problem

@ At equilibrium, £(X;) = 4, and

J(0;m) [ F(Xe,m(t, Xy), @(t,Xt))dt—i—g(XT)]

/OT/ fla,m(t,z),0(t,x)) m(t,x)d:vdtJr/T ()T, z)dz

T
=L(z,0(t,z))+£o(2,m(t,T))

subject to:
0= ) — vam(t z) +d1v< (t, ) b(-, (), o(1 -)))(x) o = mo
ot 2L M), O, ) ) ),

=d(t,)
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A Variational Problem

@ At equilibrium, £(X;) = 4, and

J(0;m) [ f(Xe,m(t, Xe), A’(tvxt))dt‘i‘g(XT)]

/OT/ fz,m(t, ), 0(t,z)) m(t,x)d:vdtJr/T ()T, z)dz

T
=L(z,0(t,z))+£o(2,m(t,T))

subject to:
0= 9™ (4 2) — vAm(t, z) +d1v< (t, ) b(-, (), 0t -)))(w) o = mo
o 2L e, o) ) (),

=d(t,)

@ Change of variable:

w(t,x) = m(t,z)o(t, x)
B, i) / / it ) +fo(m,m(t,x))}m(t,x)dmwr/g(x)m(zzx)dm

’ T
subject to:

om N AN A
0= E(t,x) — vAm(t,z) + div (w(t7 )) (), Mo = mo
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)

Reformulation
@ Reformulation
B, i) _/ / ;”1 ) (t,2) + £ol, M(t, z))i( )]dwdt
F(x,m(t,x))
L(z,rh(t,.r) w(t,x))
+ [ gayn(r.aya
T
G(z,m(t,z))
/ / (t,x), 0(t, x)) + F(z, m(t, x))} dzdt +/G(x m(t,x))dz
T
subject to:
O (t,z) — vAM(t,z) + div ( (¢, )) (), Mo = mo
25/43
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Reformulation
@ Reformulation
B(r, d) / / :1 ) (t,2) + folz, m(t, ) )}dmdt
- F(z,m(t,z))
L(z,m(t,.r) w(t,x))
+ [ gayn(r.aya
T
G(z,m(t,z))
/ / (t,x), 0(t, x)) + F(z, m(t, x))} dzdt +/G(x m(t,x))dz
T
subject to:
om N
(t,z) — vAM(t,z) + div ( (¢, )) (), Mo = mo
25/43

0=
ot
@ Convex problem under a linear constraint, provided L, F', G are convex



Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m, mv):

Bl w) = /0 ' /T (E(x,m(t,m),w(t,x))+ﬁ(m,m(t,m))) dzdi+ /T Gla, m(T, ))de

subject to the constraint:

Oym — vAm + div(w) = 0, m(0,z) = mo(x)
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Primal Optimization Problem

Primal problem: Minimize over (m,w) =

subject to the constraint:

Orm — vAm + div(w) = 0,

(m, mv):

B(m,w) = /OT/T (z(m,m(t,x),w(t,x)) —I—ﬁ(m,m(t,x))) dxdt—l—/ é(x,m(T, z))dz

T

m(0,z) = mo(x)

where
if m >
F(x m) = fo (z,8)ds, ifm _.0,
+00, otherwise,
and
mL (:m %) ,
L(z,m,w) =< 0,
+o0,

where R 5 m — f(x,m) = Om(m £o(x,m))

E?(x,7n) _ {7n'g0(x)7

+o0,
if m > 0,
ifm=0and w =0,
otherwise

ifm >0,
otherwise,

is non-decreasing (hence F convex and l.s.c.) provided m — m fo(x, m) is convex.
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf A(,m)

with A(¢, m) — / ’ / m(t, @) (aﬁz)(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf Ao, m)

with A(¢, m) — / ’ / m(t, @) (&(;S(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.

Duality relation: A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)
A(¢) = inf A(¢,m)

with A(¢p, m / /m (¢, x) 3tq5 (t,z) + vA(t,x) — H(z,m(t,z), Vo(t, x)))dxdt
+/m0(:r)gb(0,x)dx.

Duality relation: A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)

Proof: Fenchel-Rockafellar duality theorem and observe:
®) =it {F0)+ @)} @)= it {FW )+ 6" (-, —0))
0] m,w

where F7*, G* are the convex conjugates of 7, G, and A* is the adjoint operator of A, and
M) = (55 +v20,V 8),

_ N . if ol¢=7 = g0
F(d) = x1(9) /Td mo(z)¢(0,z)dx,  xr(d) = {+OO otherwise,
T
g(SDhSD?) = - inf m(t,x) (Sol(tv .’13) —H((E,m(t, w)7902(tvx)))dxdt'
0<meLL((0,T)xTd) 0 Td
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Outline

4. Optimization Methods for MFC and Variational MFG

@ Alternating Direction Method of Multipliers



Augmented Lagrangian

Reformulation of the primal problem:

(A) = —int{ F(8) + G(A(¢) } = —int inf{ F(6) + G(a), subi. to.q = A(9)}.

q

@ The corresponding Lagrangian is

L(¢,q,q) = F(0) +G(q) — (4, A(9) — q).
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Augmented Lagrangian

Reformulation of the primal problem:

(A) = —igf{]—"(q‘)) n g(A(@))} — —inf inf{]—"(@) +G(q), subj. o g = A(¢)}.

q

@ The corresponding Lagrangian is

L($,q,9) = F(d) +G(q) — (4, AM¢) — q)-

@ We consider the augmented Lagrangian (with parameter r > 0)
g ~ , - T
£7(6,4:9) = L(6,4,0) + 5/|1A) — all”

@ Goal: find a saddle-point of £".
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Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,¢,4) = F(¢) + G(q) — (G, A(¢) — @) + 5/IA(¢) — al?

Input: Initial guess (¢'”, ¢'”, §®); number of iterations K

Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference system
1 Initialize (¢, ¢'?, )
2 fork=0,1,2,...,K—1do
3 (a) Compute

PV ¢ argmin{}'(o) — (@, A@) + S IA@) - q<k>H2}

o)

References: ALG2 in the book of Fortin & Glowinski [FG83];
— in MFG: Benamou & Carlier [BC15], Andreev [And17]; in MFC: Achdou & L. [AL16a]



Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,¢,4) = F(¢) + G(q) — (G, A(¢) — @) + 5/IA(¢) — al?

Input: Initial guess (¢'”, ¢'”, §®); number of iterations K

Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference system
1 Initialize (¢, ¢'?, )
2 fork=0,1,2,...,K—1do
3 (a) Compute

PV ¢ argmin{}'(o) — (@, A@) + S IA@) - q<k>H2}

o)

4 (b) Compute

. ~ T ,
" e argmm{g(q) + (q(k), q) + §||A\(c>(k+l)) — qHZ}

q

References: ALG2 in the book of Fortin & Glowinski [FG83];
— in MFG: Benamou & Carlier [BC15], Andreev [And17]; in MFC: Achdou & L. [AL16a]



Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,¢,4) = F(¢) + G(q) — (G, A(¢) — @) + 5/IA(¢) — al?

Input: Initial guess (¢'”, ¢'”, §®); number of iterations K

Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference system
1 Initialize (¢, ¢'?, )
2 fork=0,1,2,...,K—1do
3 (a) Compute

$UD ¢ argmin{}'(o) — (@, A@) + S IA@) - q<k>H2}

o)

4 (b) Compute

) ~ o
" e argmm{g(q) + (@™, q) + §||A\(c>(k“)) - qHz}

q

5 (c) Compute
q(k+1) — q(k) —r (A(o<k+l)) _ q(k+|))

6 return (¢, ¢®, g®))

References: ALG2 in the book of Fortin & Glowinski [FG83];
— in MFG: Benamou & Carlier [BC15], Andreev [And17]; in MFC: Achdou & L. [AL16a]
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ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = %|p|2. We take ﬁo(x,pl,pg) = %|(p1_,p;r)|2.

Discrete version of the dual convex problem:

(An) = = inf {Fi(9) +Gn(An(o))},

where A, : RN — R3N is defined by : Vn € {1,..., Nz}, Vi€ {0,..., N, — 1},

(An () = ((Dedi)" +v (Ah¢"71)i V"),
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ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = |p|*. We take Ho(z,p1,p2) = 3|(p1,p3)|*.

Discrete version of the dual convex problem:

(An) = — qiierl}%fN {Fn() + Gn(An(e)},

where A;, : RN — R* is defined by : Vn € {1,...,Nr}, Vi € {0,..., N, — 1},

(An(@)i = ((Deo)" +v (Aned" ) (Vi i),

il
7

where F},, Gy, are the l.s.c. proper functions defined by:

Nj—1
Fn:RY 3¢ xr(¢)—h Z pid; € RU{+o0},
=0
Np Nj—1
G : R 3 (a,b,¢) — — hAtZ Z Kn(zi,ai,bi,ci) € RU{+o0},
n=1 i=0

with
i 0 ifelT =gp(zi)
K: = 1 I{ 5 3 ) ) = ! H
n(z,00,p1,p2) = min {mlao + How,m.pr.p2)l}, X7 (9) {+oo otherwise.
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ADMM with Discretization

Discrete Aug. Lag.: £}, (¢,q,4) = Fn(¢) + Gnlq) — (@, An(d) — @) + E[[A(0) — gl

Input: Initial guess (¢(*, ¢(*, ¢®); number of iterations K
Output: Approximation of a saddle point (¢, ¢, §)

1 Initialize (6, ¢, )

2 fork=0,1,2,...,.K—1do

3 (a) Compute ¢V ¢ nl‘gmino{}"h (@) = (@™, An(8)) + 5l An(d) — q(k)”?}
« | (b) Compute ¢*") € argmin, {gh( )+ (@9, g) + T An(65D) —qHz}

5 (¢) Compute g+ = g® —r (A (¢*1) — ¢ “)
6 return (¢, ¢ G®)
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ADMM with Discretization

Discrete Aug. Lag.: £},(¢,4,d) = F1(¢) + Gn(q) — (@, An(0) — ) + 5[A(0) — alf®

Input: Initial guess (¢”, ¢!, §@); number of iterations X
Output: Approxmatlon of a saddle point (¢, ¢, ¢)

1 Initialize (6, ¢, )

2fork70,1,2 Kfldo

3 (a) Compute ¢V ¢ nl'gmino{}"h (@) = (@™, An(8)) + 5l An(d) — q(k)”?}

4 (b) Compute ¢V ¢ argmin, {gh( )+ (d®,q SlAR(g pUHD)) — qHz}

5 (¢) Compute G+ = G — 1 (A, (p¢TY) — gl “)

6 return (¢, ¢ G®)

First-order Optimality Conditions:
Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid
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ADMM with Discretization

Discrete Aug. Lag.: £;,(¢,4,4) = F(¢) + Gn(a) — (@, An(9) — a) + 5] A(0) — g|?

Input: Initial guess (¢(*, ¢(*, ¢®); number of iterations K
Output: Approximation of a saddle point (¢, ¢, §)

1 Initialize (6, ¢, )

2 fork=0,1,2,...,.K—1do

3 (a) Compute ¢V ¢ nl'gmino{}"h (@) = (@™, An(8)) + 5l An(d) — q(k)”?}

a | (b) Compute ¢*) € argminq{gh(fn +(@%, @) + Sl[A(a"TY) — qHz}

5 (¢) Compute g+ = g® —r (A, (")) — g*HD)

6 return (¢, ¢ G®)

First-order Optimality Conditions:
Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE
e if v = 0, a direct solver can be used

o if v > 0, PDE with 4t order linear elliptic operator = needs preconditioner
(See e.g. Achdou & Perez [AP12], Andreev [And17], Bricefio-Arias et al. [BnAKS18])
31/43



Numerical Example: Congestion Without Viscosity

o Domain Q = [0, 1]2\[0.4, 0.6]* (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —&-p— L(m,m,f)} = m_o‘|p|[3 —l(xz,m), fzxeqQ,
£er?

sup {—&-p— L(z,m,8)}, if 2 € 9.
EER2 : £.n<0

H(xz,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

32/43



Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —f-p—L(x,m,f)} = m_a|p|ﬂ —l(z,m), ifzeq,

H(a,m,p) = {
(z,m. p) sup {f§~pr(:c,m,f)}, if x € 00
EER2 : £.n<0

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t =0
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —f-p—L(x,m,f)} = m_a|p|ﬂ —l(z,m), ifzeq,

H(a,m,p) = {
(z,m. p) sup {f§~pr(:c,m,f)}, if x € 00
EER2 : £.n<0

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 7'/8
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sup { —f-p—L(x,m,f)} = m_a|p|ﬂ —l(z,m), ifzeq,

H(a,m,p) = {
(z,m. p) sup {f§~pr(:c,m,f)}, if x € 00
EER2 : £.n<0

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 7'/4
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —&-p— L(m,m,ﬁ)} =m p|® —b(z,m), ifzeQ,
£€R2

sup  { —&-p— L(z,m,€)}, if z € 99.
EER2 : £.n<0

H(z,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 377/8
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e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)
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e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 7'/2
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —&-p— L(m,m,ﬁ)} =m p|® —b(z,m), ifzeQ,
£€R2

sup  { —&-p— L(z,m,€)}, if z € 99.
EER2 : £.n<0

H(z,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 577/8
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —f-p—L(x,m,f)} = m_a|p|ﬂ —l(z,m), ifzeq,

H(a,m,p) = {
(z,m. p) sup {f§~pr(:c,m,f)}, if x € 00
EER2 : £.n<0
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L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 377/4
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —&-p— L(m,m,ﬁ)} =m p|® —b(z,m), ifzeQ,
£€R2

sup  { —&-p— L(z,m,€)}, if z € 99.
EER2 : £.n<0

H(z,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density at time ¢t = 777/8
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1)*\[0.4, 0.6] (obstacle at the center)
e Define the Hamiltonian by duality (on 052 the vector speed is towards the interior)

sup { —f-p—L(x,m,f)} = m_a|p|ﬂ —l(z,m), ifzeq,

H(a,m,p) = {
(z,m. p) sup {f§~pr(:c,m,f)}, if x € 00
EER2 : £.n<0

e The associated Lagrangian (corresponding to the running cost) is:
L(z,m, &) = (B-1)8"" msT(¢)" +(x,m), 1<B<2,0<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
e Results for the mean field control (MFC) problem, with v = 0 (see [AL16b])

Density attime ¢t =T
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Outline

4. Optimization Methods for MFC and Variational MFG

@ A Primal-Dual Method



Optimality Conditions and Proximal Operator

@ Letp,v: RY — RU {+00} be convex |.s.c. proper functions.
@ Consider the optimization problem

min ¢(y) + P (y),

yERN
and its dual
min ¢"(—0) +¢*(0).

ocE€RN
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Optimality Conditions and Proximal Operator

@ Letp,v: RY — RU {+00} be convex |.s.c. proper functions.
@ Consider the optimization problem

min ¢(y) + ¢ (y),

yERN
and its dual
min ¢"(—0) +¢*(0).

ocE€RN

@ The 1°-order opt. cond. satisfied by a solution (3, 5) are

~vede(s)  [i-To€Top(H)+3
g€ oy(s) &+ g € v0v*(

—
kel
g
>v<
= C
|
<>

E;
Jr
QD
I
Q>

where v > 0 and 7 > 0 are arbitrary and
@ The proximal operator of a |.s.c. convex proper ¢: RY — RU {40} is:

prox_ 4 () := argmin {¢(y) + %} = (I +0(¢) *(z), VzeR" .

yeRN
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Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle & Pock [CP11]' It has
been proved to converge when 7y < 1.

Input: Initial guess (¢, 4, 5®); 6 € [0,1]; 4 > 0,7 > 0; number of iterations K
Output: Approximation of (&, 7) solving the optimality conditions

1 Initialize (¢, y©, 5()

2 fork=0,1,2,...,.K—1do

3 (a) Compute

(k))

oD = Prox.,,- (0™ + i




Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle & Pock [CP11]' It has
been proved to converge when 7y < 1.

Input: Initial guess (¢, 4, 5®); 6 € [0,1]; 4 > 0,7 > 0; number of iterations K
Output: Approximation of (&, 7) solving the optimality conditions

1 Initialize (¢, y©, 5()

2 fork=0,1,2,...,.K—1do

3 (a) Compute
ot = Prox.,,- (c® + ~5™)

4 (b) Compute

(k41

y ) — proxﬂ;(yu() _ T(T(k+l>).




Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by Chambolle & Pock [CP11]' It has
been proved to converge when 7y < 1.

Input: Initial guess (¢, 4@, 5(); 6 € [0,1]; v > 0,7 > 0; number of iterations K
Output: Approximation of (5, 7) solving the optimality conditions

1 Initialize (¢, y©, 5()

2 fork=0,1,2,...,.K—1do

3 (a) Compute

o) (k) —(k))

= prox_ (0" +y

4 (b) Compute

y(k+1) — proxw(ym _ T(T(k+l>).

5 (c) Compute

GUHD — 0D gy (4D

g (k))'

y

6 return (o y® §®)

1OChamboIIe, A. & Thomas P.. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of

mathematical imaging and vision 40.1 (2011): 120-145.
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay,) is:

[ (By) = min  {Fp (A} (0) + Gi(-0)}, ]

(m,w1,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

o Fru) = SUPgeRrN {(M: ¢)e2(RN) - fh(¢)}y VueRN

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) qg{g)};,{ (0.0) s oy~ 9(a) | hAtZ:l ; Ly(wi,of), Vo R

o with L, (¢, 00) = max,, cgs { — 00 -po+ ICh(:c,qo)}, Yoo € R3.
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay,) is:

[ (Bn) = min A F @A) + G-} ]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV
Np Nj—1

¢ Gl (—0) = max { — <‘7’q>£2(R3N’) —gh(q)} = hAtZ Z f/h(zi,U?), Vo e R3Y

g n=1 i=0
o with L, (¢, 00) = max, g3 { — 00 - po + Kp(z, qo)}, Yoo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.
Finally Ay : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(¢)>g2(R3N’)
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay,) is:

[ (Bn) = min A F @A) + G-} ]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) g;;fv{ (0,0) 2 o)~ Gn0) } hm; ;Lh(zuoz ), VoeR

o with L, (¢, 00) = max,, cgs { — 00 - po + Kp(z, qo)}, Voo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.

Finally A} : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(®)>g2(R3N’)

Np—1 . -
Rem.: We have 7+ (A% (m, y, 2)) — h Zi:’lo mZNT go(x;), if (m,v, 2) satisfies (x) below,
.- h h b 9 -

+o00, otherwise,
with Vi € {0,...,Np — 1}, m{ = p?, andVn € {0,..., Ny — 1}:
n+1 n+1 n+1 n+1
Y Y Zi —
(Dem)" —v (Apm™ ) 4 = R =0, *)
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Reformulation

The discrete dual problem can be recast as:

1nf) By, (m, w) + Fr(m) + tg-1(,0 0y (m, w) (Pr)
—_—

(m,w

o(m, w) P(m, w)

with the costs

En(m) = > Fas ”>+—ZG%m ), Ba(mw):= Y bmPwlh),

in in
mL(x,—%), ifm>0,we K=R_ xRy,
b(m,w) := ¢ 0, if (m,w) = (0,0),
+o00, otherwise,
and G(m,w) := (mo, (Am"T + Bw")o<,< N, —1) With

(Am) = (Dem)} — v(Apm)ItY, (Bw)} = (Dpw")P ) + (Dpw?)}.
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Reformulation

The discrete dual problem can be recast as:

m,w

inf) By, (m, w) + Fr(m) + tg-1(,0 0y (m, w) (Pr)

o(m, w) P(m,w)

with the costs

Fp(m) := Zﬁ(zz, m;) + —ZG @i, m; Nry, By (m,w) := Zb(m?,wf’l),

in in
mL(x,—%), ifm>0,we K=R_ xRy,
b(m,w) := ¢ 0, if (m,w) = (0,0),
+o00, otherwise,
and G(m,w) := (mo, (Am"T + Bw")o<,< N, —1) With
(Am)"T = (Dym)? — v(Apm)™H, (Bw)! = (Dpw )] + (Dpw?)?.

Rem.: The optimality conditions of this problem correspond to the finite-difference system
So we can apply Chambolle-Pock’s method for (P,) with
Y= (’ITL,U/), (,o(m, ’LU) :]Bh(mv w) +]Fh(m)7 1/1(7”7 U)) = LG*l(pO,O)(mv w)

See Bricefio-Arias et al. [BnAKS18]'" and [BnAKK*19]'2 in stationary and dynamic cases.

" Briceno-Arias, L., Kalise, D. & Silva, J.. Proximal methods for stationary mean field games with local couplings. SIAM
Journal on Control and Optimization 56.2 (2018): 801-836.

128riceﬁo-Arias, L, et al. On the implementation of a primal-dual algorithm for second order time-dependent mean field
games with local couplings. ESAIM: Proceedings and Surveys 65 (2019): 330-348.
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Numerical Example

Setting: g = 0 and R? x R 3 (z,m) ~ f(x,m) := m? — H(x), with
H(z) = sin(27z2) + sin(27rz1) + cos(2mz1)

We solve the corresponding MFG and obtain the following evolution of the density:

a)t=0 b)t=01

05 05 05 05

Evolution of the density

(More details in [BnAKK* 19])
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Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta, Zuazua)
e the mass starts from an initial density;

e it converges to a steady state, influenced only by the running cost;

e ast — T, the mass is influenced by the final cost and converges to a final state.

25

o
S —

distance

time t

L? distance between dynamic and stationary solutions

(More details in [Briceno-Arias et al.’19])
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Summary
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