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1. A Picard Scheme for MKV FBSDE
@ Picard Scheme & Continuation Method



MKV FBSDE System

@ Recall: generic form:

dXt :B(Xt,L(Xt),}/t,Zt)dt-‘rUth, OStST
dY: = —F (X4, L(X}), Yy, Zo)dt + ZedWy,  0<t<T
Xo~mo,  Yr=G(Xr, L(X1))

@ Decouple:

> Given (£(X),Y, Z), solve for X
> Given (X, L(X)) solve for (Y, Z)

@ lterate
@ Algorithm proposed by Chassagneux et al. [CCD19]', Angiuli et al. [AGL*19]2

1Chassagneux, J.-F,, Crisan, D., & Delarue, F.. Numerical method for FBSDEs of McKean—Vlasov type. The Annals of
Applied Probability 29.3 (2019): 1640-1684.

Angiuli, A., et al. Cemracs 2017: numerical probabilistic approach to MFG. ESAIM: Proceedings and Surveys 65 (2019):

84-113.



Picard Scheme for MKV FBSDE System

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system

1 Initialize X = £,v;” =0,z =0,0<t<T
2 fork=0,1,2,...,K—1do
3 Let X ®+1) pe the solution to:

dX, = B(X®, £(x'), Y™, zMdt + cdW:, 0<t<T
Xo=¢
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Picard Scheme for MKV FBSDE System

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X = £,v;” =0,z =0,0<t<T
2 fork=0,1,2,...,K—1do
3 Let X®+1) pe the solution to:

{dX" = B(XP, LX), v, z0)dt + odW:,  0<t<T
Xo=¢

4 Let (YD z(+D) pe the solution to:

dy, = —F(XED o(x® ), v® z28dt+ z8aw,, 0<t<T
Yr=¢

s return Picard[T)(¢,¢) = (X®,y® z®)

Notation: ®¢ ¢ : (X®, £(X®), Yy ® z®) o (X E+D £ x D)yt 70t1)

Contraction? Small T' or small Lipschitz constants for B, F, G
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@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th <---<Ty1<Tyu=T

@ Subproblem: Given (¢r,,, L(é7,,)) and ¢r,, ., Solve:

dXt = B(Xt,E(Xf),K,Zt)dt + O'th, Tm S t
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XTm = §Tma YTm+1 = <Tm+1



Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th <---<Ty1<Tyu=T

@ Subproblem: Given (¢r,,, L(é7,,)) and ¢r,, ., Solve:

dXt = B(Xt,E(Xt),K7 Zt)dt + O'th, Tm S t
dYy = —F(X¢, L(X4), Yy, Zy)dt + ZydWr, m <t <Tmy1

Xr,, = &1, Y1, 01 = (T

@ How to find &r,,, and {r,, ., ?

— &r,,, from previous problem’s solution (or initial condition)
— (r,,4, from next problem’s solution (or terminal condition)



Global Solver for MKV FBSDE System

Following Chassagneux et al. [CCD19], define a global solver recursively, and then

call:
Solver[m](&o, to)

with & a random variable with distribution 1o

Input: Initial guess (¢, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X =&, £(X”) = £(¢) forall T, <t < Tonys
2 fork=0,1,2,...,K—1do

3| T =T, v = Gx

LX)
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Global

Solver for MKV FBSDE System

Following Chassagneux et al. [CCD19], define a global solver recursively, and then

call:

Solver[m](&o, to)

with & a random variable with distribution 1o

1
2

6

Input: Initial guess (&, £(€)); time step index m; number of iterations K

Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,

Initialize X{* = &, £(X”) = £(¢) forall Ty, <t < Tonys

fork=0,1,2,...,K—1do

I Tpyr =T, YR ) = G(XE)

LX)

Else: compute recursively:

y &t — Solver[m + 1](X(k)

Tt Tm+1?

LXY )

Compute:

(XED L(XED), v ZE Ny cier ., = Picard|Tmy —Tn] (X5, YT“;T]))

return solver([m](, £(€)) == Y




Implementation: Discretizations

Following Angiuli et al. [AGL"19]

@ Tree algorithm:

> Time discretization
> Space discretization: binomial tree structure
> Look at trajectories

@ Grid algorithm:

» Time and space discretization on a grid
> Look at time marginals
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@ Tree-Based Algorithm
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@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)



Time Discretization

@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 —t; = At

@ Euler Scheme: 0 <i< N; — 1
XD = x4 B(x Y LX), v 20 At + o AW,
X(k+1) ¢
)/;(-k+1) E; [Y(k+1>}—|—F(X(k+1) ,C(X(k+1)) Y(k) Z(k))A
NYtﬁ_k*j) +F(X(k+1) c(x‘k“)) Yt(fhzfj))m ZE AW,
+1 1 1
Y(k ) G(X(k+ ) LL(X ;k+ )))

1 1)
ZEEL; 1t B¢ [Yt(kjl AW, 1]
Zr =0

i+1




Time Discretization

@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)

@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 —t; = At

@ Euler Scheme: 0 <i< N; — 1
XD = x4 B(x Y LX), v 20 At + o AW,
X(k+1) ¢
}/;(-k+1) E; [Y(k+1>}—|—F(X(k+1> E(X(k+1)) Y(k) Z(k))A
~Yt<f+11) +F(X(k+1) c(x‘k“)) v, Z(k))At ZETD AW,
+1 1 1
YD = G, £(XE))

1 1)
ZEEL; 1t B¢ [Yt(kjl AW, 1]
Zr =0

i+1

@ Questions:

> How to represent L(XE:‘“) )?

» How to compute the conditional expectation E, [Yt(,il)}?



Tree-Based Approach

@ Ateach t;, replace AW;,  , by a branch with 2 values: +v At w.p. 1/2

i+1

@ Answers:
> ﬁ(Xt(:”l)) ~ weighted empirical distribution:

Nazg

(k+1)) ~ ZP05 s

and at time ¢;,4 > 1: look at values on the nodes at depth ¢

> By, th(,:*ll)} ~ weighted average of values on the two next branches
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Tree-Based Approach

@ Ateach t;, replace AW;,  , by a branch with 2 values: +v At w.p. 1/2

i+1

@ Answers:
> ﬁ(Xt(:”l)) ~ weighted empirical distribution:

Nazg

(k+1)) ~ ZP05 s

and at time ¢;,4 > 1: look at values on the nodes at depth ¢

> By, [}Q(;tl)} ~ weighted average of values on the two next branches
@ Starting from some xo, doing N, steps: 2™t paths
@ N,, starting points i.i.d. ~ jo: Ny x 2Vt paths |

@ Save space thanks to recombinations? Not really but . ..
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@ Grid-Based Algorithm



Time & Space Discretization

@ Decoupling functions (see e.g., [Carmona & Delarue [CD18, Section 6.4]):
K :u(t7Xt7‘C'(Xt))7 Zt :v(thta‘C’(Xt))

— Approximate u(-,-,-),v(:, -, -) instead of (Y%, Zt)cjo,1)
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Time & Space Discretization

@ Decoupling functions (see e.g., [Carmona & Delarue [CD18, Section 6.4]):
}/;5 :U(t7Xt7['(Xt))7 Zt :v(thta[’(Xt))

— Approximate u(-, -, -),v(-,-, ) instead of (Y, Zt)¢c[o, 1

@ Difficulty: space of £L(X:) is infinite dimensional
— Freeze it during each Picard iteration:

Yt(k-q-l) _ u(k+1)(t7 )(t(l{-~-1))7 Zt(k+1) _ U(k+1)(t7Xt(k+1)) *)
@ Picard iterations for distribution & decoupling functions:
> Step 1: Given (1, u® v®)), compute p*) = £(x 1) 0 <t < T, where
ax ) = B(Xt(kJrl), ) (¢, Xt“‘“)),fu(k>(t,X§k“)))dt +odW,
> Step 2: Given (X® ;,&+1)) compute (u(x+1) »&+1)) such that (x) holds, where
dYt(k+1) _ 7F(Xt(k+1)“u)(tk+1)’yt(k+1)7Zt(k+1))dt+ Z§k+1)th

> Return (kD) (kD) 4 (ct1)y



Time & Space Discretization: Forward Equation

@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 —t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — L5 = Az
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@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 —t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — L5 = Az

@ Use projection I1 to stay on I at every ¢;: £(X,*"") ~ vector of weights

@ Picard iterations for distribution & decoupling functions:
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Time & Space Discretization: Forward Equation

@ Focus on an interval [0, T'] with small enough T" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 —t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — L5 = Az

@ Use projection I1 to stay on I at every ¢;: £(X,*"") ~ vector of weights

@ Picard iterations for distribution & decoupling functions:

> Step 1: Given (u®, u® v®) compute utkH) E(Xt(f“)),i =0,..., Ny, where

XD = H[X<k+1>+B<X<k+1> o, (k)(Xff“)),vff)(Xff“)))dt

=+ UAWti+1i|

(41 (k1)

> Infact p,, can be expressed in terms of 11, and a transition kernel
> Ex: b|nom|al approx. of W — efficient computatlon using quantization

10/25



Time & Space Discretization: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,

W (@) =E [uﬁll)(xgﬂ))
FR(XEHD, 00D 00 (x 4D 0 (D)) Ay ‘ X+ = x}

ul (@) = Ga, ufH)

At f+1

o) (2) = B[ LD (x40 ’chﬂ) - x}
vg(_'—l)(x) 0

> EXx.: binomial approximation of W — more explicit formulas
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Time & Space Discretization: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,

W (@) =E [uﬁll)(xgﬂ))
FR(XEHD, 00D 00 (x 4D 0 (D)) Ay ‘ X+ = x}

ul (@) = Ga, ufH)

At f+1

o) (2) = B[ LD (x40 ’chﬂ) - x}
vg(_'—l)(x) 0

> EXx.: binomial approximation of W — more explicit formulas

@ Summary:

» Forward: (H(k),u(k)7y(k)) — #(k+1) = L(X(k-H)
» Backward: (p®t1) ) o) s (1) 4 (E+1))
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Time & Space Discretization: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,

W (@) =E |:u§1::11)(Xt(7k+l))
FR(XEHD, 00D 00 (x 4D 0 (D)) Ay ‘ X+ = x}

ul (@) = Ga, ufH)

At f+1

vngl)(a:) E <k+1>(Xt(f+1)) ’XS‘JFI) = I]
’Ug(_"l)(x) 0

> EXx.: binomial approximation of W — more explicit formulas

@ Summary:

» Forward: (p(k),u(k),’u(k)) — #(k+1) = L(X(k-H)
» Backward: (p®t1) ) o) s (1) 4 (E+1))

For more details and numerical examples, see [Chassagneux et al.’19; Angiuli et
al’19]
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2. Stochastic Methods for some Finite-Dimensional MFC Problems
@ Finite-Dimensional Structure



Dependence on the Moments

@ In general: b, f, g involve the whole distribution u: = £(X¢) (infinite dim.)

@ What if they involve only the first moment 7z, = E[X]?
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@ In general: b, f, g involve the whole distribution u: = £(X¢) (infinite dim.)
@ What if they involve only the first moment 7z, = E[X]?

@ Ex. 1: LQ (see Part 1)

» optimal control is a function of X; and 1z, = E[X]
> ODE for 7z, of the form 47, = o(t,7i,)

@ Ex. 2:
{b(x,u, v) = b(z, @, v) = (cos(x) + cos(fx))v
fa, o) =l glw,p) =0

> Can the optimal control be expressed as a function of X, E[X¢] only?
» ODE for 1z, ?

iy = E(cos(Xe) + cos(Fy)) (6, Xo)]

Altinvolves not only E[X;] = 1z, but also E[cos(X¢)]

@ Class of MFC s.t. the problem can be solved with a finite number of moments?
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Finite-Dimensional Reformulation

Following Balata et al. [BHLT19]3:
@ In some cases, MFC problems can be written as:

J(w)=E |:/ F(X,,v)dt+G(Xp)

subject to:
d&t = B(&w’Ut)dt + Eth

where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?

sBaIata, A., Huré, C., Lauriére, M., Pham, H., & Pimentel, |. (2019). A class of finite-dimensional numerically solvable
McKean-Vlasov control problems. ESAIM: Proceedings and Surveys, 65, 114-144.
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subject to:
dXt = B(Xﬁ 'Ut)dt + Eth

where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 =to < t1 < --- <tn, =T, tix1 — t; = At
@ DPPfor V : [0,T] x (R%)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

Var(T,z) = G(z)
Vat(tn,z) = sup, {]-'@, v)At + Etnozv [Vm(tnﬂ,gtnﬂ)] }7n =N,—-1,...,1,0

| X5, —x}

X))

where Etn v [VAt(th,LﬁnH)] =E [VAt(tn+17
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Finite-Dimensional Reformulation

Following Balata et al. [BHLT19]3:
@ In some cases, MFC problems can be written as:

J(w)=E |:/ F(X,,v)dt+G(Xp)

subject to:
dXt = B(Xﬁ 'Ut)dt + Zth

where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 =to < t1 < --- <tn, =T, tig1 —t; = At
@ DPPfor V : [0,T] x (R%)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

Var(T,z) = G(z)
Vat(tn,z) = sup, {]-'@, v)At + Etnozv [Vm(tnﬂ,gtn+1 )] }7 n=N—1,...,1,0

| X7 —Q}

X))

where Etn v [VAt(th,LﬁnH)} =E [VAt(twh

— Key difficulty: estimation of the conditional expectation

SBaIata, A., Huré, C., Lauriére, M., Pham, H., & Pimentel, |. (2019). A class of finite-dimensional numerically solvable
McKean-Vlasov control problems. ESAIM: Proceedings and Surveys, 65, 114-144.
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2. Stochastic Methods for some Finite-Dimensional MFC Problems

@ Conditional Expectation Estimation



Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m

@ Projection:
M
B [Varltarn, X7, ) 1X7 | = D0 00 67(X5)
m=1
where ,
M
=argminE | |Vae(tns1, Xy ) — Z " (X)) ]
erRM
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M
B [Varltarn, X7, ) 1X7 | = D0 00 67(X5)
m=1
where ,
M
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erRM

@ Explicit expression:
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m
@ Projection:

1

M
B [Varltarn, X7, ) 1X7 | = D0 00 67(X5)
where

= argminE
€RM

@ Explicit expression:
= E[p(X; (X7 ) 17 E[Var(tnsr, X7, )o(X])]

@ Estimation with N, Monte Carlo samples:

M
Vae(tny, Xy L)) Z o™ (X))

m=1

Nye

Elp(X;)o(Xy") ] ~ N - Z HXE) (X5

and
Nye

v v 1 v ,U
E[Va¢(tns1, X5 +1)¢(§f; )] = Noro Z Vae(tni1, Xy +1)¢(an)

with training set { (X", X{%, );¢=1,..., Nac}
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1
@ Projection:

m ANot always easy to choose !

.....

M
B [Varltarn, X7, ) 1X7 | = D0 00 67(X5)

1
where

M
Varltns, X7 ) = > 076 (X])

m=1

= argminE
€RM

@ Explicit expression:
= E[p(X; (X7 ) 17 E[Var(tnsr, X7, )o(X])]

—tn

@ Estimation with Ny, Monte Carlo samples:

Nye
, , 1
E XZ’U Xé,u T ~ X@ v XZ v
[P0 T~ Z¢ JoXE)T
and 1 Nyce
E[Va(tn+1, X;7 )6(X50)] ~ N > Vaultnin, X7 )6(X)

with training set { (X", X ;"

—tn41
14/25



Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points I" on which we want to approximate Va,; projection Iy

» Quantization of noise (see e.g. Pagés [Pag18]4):

SetofcellsCo = {Cj;5=1,...,Jo}

Associated grid points Go = {¢;;7 =1,...,Jo}

Weights for Gaussian r.v. AW ~ N (0, At): p; = P(AW € Cj)
Discrete version: AW € Gg: P(AW = ¢;) = p;

Can be optimized®; particularly helpful when d > 1

* % Ot

4Pagés, G. (2018). Numerical probability. In Universitext. Springer Cham.
Optimal grids/weights available here: http://www.quantize.maths-fi.com
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@ Two space discretizations:

> Set of points I" on which we want to approximate Va,; projection Iy

» Quantization of noise (see e.g. Pagés [Pag18]4):
* SetofcellsCqy ={Cj;j=1,...,Jg}

* Associated grid points Go = {(;;7 =1,...,Jg}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Ggo: P(AW = ¢;) = p;
* Can be optimized®; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R

Jo
E [VAt(tn+1,X;§"n+l) | X, = g} ~ ZP-’VM (th, IIr (B@7 ve, )AL + E(_,))

Jj=1

forallz e T

4Pagés, G. (2018). Numerical probability. In Universitext. Springer Cham.

Optimal grids/weights available here: http://www.quantize.maths-fi.com
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* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})

* Discrete version: AW € Ggo: P(AW = ¢;) = p;
* Can be optimized®; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to, ..

Jo

.,tNt}XF%R

E [VAt(tn+1,X;§"n+l) | X, = g} ~ ZP-’VM (th, IIr (B@7 ve, )AL + E(_,))

j=1
forallz e T
@ Other interpolations are possible
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Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points I" on which we want to approximate Va,; projection Iy

» Quantization of noise (see e.g. Pagés [Pag18]4):
* SetofcellsCqy ={Cj;j=1,...,Jg}

* Associated grid points Go = {(;;7 =1,...,Jg}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Ggo: P(AW = ¢;) = p;
* Can be optimized®; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R

Jo
E [VAt(tn+1,X;§"n+l) | X, = g} ~ ZP-’VM (th, IIr (B@7 ve, )AL + E(_,))

j=1
forallz e T
@ Other interpolations are possible

For more details and numerical examples, see [Balata et al.’19]

4Pagés, G. (2018). Numerical probability. In Universitext. Springer Cham.

Optimal grids/weights available here: http://www.quantize.maths-fi.com
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Summary
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Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

o Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; Achdou, Camilli, Capuzzo-Dolcetta’13; ...

o Gradient descent: [L., Pironneau'14; Pieiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier14; Achdou, L.16; Andreev'17]
e Primal-dual algo.: [Bricefio-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos Gonzalez'18]
e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
Methods based on a probabilistic approach:
o Cubature: [Chaudru de Raynal, Garcia Trillos'15]
e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
e MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
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o MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
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Limitations:

e dimensionality (typically: state in dimension < 3)

e structure of the problem (typically: simple costs, dynamics and noises)
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o MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
Limitations:
e dimensionality (typically: state in dimension < 3)
e structure of the problem (typically: simple costs, dynamics and noises)
Recent progress: extending the toolbox with tools from machine learning:
e approximation without a grid (mesh-free methods): opt. control & distribution
—> [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; .. .]
e even when the dynamics / cost are not known (model-free methods)

—> [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; Yang et al.; ...]
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Numerical Methods for MFG: Some references [see bib.]

Methods based on a deterministic approach:
o Finite diff. & Newton meth.: [ACD10, ACCD12] ...
e Gradient descent: [LP16, Pfe16]

e Semi-Lagrangian scheme: [CS14, CS15]

e Augmented Lagrangian & ADMM: [BC15, AL16, And17]
e Primal-dual algo.: [BnAKS18, BnAKK T 19]

e Monotone operators: [AFG17, GY20]

Methods based on a probabilistic approach:

e Cubature: [dRT15]
e Recursion: [cCD19, AGLT 19]
e MC & Regression: [BHL* 19]
Surveys and lecture notes: [Ach13, AL20, Lau21]
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e dimensionality (typically: state in dimension < 3)
e structure of the problem (typically: simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:
e approximation without a grid (mesh-free methods): opt. control & distribution
— [CL21, CL19, AACNT 19, FZ20, ROL 120, ABO20] ...
e even when the dynamics / cost are not known (model-free methods)
— [GHXZ19, SM19, EPL 20, PPL20, CLT19, CHLT20, MP19, FYCW19] ...
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Code Samples

@ ODE solvers for LQ MFC:

https://colab.research.google.com/drive/1jaclM1lzFB1Y636BYlocwgmkNTf1pRQYY?usp=sharing

@ PDE solver with Semi-Lagrangian approach

https://colab.research.google.com/drive/180j6cKlvfe5UlMnm_LmOklyuYrJKcOk4?usp=sharing
@ PDE solver with Finite Difference scheme & Picard iterations + Newton

(coming soon)
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https://colab.research.google.com/drive/1jac1M1zFBlY6j6BY1ocwgmkNTflpRQYY?usp=sharing
https://colab.research.google.com/drive/18Oj6cKlvfe5UlMnm_Lm0klyuYrJKc0k4?usp=sharing
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