Mean Field Games: Numerical Methods and Applications in Machine Learning

Part 4: Methods Based on the Probabilistic Approach

Mathieu LAURIÈRE

https://mlauriere.github.io/teaching/MFG-PKU-4.pdf

Peking University Summer School on Applied Mathematics July 26 – August 6, 2021

Outline

1. A Picard Scheme for MKV FBSDE

- Picard Scheme & Continuation Method
- Tree-Based Algorithm
- Grid-Based Algorithm

2. Stochastic Methods for some Finite-Dimensional MFC Problems

Outline

1. A Picard Scheme for MKV FBSDE

• Picard Scheme & Continuation Method

- Tree-Based Algorithm
- Grid-Based Algorithm

2. Stochastic Methods for some Finite-Dimensional MFC Problems

Recall: generic form:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & 0 \le t \le T \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & 0 \le t \le T \\ X_0 \sim m_0, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases}$$

- Decouple:
 - Given $(\mathcal{L}(X), Y, Z)$, solve for X
 - Given $(X, \mathcal{L}(X))$ solve for (Y, Z)
- Iterate
- Algorithm proposed by Chassagneux et al. [CCD19]¹, Angiuli et al. [AGL⁺19]²

¹ Chassagneux, J.-F., Crisan, D., & Delarue, F.. Numerical method for FBSDEs of McKean–Vlasov type. *The Annals of Applied Probability* 29.3 (2019): 1640-1684.

²Angiuli, A., et al. Cemracs 2017: numerical probabilistic approach to MFG. *ESAIM: Proceedings and Surveys* 65 (2019): 84-113.

Input: Initial guess (ξ, ζ) ; initial condition ξ ; terminal condition ζ ; time horizon T; number of iterations K Output: Approximation of (X, Y, Z) solving the MKV FBSDE system 1 Initialize $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$ 2 for k = 0, 1, 2, ..., K - 1 do 3 Let $X^{(k+1)}$ be the solution to: $\begin{cases} dX_t = B(X_t^{(k)}, \mathcal{L}(X_t^{(k)}), Y_t^{(k)}, Z_t^{(k)})dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \xi \end{cases}$ Input: Initial guess (ξ, ζ) ; initial condition ξ ; terminal condition ζ ; time horizon T; number of iterations K Output: Approximation of (X, Y, Z) solving the MKV FBSDE system 1 Initialize $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$ 2 for k = 0, 1, 2, ..., K - 1 do 3 Let $X^{(k+1)}$ be the solution to: $\begin{cases} dX_t = B(X_t^{(k)}, \mathcal{L}(X_t^{(k)}), Y_t^{(k)}, Z_t^{(k)})dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \xi \end{cases}$ 4 Let $(Y^{(k+1)}, Z^{(k+1)})$ be the solution to: $\begin{cases} dY_t = -F(X_t^{(k+1)}, \mathcal{L}(X_t^{(k+1)}), Y_t^{(k)}, Z_t^{(k)})dt + Z_t^{(k)}dW_t, & 0 \le t \le T \\ Y_T = \zeta \end{cases}$

5 return $\operatorname{Picard}[T](\xi,\zeta)=(X^{(\mathrm{K})},Y^{(\mathrm{K})},Z^{(\mathrm{K})})$

Input: Initial guess (ξ, ζ) ; initial condition ξ ; terminal condition ζ ; time horizon T; number of iterations K **Output:** Approximation of (X, Y, Z) solving the MKV FBSDE system 1 Initialize $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$ 2 for $k = 0, 1, 2, \dots, K - 1$ do Let $X^{(k+1)}$ be the solution to: 3 $\begin{cases} dX_t = B(X_t^{(k)}, \mathcal{L}(X_t^{(k)}), Y_t^{(k)}, Z_t^{(k)}) dt + \sigma dW_t, \quad 0 \le t \le T\\ X_0 = \varepsilon \end{cases}$ Let $(Y^{(k+1)}, Z^{(k+1)})$ be the solution to: 4 $\begin{cases} dY_t = -F(X_t^{(k+1)}, \mathcal{L}(X_t^{(k+1)}), Y_t^{(k)}, Z_t^{(k)}) dt + Z_t^{(k)} dW_t, \quad 0 \le t \le T \\ Y_T = \zeta \end{cases}$ 5 return Picard[T](ξ, ζ) = ($X^{(K)}, Y^{(K)}, Z^{(K)}$)

Notation: $\Phi_{\xi,\zeta} : (X^{(k)}, \mathcal{L}(X^{(k)}), Y^{(k)}, Z^{(k)}) \mapsto (X^{(k+1)}, \mathcal{L}(X^{(k+1)}), Y^{(k+1)}, Z^{(k+1)})$

Input: Initial guess (ξ, ζ) ; initial condition ξ ; terminal condition ζ ; time horizon T; number of iterations K **Output:** Approximation of (X, Y, Z) solving the MKV FBSDE system 1 Initialize $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$ 2 for $k = 0, 1, 2, \dots, K - 1$ do Let $X^{(k+1)}$ be the solution to: 3 $\begin{cases} dX_t = B(X_t^{(k)}, \mathcal{L}(X_t^{(k)}), Y_t^{(k)}, Z_t^{(k)}) dt + \sigma dW_t, \quad 0 \le t \le T\\ X_0 = \varepsilon \end{cases}$ Let $(Y^{(k+1)}, Z^{(k+1)})$ be the solution to: 4 $\begin{cases} dY_t = -F(X_t^{(k+1)}, \mathcal{L}(X_t^{(k+1)}), Y_t^{(k)}, Z_t^{(k)}) dt + Z_t^{(k)} dW_t, \quad 0 \le t \le T \\ Y_T = \zeta \end{cases}$ 5 return Picard[T](ξ, ζ) = ($X^{(K)}, Y^{(K)}, Z^{(K)}$)

Notation: $\Phi_{\xi,\zeta} : (X^{(k)}, \mathcal{L}(X^{(k)}), Y^{(k)}, Z^{(k)}) \mapsto (X^{(k+1)}, \mathcal{L}(X^{(k+1)}), Y^{(k+1)}, Z^{(k+1)})$

Contraction? Small T or small Lipschitz constants for B, F, G

• If T is big: Solve FBSDE on small intervals & "patch" the solutions together

• If T is big: Solve FBSDE on small intervals & "patch" the solutions together

• Grid:
$$0 = T_0 < T_1 < \cdots < T_{M-1} < T_M = T$$

• Subproblem: Given $(\xi_{T_m}, \mathcal{L}(\xi_{T_m}))$ and $\zeta_{T_{m+1}}$, solve:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & T_m \le t \le T_{m+1} \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & T_m \le t \le T_{m+1} \\ X_{T_m} = \xi_{T_m}, & Y_{T_{m+1}} = \zeta_{T_{m+1}} \end{cases}$$

If T is big: Solve FBSDE on small intervals & "patch" the solutions together

• Grid:
$$0 = T_0 < T_1 < \cdots < T_{M-1} < T_M = T$$

• Subproblem: Given $(\xi_{T_m}, \mathcal{L}(\xi_{T_m}))$ and $\zeta_{T_{m+1}}$, solve:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & T_m \le t \le T_{m+1} \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & T_m \le t \le T_{m+1} \\ X_{T_m} = \xi_{T_m}, & Y_{T_{m+1}} = \zeta_{T_{m+1}} \end{cases}$$

- How to find ξ_{T_m} and $\zeta_{T_{m+1}}$?
 - $ightarrow \xi_{T_m}$ from previous problem's solution (or initial condition)
 - $\rightarrow \zeta_{T_{m+1}}$ from next problem's solution (or terminal condition)

Global Solver for MKV FBSDE System

Following Chassagneux *et al.* [CCD19], define a global solver recursively, and then call:

 $Solver[m](\xi_0, \mu_0)$

with ξ_0 a random variable with distribution μ_0

Input: Initial guess $(\xi, \mathcal{L}(\xi))$; time step index m; number of iterations K Output: Approximation of Y_{T_m} where (X, Y, Z) solves the MKV FBSDE system on $[T_m, T]$ starting with $(\xi, \mathcal{L}(\xi))$ at time T_m 1 Initialize $X_t^{(0)} = \xi, \mathcal{L}(X_t^{(0)}) = \mathcal{L}(\xi)$ for all $T_m \leq t \leq T_{m+1}$ 2 for k = 0, 1, 2, ..., K - 1 do 3 If $T_{m+1} = T, Y_{T_{m+1}}^{(k+1)} = G(X_{T_{m+1}}^{(k)}, \mathcal{L}(X_{T_{m+1}}^{(k)}))$

Global Solver for MKV FBSDE System

Following Chassagneux *et al.* [CCD19], define a global solver recursively, and then call:

 $\operatorname{Solver}[m](\xi_0,\mu_0)$

with ξ_0 a random variable with distribution μ_0

Global Solver for MKV FBSDE System

Following Chassagneux *et al.* [CCD19], define a global solver recursively, and then call:

 $\operatorname{Solver}[m](\xi_0, \mu_0)$

with ξ_0 a random variable with distribution μ_0

Input: Initial guess $(\xi, \mathcal{L}(\xi))$; time step index m; number of iterations K **Output:** Approximation of Y_{T_m} where (X, Y, Z) solves the MKV FBSDE system on $[T_m, T]$ starting with $(\xi, \mathcal{L}(\xi))$ at time T_m 1 Initialize $X_t^{(0)} = \xi$, $\mathcal{L}(X_t^{(0)}) = \mathcal{L}(\xi)$ for all $T_m < t < T_{m+1}$ 2 for $k = 0, 1, 2, \dots, K - 1$ do If $T_{m+1} = T$, $Y_T^{(k+1)} = G(X_T^{(k)}, \mathcal{L}(X_T^{(k)}))$ 3 Else: compute recursively: 4 $Y_T^{(k+1)} = \operatorname{Solver}[m+1](X_T^{(k)}, \mathcal{L}(X_T^{(k)}))$ Compute: 5 $(X_t^{(\mathbf{k}+1)}, \mathcal{L}(X_t^{(\mathbf{k}+1)}), Y_t^{(\mathbf{k}+1)}, Z_t^{(\mathbf{k}+1)})_{T_m \leq t \leq T_{m+1}} = \texttt{Picard}[T_{m+1} - T_m](X_{T_m}^{(\mathbf{k})}, Y_{T_{m+1}}^{(\mathbf{k}+1)})$ 6 return Solver $[m](\xi, \mathcal{L}(\xi)) := Y_T^{(K)}$

Following Angiuli et al. [AGL+19]

- Tree algorithm:
 - Time discretization
 - Space discretization: binomial tree structure
 - Look at trajectories
- Grid algorithm:
 - Time and space discretization on a grid
 - Look at time marginals

Outline

1. A Picard Scheme for MKV FBSDE

- Picard Scheme & Continuation Method
- Tree-Based Algorithm
- Grid-Based Algorithm

2. Stochastic Methods for some Finite-Dimensional MFC Problems

Time Discretization

• Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time Discretization

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$

• Euler Scheme:
$$0 \le i \le N_t - 1$$

$$\begin{cases}
X_{t_{i+1}}^{(k+1)} = X_{t_i}^{(k+1)} + B(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)}) \Delta t + \sigma \Delta W_{t_{i+1}} \\
X_0^{(k+1)} = \xi \\
Y_{t_i}^{(k+1)} = \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] + F(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)}) \Delta t \\
\approx Y_{t_{i+1}}^{(k+1)} + F(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)}) \Delta t - Z_{t_i}^{(k+1)} \Delta W_{t_{i+1}} \\
Y_T^{(k+1)} = G(X_T^{(k+1)}, \mathcal{L}(X_T^{(k+1)})) \\
Z_{t_i}^{(k+1)} = \frac{1}{\Delta t} \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)} \Delta W_{t_{i+1}}] \\
Z_T^{(k+1)} = 0
\end{cases}$$

Time Discretization

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$

• Euler Scheme:
$$0 \le i \le N_t - 1$$

$$\begin{cases}
X_{t_{i+1}}^{(k+1)} = X_{t_i}^{(k+1)} + B(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)})\Delta t + \sigma \Delta W_{t_{i+1}} \\
X_0^{(k+1)} = \xi \\
Y_{t_i}^{(k+1)} = \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] + F(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)})\Delta t \\
\approx Y_{t_{i+1}}^{(k+1)} + F(X_{t_i}^{(k+1)}, \mathcal{L}(X_{t_i}^{(k+1)}), Y_{t_i}^{(k)}, Z_{t_i}^{(k)})\Delta t - Z_{t_i}^{(k+1)}\Delta W_{t_{i+1}} \\
Y_T^{(k+1)} = G(X_T^{(k+1)}, \mathcal{L}(X_T^{(k+1)})) \\
Z_{t_i}^{(k+1)} = \frac{1}{\Delta t} \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}\Delta W_{t_{i+1}}] \\
Z_T^{(k+1)} = 0
\end{cases}$$

Questions:

- How to represent $\mathcal{L}(X_{t_i}^{(k+1)})$?
- How to compute the conditional expectation $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}]$?

• At each t_i , replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. 1/2

Answers:

• $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$ weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k},$$

and at time $t_i, i \ge 1$: look at values on the nodes at depth i

• $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] \approx$ weighted average of values on the two next branches

• At each t_i , replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. 1/2

Answers:

• $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$ weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k}^{-1},$$

and at time $t_i, i \ge 1$: look at values on the nodes at depth i

▶ $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] \approx$ weighted average of values on the two next branches

- Starting from some x_0 , doing N_t steps: 2^{N_t} paths
- N_{x_0} starting points i.i.d. $\sim \mu_0$: $N_{x_0} \times 2^{N_t}$ paths !

• At each t_i , replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. 1/2

Answers:

• $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$ weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k}^{-1},$$

and at time $t_i, i \ge 1$: look at values on the nodes at depth i

▶ $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] \approx$ weighted average of values on the two next branches

- Starting from some x_0 , doing N_t steps: 2^{N_t} paths
- N_{x_0} starting points i.i.d. $\sim \mu_0$: $N_{x_0} \times 2^{N_t}$ paths !
- Save space thanks to recombinations?

• At each t_i , replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. 1/2

Answers:

• $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$ weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k}^{-1},$$

and at time $t_i, i \ge 1$: look at values on the nodes at depth i

▶ $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] \approx$ weighted average of values on the two next branches

- Starting from some x_0 , doing N_t steps: 2^{N_t} paths
- N_{x_0} starting points i.i.d. $\sim \mu_0$: $N_{x_0} \times 2^{N_t}$ paths !
- Save space thanks to recombinations? Not really but ...

Outline

1. A Picard Scheme for MKV FBSDE

- Picard Scheme & Continuation Method
- Tree-Based Algorithm
- Grid-Based Algorithm

2. Stochastic Methods for some Finite-Dimensional MFC Problems

Time & Space Discretization

Decoupling functions (see e.g., [Carmona & Delarue [CD18, Section 6.4]):

 $Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$

 \rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $(Y_t, Z_t)_{t \in [0,T]}$

Time & Space Discretization

Decoupling functions (see e.g., [Carmona & Delarue [CD18, Section 6.4]):

$$Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$$

 \rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $(Y_t, Z_t)_{t \in [0,T]}$

Difficulty: space of *L*(*X_t*) is infinite dimensional
 → Freeze it during each Picard iteration:

$$Y_t^{(\mathbf{k}+1)} = u^{(\mathbf{k}+1)}(t, X_t^{(\mathbf{k}+1)}), \qquad Z_t^{(\mathbf{k}+1)} = v^{(\mathbf{k}+1)}(t, X_t^{(\mathbf{k}+1)}) \tag{(*)}$$

Time & Space Discretization

Decoupling functions (see e.g., [Carmona & Delarue [CD18, Section 6.4]):

$$Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$$

 \rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $(Y_t, Z_t)_{t \in [0,T]}$

Difficulty: space of L(Xt) is infinite dimensional
 → Freeze it during each Picard iteration:

$$Y_t^{(\mathbf{k}+1)} = u^{(\mathbf{k}+1)}(t, X_t^{(\mathbf{k}+1)}), \qquad Z_t^{(\mathbf{k}+1)} = v^{(\mathbf{k}+1)}(t, X_t^{(\mathbf{k}+1)}) \tag{(*)}$$

Picard iterations for distribution & decoupling functions:

Step 1: Given $(\mu^{(k)}, u^{(k)}, v^{(k)})$, compute $\mu_t^{(k+1)} = \mathcal{L}(X_t^{(k+1)}), 0 \le t \le T$, where

$$dX_t^{(\mathbf{k}+1)} = B\bigg(X_t^{(\mathbf{k}+1)}, \mu_t^{(\mathbf{k})}, u^{(\mathbf{k})}(t, X_t^{(\mathbf{k}+1)}), v^{(\mathbf{k})}(t, X_t^{(\mathbf{k}+1)})\bigg)dt + \sigma dW_t$$

▶ Step 2: Given $(X^{(k)}, \mu^{(k+1)})$, compute $(u^{(k+1)}, v^{(k+1)})$ such that (*) holds, where

$$dY_t^{(\mathbf{k}+1)} = -F\left(X_t^{(\mathbf{k}+1)}, \mu_t^{(\mathbf{k}+1)}, Y_t^{(\mathbf{k}+1)}, Z_t^{(\mathbf{k}+1)}\right) dt + Z_t^{(\mathbf{k}+1)} dW_t$$

• Return $(\mu^{(k+1)}, u^{(k+1)}, v^{(k+1)})$

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- Space discretization (d = 1): Grid Γ : $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- Space discretization (d = 1): Grid Γ : $x_0 < x_1 < \cdots < x_{N_x}$, $x_{j+1} x_j = \Delta x$
- Use projection Π to stay on Γ at every $t_i: \mathcal{L}(X_{t_i}^{(k+1)}) \approx$ vector of weights

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- Space discretization (d = 1): Grid Γ : $x_0 < x_1 < \cdots < x_{N_x}$, $x_{j+1} x_j = \Delta x$
- Use projection Π to stay on Γ at every $t_i: \mathcal{L}(X_{t_i}^{(k+1)}) \approx$ vector of weights
- Picard iterations for distribution & decoupling functions:
 - ▶ Step 1: Given $(\mu^{(k)}, u^{(k)}, v^{(k)})$, compute $\mu_{t_i}^{(k+1)} = \mathcal{L}(X_{t_i}^{(k+1)}), i = 0, ..., N_t$, where

$$\begin{split} X_{t_{i+1}}^{(\mathbf{k}+1)} &= \Pi \bigg[X_{t_i}^{(\mathbf{k}+1)} + B \bigg(X_{t_i}^{(\mathbf{k}+1)}, \mu_{t_i}^{(\mathbf{k})}, u_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)}), v_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)}) \bigg) dt \\ &+ \sigma \Delta W_{t_{i+1}} \bigg] \end{split}$$

- Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)
- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- Space discretization (d = 1): Grid Γ : $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$
- Use projection Π to stay on Γ at every $t_i: \mathcal{L}(X_{t_i}^{(k+1)}) \approx$ vector of weights
- Picard iterations for distribution & decoupling functions:
 - Step 1: Given $(\mu^{(k)}, u^{(k)}, v^{(k)})$, compute $\mu_{t_i}^{(k+1)} = \mathcal{L}(X_{t_i}^{(k+1)}), i = 0, \dots, N_t$, where

$$\begin{split} X_{t_{i+1}}^{(\mathbf{k}+1)} &= \Pi \bigg[X_{t_i}^{(\mathbf{k}+1)} + B \bigg(X_{t_i}^{(\mathbf{k}+1)}, \mu_{t_i}^{(\mathbf{k})}, u_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)}), v_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)}) \bigg) dt \\ &+ \sigma \Delta W_{t_{i+1}} \bigg] \end{split}$$

In fact μ^(k+1)_{ti+1} can be expressed in terms of μ^(k+1)_{ti} and a transition kernel
 Ex: binomial approx. of W → efficient computation using guantization

- Picard iterations for distribution & decoupling functions (continued):
 - Step 2: Update u, v: for all $0 \le i \le N_t, x \in \Gamma$,

$$\begin{cases} u_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \\ & +F \big(X_{t_{i}}^{(\mathbf{k}+1)}, \mu_{t_{i}}^{(\mathbf{k}+1)}, u_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}), v_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}) \big) \Delta t \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ u_{T}^{(\mathbf{k}+1)}(x) = G(x, \mu_{t_{i}}^{(\mathbf{k}+1)}) \\ v_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ v_{T}^{(\mathbf{k}+1)}(x) = 0 \end{cases}$$

• Ex.: binomial approximation of $W \rightarrow$ more explicit formulas

- Picard iterations for distribution & decoupling functions (continued):
 - Step 2: Update u, v: for all $0 \le i \le N_t, x \in \Gamma$,

$$\begin{cases} u_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \\ & +F \big(X_{t_{i}}^{(\mathbf{k}+1)}, \mu_{t_{i}}^{(\mathbf{k}+1)}, u_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}), v_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}) \big) \Delta t \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ u_{T}^{(\mathbf{k}+1)}(x) = G(x, \mu_{t_{i}}^{(\mathbf{k}+1)}) \\ v_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ v_{T}^{(\mathbf{k}+1)}(x) = 0 \end{cases}$$

- ▶ Ex.: binomial approximation of $W \rightarrow$ more explicit formulas
- Summary:
 - Forward: $(\mu^{(k)}, u^{(k)}, v^{(k)}) \mapsto \mu^{(k+1)} = \mathcal{L}(X^{(k+1)})$
 - ► Backward: $(\mu^{(k+1)}, u^{(k)}, v^{(k)}) \mapsto (u^{(k+1)}, v^{(k+1)})$

- Picard iterations for distribution & decoupling functions (continued):
 - Step 2: Update u, v: for all $0 \le i \le N_t, x \in \Gamma$,

$$\begin{cases} u_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \\ & +F \big(X_{t_{i}}^{(\mathbf{k}+1)}, \mu_{t_{i}}^{(\mathbf{k}+1)}, u_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}), v_{t_{i}}^{(\mathbf{k})}(X_{t_{i}}^{(\mathbf{k}+1)}) \big) \Delta t \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ u_{T}^{(\mathbf{k}+1)}(x) = G(x, \mu_{t_{i}}^{(\mathbf{k}+1)}) \\ v_{t_{i}}^{(\mathbf{k}+1)}(x) = \mathbb{E} \Big[\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_{i}}^{(\mathbf{k}+1)}) \ \Big| \ X_{t_{i}}^{(\mathbf{k}+1)} = x \Big] \\ v_{T}^{(\mathbf{k}+1)}(x) = 0 \end{cases}$$

- ▶ Ex.: binomial approximation of $W \rightarrow$ more explicit formulas
- Summary:
 - Forward: $(\mu^{(k)}, u^{(k)}, v^{(k)}) \mapsto \mu^{(k+1)} = \mathcal{L}(X^{(k+1)})$
 - Backward: $(\mu^{(k+1)}, u^{(k)}, v^{(k)}) \mapsto (u^{(k+1)}, v^{(k+1)})$

For more details and numerical examples, see [Chassagneux *et al.*'19; Angiuli *et al.*'19]

1. A Picard Scheme for MKV FBSDE

2. Stochastic Methods for some Finite-Dimensional MFC Problems

- Finite-Dimensional Structure
- Conditional Expectation Estimation

1. A Picard Scheme for MKV FBSDE

2. Stochastic Methods for some Finite-Dimensional MFC Problems

- Finite-Dimensional Structure
- Conditional Expectation Estimation

- In general: b, f, g involve the whole distribution $\mu_t = \mathcal{L}(X_t)$ (infinite dim.)
- What if they involve only the first moment $\overline{\mu}_t = \mathbb{E}[X_t]$?

- In general: b, f, g involve the whole distribution $\mu_t = \mathcal{L}(X_t)$ (infinite dim.)
- What if they involve only the first moment $\overline{\mu}_t = \mathbb{E}[X_t]$?
- Ex. 1: LQ (see Part 1)
 - optimal control is a function of X_t and $\overline{\mu}_t = \mathbb{E}[X_t]$
 - ODE for $\overline{\mu}_t$ of the form $\frac{d}{dt}\overline{\mu}_t = \varphi(t, \overline{\mu}_t)$

- In general: b, f, g involve the whole distribution $\mu_t = \mathcal{L}(X_t)$ (infinite dim.)
- What if they involve only the first moment $\overline{\mu}_t = \mathbb{E}[X_t]$?
- Ex. 1: LQ (see Part 1)
 - optimal control is a function of X_t and $\overline{\mu}_t = \mathbb{E}[X_t]$
 - ODE for $\overline{\mu}_t$ of the form $\frac{d}{dt}\overline{\mu}_t = \varphi(t, \overline{\mu}_t)$

• Ex. 2:

$$\begin{cases}
b(x, \mu, v) = b(x, \overline{\mu}, v) = (\cos(x) + \cos(\overline{\mu}))v \\
f(x, \mu, v) = |v|^2, \quad g(x, \mu) = 0
\end{cases}$$

Can the optimal control be expressed as a function of X_t, E[X_t] only?
 ODE for μ
_t?

- In general: b, f, g involve the whole distribution $\mu_t = \mathcal{L}(X_t)$ (infinite dim.)
- What if they involve only the first moment $\overline{\mu}_t = \mathbb{E}[X_t]$?
- Ex. 1: LQ (see Part 1)
 - optimal control is a function of X_t and $\overline{\mu}_t = \mathbb{E}[X_t]$
 - ODE for $\overline{\mu}_t$ of the form $\frac{d}{dt}\overline{\mu}_t = \varphi(t, \overline{\mu}_t)$

• Ex. 2:

$$\begin{cases}
b(x, \mu, v) = b(x, \overline{\mu}, v) = (\cos(x) + \cos(\overline{\mu}))v \\
f(x, \mu, v) = |v|^2, \quad g(x, \mu) = 0
\end{cases}$$

Can the optimal control be expressed as a function of X_t, E[X_t] only?
 ODE for μ
_t?

$$\frac{d}{dt}\overline{\mu}_t = \mathbb{E}\left[(\cos(X_t) + \cos(\overline{\mu}_t))v(t, X_t)\right]$$

 $\underline{\wedge}$ It involves not only $\mathbb{E}[X_t] = \overline{\mu}_t$ but also $\mathbb{E}[\cos(X_t)]$

- In general: b, f, g involve the whole distribution $\mu_t = \mathcal{L}(X_t)$ (infinite dim.)
- What if they involve only the first moment $\overline{\mu}_t = \mathbb{E}[X_t]$?
- Ex. 1: LQ (see Part 1)
 - optimal control is a function of X_t and $\overline{\mu}_t = \mathbb{E}[X_t]$
 - ODE for $\overline{\mu}_t$ of the form $\frac{d}{dt}\overline{\mu}_t = \varphi(t, \overline{\mu}_t)$

• Ex. 2:

$$\begin{cases}
b(x, \mu, v) = b(x, \overline{\mu}, v) = (\cos(x) + \cos(\overline{\mu}))v \\
f(x, \mu, v) = |v|^2, \quad g(x, \mu) = 0
\end{cases}$$

Can the optimal control be expressed as a function of X_t, E[X_t] only?
 ODE for μ_t?

$$\frac{d}{dt}\overline{\mu}_t = \mathbb{E}\left[(\cos(X_t) + \cos(\overline{\mu}_t))v(t, X_t)\right]$$

 $\underline{\wedge}$ It involves not only $\mathbb{E}[X_t] = \overline{\mu}_t$ but also $\mathbb{E}[\cos(X_t)]$

Class of MFC s.t. the problem can be solved with a finite number of moments?

Following Balata et al. [BHL+19]³:

• In some cases, MFC problems can be written as:

$$J(\boldsymbol{v}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \boldsymbol{v}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, v_t)dt + \Sigma d\mathbb{W}_t$$

where the state is: $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$

³Balata, A., Huré, C., Laurière, M., Pham, H., & Pimentel, I. (2019). A class of finite-dimensional numerically solvable McKean-Vlasov control problems. ESAIM: Proceedings and Surveys, 65, 114-144.

Following Balata et al. [BHL+19]³:

• In some cases, MFC problems can be written as:

$$J(\textbf{\textit{v}}) = \mathbb{E}\left[\int_{0}^{T}\mathcal{F}(\underline{X}_{t}, \textbf{\textit{v}}_{t})dt + \mathcal{G}(\underline{X}_{T})\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \boldsymbol{v}_t)dt + \Sigma d\mathbb{W}_t$$

where the state is: $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$

• Time discretization:
$$0 = t_0 < t_1 < \cdots < t_{N_t} = T$$
, $t_{i+1} - t_i = \Delta t$

³Balata, A., Huré, C., Laurière, M., Pham, H., & Pimentel, I. (2019). A class of finite-dimensional numerically solvable McKean-Vlasov control problems. *ESAIM: Proceedings and Surveys*, 65, 114-144.

Following Balata et al. [BHL⁺19]³:

In some cases, MFC problems can be written as:

$$J(\boldsymbol{v}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \boldsymbol{v}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \boldsymbol{v}_t)dt + \Sigma d\mathbb{W}_t$$

where the state is: $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$

- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- DPP for $V: [0,T] \times (\mathbb{R}^d)^p \to \mathbb{R}$ or rather $V_{\Delta t}: \{t_0, \ldots, t_{N_t}\} \times (\mathbb{R}^d)^p \to \mathbb{R}$:

$$\begin{cases} V_{\Delta t}(T,\underline{x}) = \mathcal{G}(\underline{x}) \\ V_{\Delta t}(t_n,\underline{x}) = \sup_{\mathbf{v}} \left\{ \mathcal{F}(\underline{x},\mathbf{v})\Delta t + \mathbb{E}^{t_n,\underline{x},\mathbf{v}} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] \right\}, n = N_t - 1, \dots, 1, 0 \\ \text{where } \mathbb{E}^{t_n,\underline{x},\mathbf{v}} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] = \mathbb{E} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\mathbf{v}}) \mid \underline{X}_{t_n}^{\mathbf{v}} = \underline{x} \right] \end{cases}$$

³Balata, A., Huré, C., Laurière, M., Pham, H., & Pimentel, I. (2019). A class of finite-dimensional numerically solvable McKean-Vlasov control problems. ESAIM: Proceedings and Surveys, 65, 114-144.

Following Balata et al. [BHL⁺19]³:

• In some cases, MFC problems can be written as:

$$J(\boldsymbol{v}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \boldsymbol{v}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \boldsymbol{v}_t)dt + \Sigma d\mathbb{W}_t$$

where the state is: $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$

- Time discretization: $0 = t_0 < t_1 < \cdots < t_{N_t} = T$, $t_{i+1} t_i = \Delta t$
- DPP for $V: [0,T] \times (\mathbb{R}^d)^p \to \mathbb{R}$ or rather $V_{\Delta t}: \{t_0, \ldots, t_{N_t}\} \times (\mathbb{R}^d)^p \to \mathbb{R}$:

$$\begin{cases} V_{\Delta t}(T,\underline{x}) = \mathcal{G}(\underline{x}) \\ V_{\Delta t}(t_n,\underline{x}) = \sup_{v} \left\{ \mathcal{F}(\underline{x},v) \Delta t + \mathbb{E}^{t_n,\underline{x},v} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] \right\}, n = N_t - 1, \dots, 1, 0 \\ \text{where } \mathbb{E}^{t_n,\underline{x},v} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] = \mathbb{E} \left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^v) \mid \underline{X}_{t_n}^v = \underline{x} \right] \end{cases}$$

 \rightarrow Key difficulty: estimation of the conditional expectation

³Balata, A., Huré, C., Laurière, M., Pham, H., & Pimentel, I. (2019). A class of finite-dimensional numerically solvable McKean-Vlasov control problems. ESAIM: Proceedings and Surveys, 65, 114-144.

1. A Picard Scheme for MKV FBSDE

2. Stochastic Methods for some Finite-Dimensional MFC Problems
 Finite-Dimensional Structure

Conditional Expectation Estimation

- Family of basis functions $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{v}) \,|\, \underline{X}_{t_{n}}^{v}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{v})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[\left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\boldsymbol{v}}) \right|^2 \right]$$

- Family of basis functions $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{v}) \,|\, \underline{X}_{t_{n}}^{v}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{v})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[\left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\boldsymbol{v}}) \right|^2 \right]$$

Explicit expression:

$$\beta_{t_n}^m = \mathbb{E}[\phi(\underline{X}_{t_n}^v)\phi(\underline{X}_{t_n}^v)^\top]^{-1} \mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^v)\phi(\underline{X}_{t_n}^v)]$$

- Family of basis functions $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\boldsymbol{v}})\,|\,\underline{X}_{t_n}^{\boldsymbol{v}}\right] \approx \sum_{m=1}^M \beta_{t_n}^m \phi^m(\underline{X}_{t_n}^{\boldsymbol{v}})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[\left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\boldsymbol{v}}) \right|^2 \right]$$

Explicit expression:

$$\beta_{t_n}^m = \mathbb{E}[\phi(\underline{X}_{t_n}^v)\phi(\underline{X}_{t_n}^v)^\top]^{-1} \mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^v)\phi(\underline{X}_{t_n}^v)]$$

• Estimation with *N*_{MC} Monte Carlo samples:

$$\mathbb{E}[\phi(\underline{X}_{t_n}^{\ell,v})\phi(\underline{X}_{t_n}^{\ell,v})^{\top}] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} \phi(\underline{X}_{t_n}^{\ell,v})\phi(\underline{X}_{t_n}^{\ell,v})^{\top}$$

and

$$\mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}})\phi(\underline{X}_{t_n}^{\ell, \boldsymbol{v}})] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}})\phi(\underline{X}_{t_n}^{\ell, \boldsymbol{v}})$$

with training set $\left\{ \left(\underline{X}_{t_n}^{\ell, \boldsymbol{v}}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}} \right); \ell = 1, \dots, N_{MC} \right\}$

- Family of basis functions $\phi = (\phi^m)_{m=1,...,M}$ And Always easy to choose !
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{v}) \,|\, \underline{X}_{t_{n}}^{v}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{v})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[\left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\boldsymbol{v}}) \right|^2 \right]$$

Explicit expression:

$$\beta_{t_n}^m = \mathbb{E}[\phi(\underline{X}_{t_n}^v)\phi(\underline{X}_{t_n}^v)^\top]^{-1} \mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^v)\phi(\underline{X}_{t_n}^v)]$$

• Estimation with *N*_{MC} Monte Carlo samples:

$$\mathbb{E}[\phi(\underline{X}_{t_n}^{\ell,v})\phi(\underline{X}_{t_n}^{\ell,v})^{\top}] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} \phi(\underline{X}_{t_n}^{\ell,v})\phi(\underline{X}_{t_n}^{\ell,v})^{\top}$$

and

$$\mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}})\phi(\underline{X}_{t_n}^{\ell, \boldsymbol{v}})] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}})\phi(\underline{X}_{t_n}^{\ell, \boldsymbol{v}})$$

with training set $\left\{ \left(\underline{X}_{t_n}^{\ell, \boldsymbol{v}}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{v}} \right); \ell = 1, \dots, N_{MC} \right\}$

- Two space discretizations:
 - Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
 - Quantization of noise (see e.g. Pagès [Pag18]⁴):
 - * Set of cells $C_Q = \{C_j; j = 1, \dots, J_Q\}$

 - ★ Associated grid points $\mathcal{G}_Q = \{\zeta_j; j = 1, ..., J_Q\}$ ★ Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$: $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
 - ★ Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$: $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
 - * Can be optimized⁵; particularly helpful when $\hat{d} > 1$

⁴Pagès, G. (2018). Numerical probability. In Universitext. Springer Cham.

⁵Ontimal orids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
 - Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
 - Quantization of noise (see e.g. Pagès [Pag18]⁴):
 - * Set of cells $C_Q = \{C_j; j = 1, \dots, J_Q\}$
 - * Associated grid points $\mathcal{G}_Q = \{\zeta_j; j = 1, \dots, J_Q\}$
 - ★ Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$: $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
 - ★ Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$: $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
 - * Can be optimized⁵; particularly helpful when d > 1
- Estimation with piecewise constant interpolation: $\overline{V}_{\Delta t} : \{t_0, \ldots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) \mid \underline{X}_{t_n}^{\boldsymbol{v}} = \underline{x}\right] \approx \sum_{j=1}^{J_Q} p_j \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}(\underline{x}, \boldsymbol{v}_{t_n}) \Delta t + \Sigma \zeta_j\right)\right)$$

for all $\underline{x} \in \Gamma$

⁴Pagès, G. (2018). Numerical probability. In Universitext. Springer Cham.

⁵Optimal grids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
 - Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
 - Quantization of noise (see e.g. Pagès [Pag18]⁴):
 - * Set of cells $C_Q = \{C_j; j = 1, \dots, J_Q\}$
 - * Associated grid points $\mathcal{G}_Q = \{\zeta_j; j = 1, \dots, J_Q\}$
 - ★ Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$: $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
 - ★ Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$: $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
 - * Can be optimized⁵; particularly helpful when d > 1
- Estimation with piecewise constant interpolation: $\bar{V}_{\Delta t} : \{t_0, \dots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\boldsymbol{v}}) \mid \underline{X}_{t_n}^{\boldsymbol{v}} = \underline{x}\right] \approx \sum_{j=1}^{J_Q} p_j \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}(\underline{x}, \boldsymbol{v}_{t_n}) \Delta t + \Sigma \zeta_j\right)\right)$$

for all $\underline{x} \in \Gamma$

• Other interpolations are possible

⁴ Pagès, G. (2018). Numerical probability. In Universitext. Springer Cham.

⁵Optimal grids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
 - Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
 - Quantization of noise (see e.g. Pagès [Pag18]⁴):
 - * Set of cells $C_Q = \{C_j; j = 1, \dots, J_Q\}$
 - * Associated grid points $\mathcal{G}_Q = \{\zeta_j; j = 1, \dots, J_Q\}$
 - ★ Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$: $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
 - ★ Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$: $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
 - * Can be optimized⁵; particularly helpful when d > 1
- Estimation with piecewise constant interpolation: $\bar{V}_{\Delta t} : \{t_0, \ldots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\boldsymbol{v}}) \mid \underline{X}_{t_{n}}^{\boldsymbol{v}} = \underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1},\Pi_{\Gamma}\left(\mathcal{B}(\underline{x},\boldsymbol{v}_{t_{n}})\Delta t + \Sigma \zeta_{j}\right)\right)$$

for all $\underline{x} \in \Gamma$

• Other interpolations are possible

For more details and numerical examples, see [Balata et al.'19]

⁴Pagès, G. (2018). Numerical probability. In Universitext. Springer Cham.

⁵Optimal grids/weights available here: http://www.quantize.maths-fi.com

Summary

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L'20 (Cetraro); L'21 (AMS)]

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.'20 (Cetraro); L.'21 (AMS)]

Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L'20 (Cetraro); L'21 (AMS)]

Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)
- Recent progress: extending the toolbox with tools from machine learning:
 - approximation without a grid (mesh-free methods): opt. control & distribution
 - → [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; ...]
 - even when the dynamics / cost are not known (model-free methods)
 - → [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; Yang et al.; ...]

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [ACD10, ACCD12] ...
- Gradient descent: [LP16, Pfe16]
- Semi-Lagrangian scheme: [CS14, CS15]
- Augmented Lagrangian & ADMM: [BC15, AL16, And17]
- Primal-dual algo.: [BnAKS18, BnAKK+19]
- Monotone operators: [AFG17, GY20]

Methods based on a probabilistic approach:

- Cubature: [dRT15]
- Recursion: [CCD19, AGL+19]
- MC & Regression: [BHL+19]

Surveys and lecture notes: [Ach13, AL20, Lau21]

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [ACD10, ACCD12] ...
- Gradient descent: [LP16, Pfe16]
- Semi-Lagrangian scheme: [CS14, CS15]
- Augmented Lagrangian & ADMM: [BC15, AL16, And17]
- Primal-dual algo.: [BnAKS18, BnAKK+19]
- Monotone operators: [AFG17, GY20]

Methods based on a probabilistic approach:

- Cubature: [dRT15]
- Recursion: [CCD19, AGL+19]
- MC & Regression: [BHL+19]

Surveys and lecture notes: [Ach13, AL20, Lau21]

Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)

Methods based on a deterministic approach:

- Finite diff. & Newton meth.: [ACD10, ACCD12] ...
- Gradient descent: [LP16, Pfe16]
- Semi-Lagrangian scheme: [CS14, CS15]
- Augmented Lagrangian & ADMM: [BC15, AL16, And17]
- Primal-dual algo.: [BnAKS18, BnAKK+19]
- Monotone operators: [AFG17, GY20]

Methods based on a probabilistic approach:

- Cubature: [dRT15]
- Recursion: [CCD19, AGL+19]
- MC & Regression: [BHL+19]

Surveys and lecture notes: [Ach13, AL20, Lau21]

Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:

- approximation without a grid (mesh-free methods): opt. control & distribution
- \rightarrow [CL21, CL19, AACN⁺19, FZ20, ROL⁺20, ABO20] ...
- even when the dynamics / cost are not known (model-free methods)
- \rightarrow [GHXZ19, SM19, EPL⁺20, PPL⁺20, CLT19, CHLT20, MP19, FYCW19] ...

• ODE solvers for LQ MFC:

https://colab.research.google.com/drive/1jac1M1zFB1Y6j6BY1ocwgmkNTf1pRQYY?usp=sharing

PDE solver with Semi-Lagrangian approach

https://colab.research.google.com/drive/180j6cKlvfe5UlMnm_Lm0klyuYrJKc0k4?usp=sharing

PDE solver with Finite Difference scheme & Picard iterations + Newton

(coming soon)

Ο...

References I

- [AACN⁺19] Ali Al-Aradi, Adolfo Correia, Danilo de Frietas Naiff, Gabriel Jardim, and Yuri Saporito, Applications of the deep galerkin method to solving partial integro-differential and hamilton-jacobi-bellman equations, arXiv preprint arXiv:1912.01455 (2019).
- [ABO20] Nacira Agram, Azzeddine Bakdi, and Bernt Oksendal, *Deep learning and stochastic mean-field control for a neural network model*, Available at SSRN 3639022 (2020).
- [ACCD12] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem, SIAM J. Control Optim. 50 (2012), no. 1, 77–109. MR 2888257
- [ACD10] Yves Achdou and Italo Capuzzo-Dolcetta, *Mean field games: numerical methods*, SIAM J. Numer. Anal. **48** (2010), no. 3, 1136–1162. MR 2679575
- [Ach13] Yves Achdou, *Finite difference methods for mean field games*, Hamilton-Jacobi equations: approximations, numerical analysis and applications, Lecture Notes in Math., vol. 2074, Springer, Heidelberg, 2013, pp. 1–47. MR 3135339
- [AFG17] Noha Almulla, Rita Ferreira, and Diogo Gomes, Two numerical approaches to stationary mean-field games, Dyn. Games Appl. 7 (2017), no. 4, 657–682. MR 3698446

References II

- [AGL⁺19] Angiuli, Andrea, Graves, Christy V., Li, Houzhi, Chassagneux, Jean-François, Delarue, François, and Carmona, René, *Cemracs 2017: numerical probabilistic approach to mfg*, ESAIM: ProcS 65 (2019), 84–113.
- [AL16] Yves Achdou and Mathieu Laurière, Mean Field Type Control with Congestion (II): An augmented Lagrangian method, Appl. Math. Optim. 74 (2016), no. 3, 535–578. MR 3575615
- [AL20] _____, *Mean field games and applications: Numerical aspects*, Mean Field Games: Cetraro, Italy 2019 **2281** (2020), 249–307.
- [And17] Roman Andreev, Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion, SIAM J. Sci. Comput. 39 (2017), no. 6, A2763–A2783. MR 3731033
- [BC15] Jean-David Benamou and Guillaume Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl. 167 (2015), no. 1, 1–26. MR 3395203
- [BHL+19] Alessandro Balata, Côme Huré, Mathieu Laurière, Huyên Pham, and Isaque Pimentel, A class of finite-dimensional numerically solvable mckean-vlasov control problems, ESAIM: Proceedings and Surveys 65 (2019), 114–144.

References III

- [BnAKK⁺19] Luis M. Briceño Arias, Dante Kalise, Ziad Kobeissi, Mathieu Laurière, Álvaro Mateos González, and Francisco J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings, ESAIM: ProcS 65 (2019), 330–348.
- [BnAKS18] Luis M. Briceño Arias, Dante Kalise, and Francisco J. Silva, Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim. 56 (2018), no. 2, 801–836. MR 3772008
- [CCD19] Jean-François Chassagneux, Dan Crisan, and François Delarue, Numerical method for FBSDEs of McKean-Vlasov type, Ann. Appl. Probab. 29 (2019), no. 3, 1640–1684. MR 3914553
- [CD18] René Carmona and François Delarue, Probabilistic theory of mean field games with applications. I, Probability Theory and Stochastic Modelling, vol. 83, Springer, Cham, 2018, Mean field FBSDEs, control, and games. MR 3752669
- [CHLT20] René Carmona, Kenza Hamidouche, Mathieu Laurière, and Zongjun Tan, *Policy optimization for linear-quadratic zero-sum mean-field type games*, 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 1038–1043.
- [CL19] René Carmona and Mathieu Laurière, *Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: li–the finite horizon case*, arXiv preprint arXiv:1908.01613. To appear in Annals of Probability (2019).

References IV

- [CL21] _____, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games i: The ergodic case, SIAM Journal on Numerical Analysis **59** (2021), no. 3, 1455–1485.
- [CLT19] René Carmona, Mathieu Laurière, and Zongjun Tan, *Model-free mean-field* reinforcement learning: mean-field mdp and mean-field q-learning, arXiv preprint arXiv:1910.12802 (2019).
- [CS14] Elisabetta Carlini and Francisco J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field game problem, SIAM J. Numer. Anal. 52 (2014), no. 1, 45–67. MR 3148086
- [CS15] _____, A semi-Lagrangian scheme for a degenerate second order mean field game system, Discrete Contin. Dyn. Syst. **35** (2015), no. 9, 4269–4292. MR 3392626
- [dRT15] PE Chaudru de Raynal and CA Garcia Trillos, *A cubature based algorithm to solve decoupled mckean–vlasov forward–backward stochastic differential equations*, Stochastic Processes and their Applications **125** (2015), no. 6, 2206–2255.
- [EPL⁺20] Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin, On the convergence of model free learning in mean field games, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 7143–7150.

References V

- [FYCW19] Zuyue Fu, Zhuoran Yang, Yongxin Chen, and Zhaoran Wang, *Actor-critic provably finds nash equilibria of linear-quadratic mean-field games*, International Conference on Learning Representations, 2019.
- [FZ20] Jean-Pierre Fouque and Zhaoyu Zhang, Deep learning methods for mean field control problems with delay, Frontiers in Applied Mathematics and Statistics 6 (2020), 11.
- [GHXZ19] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang, *Learning mean-field games*, Advances in Neural Information Processing Systems **32** (2019), 4966–4976.
- [GY20] Diogo A Gomes and Xianjin Yang, The hessian riemannian flow and newton's method for effective hamiltonians and mather measures, ESAIM: Mathematical Modelling and Numerical Analysis 54 (2020), no. 6, 1883–1915.
- [Lau21] Mathieu Laurière, *Numerical methods for mean field games and mean field type control*, arXiv preprint arXiv:2106.06231 (2021).
- [LP16] Mathieu Laurière and Olivier Pironneau, *Dynamic programming for mean-field type control*, J. Optim. Theory Appl. **169** (2016), no. 3, 902–924. MR 3501391
- [MP19] Médéric Motte and Huyên Pham, Mean-field markov decision processes with common noise and open-loop controls, arXiv preprint arXiv:1912.07883 (2019).
- [Pag18] Gilles Pagès, *Numerical probability*, Universitext, Springer, 2018.

[Pfe16]Laurent Pfeiffer, Numerical methods for mean-field type optimal control problems,
Pure Appl. Funct. Anal. 1 (2016), no. 4, 629–655. MR 3619691

- [PPL+20] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and Olivier Pietquin, *Fictitious play for mean field games: Continuous time analysis* and applications, Advances in Neural Information Processing Systems (2020).
- [ROL⁺20] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung, A machine learning framework for solving high-dimensional mean field game and mean field control problems, Proceedings of the National Academy of Sciences 117 (2020), no. 17, 9183–9193.
- [SM19] Jayakumar Subramanian and Aditya Mahajan, *Reinforcement learning in stationary mean-field games*, Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, 2019, pp. 251–259.

Unless otherwise specified, the images are from https://unsplash.com