Mean Field Games:
 Numerical Methods and Applications in Machine Learning

Part 5: Deep Learning for MFC and MKV FBSDE

Mathieu LaURIÈRE

```
https://mlauriere.github.io/teaching/MFG-PKU-5.pdf
```

Peking University
Summer School on Applied Mathematics
July 26 - August 6, 2021

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. \& Newton meth.: [Achdou, Capuzzo-Dolcetta' 10 ; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian \& ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC \& Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.'20 (Cetraro); L.'21 (AMS)]

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. \& Newton meth.: [Achdou, Capuzzo-Dolcetta' 10 ; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian \& ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC \& Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.'20 (Cetraro); L.'21 (AMS)]
Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

- Finite diff. \& Newton meth.: [Achdou, Capuzzo-Dolcetta' 10 ; Achdou, Camilli, Capuzzo-Dolcetta'13; ...]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian \& ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC \& Regression: [Balata, Huré, L., Pham, Pimentel'18]

Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.'20 (Cetraro); L.'21 (AMS)]

Limitations:

- dimensionality (typically: state in dimension ≤ 3)
- structure of the problem (typically: simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:

- approximation without a grid (mesh-free methods): opt. control \& distribution
\rightarrow [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; ...]
- even when the dynamics / cost are not known (model-free methods)
\rightarrow [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; Yang et al.; ...]

Outline

1. Introduction
2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Other Methods

- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Ex.: Regression: $\xi=(x, f(x))$ for some $f, \mathbb{L}(\varphi, \xi)=\|\varphi(x)-f(x)\|^{2}$
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Ex.: Regression: $\xi=(x, f(x))$ for some $f, \mathbb{L}(\varphi, \xi)=\|\varphi(x)-f(x)\|^{2}$
- Idea: Instead of min. over all $\varphi(\cdot)$, min. over parameters θ of $\varphi_{\theta}(\cdot)$
- Ex.: Feedforward fully-connected neural network:
φ_{θ} with weights \& biases $\theta=\left(\beta^{(k)}, w^{(k)}\right)_{k=1, \ldots, \ell}$

$$
\underbrace{\varphi_{\theta}(x)}_{\varphi(\theta, x)}=\psi^{(\ell)}(\beta^{(\ell)}+w^{(\ell)} \ldots \psi^{(2)}(\beta^{(2)}+w^{(2)} \underbrace{\psi^{(1)}\left(\beta^{(1)}+w^{(1)} x\right)}_{\text {one hidden layer }}) \ldots)
$$

where $\psi^{(i)} \in\{$ sigmoid, ReLU, $\ldots\}$: non-linear activation functions (coordinate-wise)

- Depth = number of layers; width of a layer = dimension of bias vector
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Ex.: Regression: $\xi=(x, f(x))$ for some $f, \mathbb{L}(\varphi, \xi)=\|\varphi(x)-f(x)\|^{2}$
- Idea: Instead of min. over all $\varphi(\cdot)$, min. over parameters θ of $\varphi_{\theta}(\cdot)$
- Ex.: Feedforward fully-connected neural network:
φ_{θ} with weights \& biases $\theta=\left(\beta^{(k)}, w^{(k)}\right)_{k=1, \ldots, \ell}$

$$
\underbrace{\varphi_{\theta}(x)}_{\varphi(\theta, x)}=\psi^{(\ell)}(\beta^{(\ell)}+w^{(\ell)} \ldots \psi^{(2)}(\beta^{(2)}+w^{(2)} \underbrace{\psi^{(1)}\left(\beta^{(1)}+w^{(1)} x\right)}_{\text {one hidden layer }}) \ldots)
$$

where $\psi^{(i)} \in\{$ sigmoid, ReLU, $\ldots\}$: non-linear activation functions (coordinate-wise)

- Depth = number of layers; width of a layer = dimension of bias vector
- Other architectures

Differentiation: can compute partial derivatives by automatic differentiation (AD) at every (θ, x) :

- With respect to parameters: $\nabla_{\theta} \varphi(\theta, x)$

$$
\nabla_{\beta^{(\ell)}} \varphi(\theta, x)=\ldots, \quad \nabla_{w^{(2)}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can perform SGD on these parameters

Differentiation: can compute partial derivatives by automatic differentiation (AD) at every (θ, x) :

- With respect to parameters: $\nabla_{\theta} \varphi(\theta, x)$

$$
\nabla_{\beta^{(\ell)}} \varphi(\theta, x)=\ldots, \quad \nabla_{w^{(2)}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can perform SGD on these parameters

- With respect to state variable: $\nabla_{x} \varphi(\theta, x)$ can be computed by AD too

$$
\partial_{x_{1}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can be used in PDEs

Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$

Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
Setting: the distribution of ξ is unknown, but

- we have some samples (i.e. random realizations) of ξ
- we know \mathbb{L}

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
Setting: the distribution of ξ is unknown, but

- we have some samples (i.e. random realizations) of ξ
- we know \mathbb{L}

Ex: Regression: $\xi=(x, f(x)), \widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}\left[\left\|\varphi_{\theta}(x)-f(x)\right\|^{2}\right]$

Ingredient 2：Stochastic Gradient Descent

Goal：Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
Parameterization：$\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$ ，where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
Setting：the distribution of ξ is unknown，but
－we have some samples（i．e．random realizations）of ξ
－we know \mathbb{L}
Ex：Regression：$\xi=(x, f(x)), \widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}\left[\left\|\varphi_{\theta}(x)-f(x)\right\|^{2}\right]$

```
Input: Initial param. 吝; data S=(纤)
Output: Parameter }\mp@subsup{0}{}{\star}\mathrm{ s.t. }\mp@subsup{\varphi}{\mp@subsup{0}{}{\star}}{}\mathrm{ (approximately) minimizes }\mathbb{J
```



```
for k = 0,1, 2,\ldots.,K - 1 do
    Pick s\inS randomly
        Compute the gradient }\mp@subsup{\nabla}{0}{}\widetilde{\mathbb{L}}(\mp@subsup{0}{}{(k-1)},\mp@subsup{\xi}{s}{})=\frac{d}{d0}\mathbb{L}(\mp@subsup{\varphi}{\mp@subsup{0}{}{(k-1)}}{},\mp@subsup{\xi}{s}{}
        Set }\mp@subsup{0}{}{(\textrm{k})}=\mp@subsup{0}{}{(\textrm{k}-1)}-\mp@subsup{\eta}{}{(\textrm{k})}\mp@subsup{\nabla}{0}{}\widetilde{\mathbb{L}}(\mp@subsup{0}{}{(\textrm{k}-1)},\mp@subsup{\xi}{s}{}
return 的(K)
```

- Many variants:
- Learning rate: ADAM (Adaptive Moment Estimation), ...
- Samples: Mini-batches, ...
- Many variants:
- Learning rate: ADAM (Adaptive Moment Estimation), ...
- Samples: Mini-batches, ...
- Generator for $\xi \Rightarrow$ can generate Monte Carlo samples on the fly
- Many variants:
- Learning rate: ADAM (Adaptive Moment Estimation), ...
- Samples: Mini-batches, ...
- Generator for $\xi \Rightarrow$ can generate Monte Carlo samples on the fly
- Robbins-Monro [RM51]
- Many variants:
- Learning rate: ADAM (Adaptive Moment Estimation), ...
- Samples: Mini-batches, ...
- Generator for $\xi \Rightarrow$ can generate Monte Carlo samples on the fly
- Robbins-Monro [RM51]
- Links with convex minimization \& stochastic approximation

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

- In practice:
- minimize over a hypothesis class \mathcal{F} of φ
- finite number of samples, $S=\left(x_{m}, y_{m}\right)_{m=1, \ldots, M}$: (regularized) empirical risk:

$$
\hat{\mathcal{R}}_{S}(\varphi)=\frac{1}{M} \sum_{m=1}^{M} L\left(\varphi\left(x_{m}\right), y_{m}\right) \quad(+\mathrm{regu})
$$

- finite number of optimization steps, say k

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

- In practice:
- minimize over a hypothesis class \mathcal{F} of φ
- finite number of samples, $S=\left(x_{m}, y_{m}\right)_{m=1, \ldots, M}$: (regularized) empirical risk:

$$
\hat{\mathcal{R}}_{S}(\varphi)=\frac{1}{M} \sum_{m=1}^{M} L\left(\varphi\left(x_{m}\right), y_{m}\right) \quad(+\mathrm{regu})
$$

- finite number of optimization steps, say k
- We are interested in:
- Approximation error: Letting $\varphi^{*}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \operatorname{dist}(\varphi, f)$,

$$
\epsilon_{\text {approx }}=\operatorname{dist}\left(\varphi^{*}, f\right)
$$

- Estimation error: Letting $\hat{\varphi}_{S}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \hat{\mathcal{R}}_{S}(\varphi)$

$$
\epsilon_{\mathrm{estim}}=\operatorname{dist}\left(\hat{\varphi}_{S}, \varphi^{*}\right)
$$

- Optimization error: After k steps, we get $\varphi_{S}^{(\mathrm{k})}$;

$$
\epsilon_{\mathrm{optim}}=\operatorname{dist}\left(\varphi_{S}^{(\mathrm{k})}, \hat{\varphi}_{S}\right)
$$

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

- In practice:
- minimize over a hypothesis class \mathcal{F} of φ
- finite number of samples, $S=\left(x_{m}, y_{m}\right)_{m=1, \ldots, M}$: (regularized) empirical risk:

$$
\hat{\mathcal{R}}_{S}(\varphi)=\frac{1}{M} \sum_{m=1}^{M} L\left(\varphi\left(x_{m}\right), y_{m}\right) \quad(+ \text { regu })
$$

- finite number of optimization steps, say k
- We are interested in:
- Approximation error: Letting $\varphi^{*}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \operatorname{dist}(\varphi, f)$,

$$
\epsilon_{\text {approx }}=\operatorname{dist}\left(\varphi^{*}, f\right)
$$

- Estimation error: Letting $\hat{\varphi}_{S}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \hat{\mathcal{R}}_{S}(\varphi)$

$$
\epsilon_{\mathrm{estim}}=\operatorname{dist}\left(\hat{\varphi}_{S}, \varphi^{*}\right)
$$

- Optimization error: After k steps, we get $\varphi_{S}^{(\mathrm{k})}$;

$$
\epsilon_{\mathrm{optim}}=\operatorname{dist}\left(\varphi_{S}^{(\mathrm{k})}, \hat{\varphi}_{S}\right)
$$

- Generalization error of the learnt $\varphi_{S}^{(\mathrm{k})}$:

$$
\epsilon_{\text {gene }}=\epsilon_{\text {approx }}+\epsilon_{\mathrm{estim}}+\epsilon_{\text {optim }}
$$

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Other Methods

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over $v(\cdot, \cdot)$

$$
J(v(\cdot, \cdot))=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, v\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, v\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network φ_{θ},
Minimize over neural network parameters θ

$$
J(\theta)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \varphi_{\theta}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, \varphi_{\theta}\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network φ_{θ}, (3) time discretization
Minimize over neural network parameters θ and N_{T} time steps

$$
J^{N_{T}}(\theta)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+g\left(X_{N_{T}}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad X_{n+1}-X_{n}=b\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+\sigma \Delta W_{n}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network φ_{θ}, (3) time discretization
Minimize over neural network parameters θ and N_{T} time steps

$$
J^{N_{T}}(\theta)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+g\left(X_{N_{T}}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad X_{n+1}-X_{n}=b\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+\sigma \Delta W_{n}
$$

\rightarrow neural network induces an approximation error
\rightarrow time discretization induce extra errors

MFC: Approximate Problem

MFC problem:

Minimize over $v(\cdot, \cdot)$

$$
J(v(\cdot, \cdot))=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \mu_{t}, v\left(t, X_{t}\right)\right) d t+g\left(X_{T}, \mu_{T}\right)\right]
$$

where $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, \mu_{t}, v\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop.,
Minimize over decentralized controls $v(\cdot, \cdot)$ with N agents

$$
J^{N}(v(\cdot, \cdot))=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, v\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}^{i}, \mu_{T}^{N}\right)\right],
$$

where $\mu_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad d X_{t}^{j}=b\left(X_{t}^{j}, \mu_{t}^{N}, v\left(t, X_{t}^{j}\right)\right) d t+\sigma d W_{t}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ},
Minimize over neural network parameters θ with N agents

$$
J^{N}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, \varphi_{\theta}\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}^{i}, \mu_{T}^{N}\right)\right]
$$

where $\mu_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad d X_{t}^{j}=b\left(X_{t}^{j}, \mu_{t}^{N}, \varphi_{\theta}\left(t, X_{t}^{j}\right)\right) d t+\sigma d W_{t}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ}, (3) time discretization
Minimize over neural network parameters $\theta \in \Theta$ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right]
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop.,
(2) neural network φ_{θ},
(3) time discretization

Minimize over neural network parameters $\theta \in \Theta$ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right]
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

\rightarrow neural network induces an approximation error
\rightarrow Finite population and time discretization induce extra errors

MFC: Approximate Problem

MFC problem: (1) Finite pop.,
(2) neural network φ_{θ},
(3) time discretization

Minimize over neural network parameters $\theta \in \Theta$ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right]
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

\rightarrow neural network induces an approximation error
\rightarrow Finite population and time discretization induce extra errors
N.B.: decentralized control

Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved (see Carmona \& L. [CL19] ${ }^{1}$):
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{v(\cdot, \cdot)} J(v(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

[^0]
Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved (see Carmona \& L. [CL19] ${ }^{1}$):
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{v(\cdot, \cdot)} J(v(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to Carmona \& L. [CL21] ${ }^{2}$

[^1]
Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved (see Carmona \& L. [CL19] ${ }^{1}$):
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{v(\cdot, \cdot)} J(v(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to Carmona \& L. [CL21] ${ }^{2}$
- The optimization error remains to be studied

[^2]
Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved (see Carmona \& L. [CL19] ${ }^{1}$):
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{v(\cdot, \cdot)} J(v(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to Carmona \& L. [CL21] ${ }^{2}$
- The optimization error remains to be studied
- Many extensions to be studied

[^3]
Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):

Under suitable assumptions, there exists a decentralized control v^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{v(\cdot)} J(v(\cdot))-J^{N}\left(v^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right)
$$

Proof: propagation of chaos type argument Carmona \& Delarue [CD18]

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):
Under suitable assumptions, there exists a decentralized control v^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{v(\cdot)} J(v(\cdot))-J^{N}\left(v^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right)
$$

Proof: propagation of chaos type argument Carmona \& Delarue [CD18]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters $\theta \in \Theta$ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$
\left|J^{N}\left(v^{*}(\cdot)\right)-J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{2}(\operatorname{dim}(\theta)) \in O\left(\operatorname{dim}(\theta)^{-\frac{1}{3(d+1)}}\right)
$$

Proof: Key difficulty: approximate $v^{*}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\left\|\nabla \hat{\varphi}_{\theta}(\cdot)\right\|$ by $\left\|\nabla v^{*}(\cdot)\right\|$
\rightarrow universal approximation without rate of convergence is not enough
\rightarrow approximation rate for the derivative too, e.g. from Mhaskar \& Micchelli [MM95]

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):
Under suitable assumptions, there exists a decentralized control v^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{v(\cdot)} J(v(\cdot))-J^{N}\left(v^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right) .
$$

Proof: propagation of chaos type argument Carmona \& Delarue [CD18]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters $\theta \in \Theta$ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$
\left|J^{N}\left(v^{*}(\cdot)\right)-J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{2}(\operatorname{dim}(\theta)) \in O\left(\operatorname{dim}(\theta)^{-\frac{1}{3(d+1)}}\right) .
$$

Proof: Key difficulty: approximate $v^{*}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\left\|\nabla \hat{\varphi}_{\theta}(\cdot)\right\|$ by $\left\|\nabla v^{*}(\cdot)\right\|$
\rightarrow universal approximation without rate of convergence is not enough
\rightarrow approximation rate for the derivative too, e.g. from Mhaskar \& Micchelli [MM95]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network $\hat{\varphi}_{\theta}(\cdot)$,

$$
\left|J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)-J^{N, N_{T}}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{3}\left(N_{T}\right) \in O\left(N_{T}^{-1 / 2}\right) .
$$

Key point: $O(\cdot)$ independent of N and $\operatorname{dim}(\theta)$
Proof: analysis of strong error rate for Euler scheme (reminiscent of Bossy \& Talay [BT97])

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Related work:
- Extends standard stochastic control ... ; Gobet \& Munos [GM05]; Han \& E [HE16]
- Related work with mean field: Fouque \& Zhang [FZ20]; Germain et al. [GMW19]; ...
- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Related work:
- Extends standard stochastic control ... ; Gobet \& Munos [GM05]; Han \& E [HE16]
- Related work with mean field: Fouque \& Zhang [FZ20]; Germain et al. [GMW19]; ...
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Related work:
- Extends standard stochastic control ... ; Gobet \& Munos [GM05]; Han \& E [HE16]
- Related work with mean field: Fouque \& Zhang [FZ20]; Germain et al. [GMW19]; ...
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Related work:
- Extends standard stochastic control ... ; Gobet \& Munos [GM05]; Han \& E [HE16]
- Related work with mean field: Fouque \& Zhang [FZ20]; Germain et al. [GMW19]; . .
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Related work:
- Extends standard stochastic control . . . ; Gobet \& Munos [GM05]; Han \& E [HE16]
- Related work with mean field: Fouque \& Zhang [FZ20]; Germain et al. [GMW19]; ...
- Structure:

Numerical Illustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

$$
f(x, \mu, v)=\underbrace{(\bar{\mu}-x)^{2}}_{\begin{array}{c}
\text { distance to } \\
\text { mean position }
\end{array}}+\underbrace{v^{2}}_{\substack{\text { cost of } \\
v^{2}}}, \quad \bar{\mu}=\underbrace{\int \mu(\xi) d \xi}_{\text {mean position }}, \quad g(x)=x^{2}
$$

Numerical example with $d=10$ (see Carmona \& L. [CL19]):

total cost (= loss function)

L^{2}-error on the control

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

(More details in Carmona \& L. [CL19])

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$
- After $T / 2$: move towards the target selected by common noise

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$
- After $T / 2$: move towards the target selected by common noise

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$
- After $T / 2$: move towards the target selected by common noise

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$
- After $T / 2$: move towards the target selected by common noise

Numerical Illustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

- $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$
- running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$
- Ex.: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
- Numerics: neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$ VS benchmark with system of 6 PDEs

- Until $T / 2$: concentrate around mid-point $=0$
- After $T / 2$: move towards the target selected by common noise

Price Impact Model (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18],

...):
Price process: with $\nu^{v}=$ population's distribution over actions,

$$
d S_{t}^{v}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{v}(a) d t+\sigma_{0} d W_{t}^{0}
$$

Typical agent's inventory: $d X_{t}^{v}=v_{t} d t+\sigma d W_{t}$
Typical agent's wealth: $d K_{t}^{v}=-\left(v_{t} S_{t}^{v}+c_{v}\left(v_{t}\right)\right) d t$
Typical agent's portfolio value: $V_{t}^{v}=K_{t}^{v}+X_{t}^{v} S_{t}^{v}$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18],

...):
Price process: with $\nu^{v}=$ population's distribution over actions,

$$
d S_{t}^{v}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{v}(a) d t+\sigma_{0} d W_{t}^{0}
$$

Typical agent's inventory: $d X_{t}^{v}=v_{t} d t+\sigma d W_{t}$
Typical agent's wealth: $d K_{t}^{v}=-\left(v_{t} S_{t}^{v}+c_{v}\left(v_{t}\right)\right) d t$
Typical agent's portfolio value: $V_{t}^{v}=K_{t}^{v}+X_{t}^{v} S_{t}^{v}$
Objective: minimize

$$
J(v)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{v}\right) d t+g\left(X_{T}^{v}\right)-V_{T}^{v}\right]
$$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18],

...):
Price process: with $\nu^{v}=$ population's distribution over actions,

$$
d S_{t}^{v}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{v}(a) d t+\sigma_{0} d W_{t}^{0}
$$

Typical agent's inventory: $d X_{t}^{v}=v_{t} d t+\sigma d W_{t}$
Typical agent's wealth: $d K_{t}^{v}=-\left(v_{t} S_{t}^{v}+c_{v}\left(v_{t}\right)\right) d t$
Typical agent's portfolio value: $V_{t}^{v}=K_{t}^{v}+X_{t}^{v} S_{t}^{v}$
Objective: minimize

$$
J(v)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{v}\right) d t+g\left(X_{T}^{v}\right)-V_{T}^{v}\right]
$$

Equivalent problem:

$$
J(v)=\mathbb{E}\left[\int_{0}^{T}\left(c_{v}\left(v_{t}\right)+c_{X}\left(X_{t}^{v}\right)-\gamma X_{t}^{v} \int_{\mathbb{R}} a d \nu_{t}^{v}(a)\right) d t+g\left(X_{T}^{v}\right)\right]
$$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona \& Lacker [CL15], Carmona \& Delarue [CD18],

...):
Price process: with $\nu^{v}=$ population's distribution over actions,

$$
d S_{t}^{v}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{v}(a) d t+\sigma_{0} d W_{t}^{0}
$$

Typical agent's inventory: $d X_{t}^{v}=v_{t} d t+\sigma d W_{t}$
Typical agent's wealth: $d K_{t}^{v}=-\left(v_{t} S_{t}^{v}+c_{v}\left(v_{t}\right)\right) d t$
Typical agent's portfolio value: $V_{t}^{v}=K_{t}^{v}+X_{t}^{v} S_{t}^{v}$
Objective: minimize

$$
J(v)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{v}\right) d t+g\left(X_{T}^{v}\right)-V_{T}^{v}\right]
$$

Equivalent problem:

$$
J(v)=\mathbb{E}\left[\int_{0}^{T}\left(c_{v}\left(v_{t}\right)+c_{X}\left(X_{t}^{v}\right)-\gamma X_{t}^{v} \int_{\mathbb{R}} a d \nu_{t}^{v}(a)\right) d t+g\left(X_{T}^{v}\right)\right]
$$

Take: $c_{v}(v)=\frac{1}{2} c_{v} v^{2}, c_{X}(x)=\frac{1}{2} c_{X} x^{2}$ and $g(x)=\frac{1}{2} c_{g} x^{2}$

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

$$
T=1, c_{X}=2, c_{v}=1, c_{g}=0.3, \sigma=0.5, \gamma=0.2
$$

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

$$
T=1, c_{X}=2, c_{v}=1, c_{g}=0.3, \sigma=0.5, \gamma=1
$$

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Other Methods

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) &
\end{array} \rightarrow\right. \text { control/cost }
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}[\text { Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; } \ldots]^{3}$ \rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

[^4]
DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}[\text { Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; } \ldots]^{3}$ \rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right],
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

[^5]
DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}[\text { Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; } \ldots]^{3}$ \rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right],
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow New optimal control problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN

[^6]
DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & & X_{0} \sim m_{0} \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & & Y_{T}=G\left(X_{T}\right)
\end{array} \quad \rightarrow \text { state } \quad \rightarrow\right. \text { control/cost }
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}[\text { Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; } \ldots]^{3}$ \rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0} \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right)
\end{array}\right.
$$

\rightarrow New optimal control problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN NB: This problem is not the original stochastic control problem!

[^7]
Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$

Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$

Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$
- Application: solve a PDE by solving the corresponding (F)BSDE

Application to Solve PDEs

Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$
- Application: solve a PDE by solving the corresponding (F)BSDE
- Ex. HJB equation. Many variations/extensions

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$ [Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; \ldots] \rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$ [Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; \ldots]
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona \& L. [CL19])

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$ [Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; \ldots]
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona \& L. [CL19])

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow MFC problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$ [Kohlmann \& Zhou; Sannikov; Han, Jentzen, E'17; \ldots]
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona \& L. [CL19])

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow MFC problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN
NB: This problem is not the original MFG or MFC

Analysis?

Implementation

- Inputs: initial positions $\mathbf{X}_{0}=\left(X_{0}^{i}\right)_{i}$, BM increments: $\Delta \mathbf{W}_{n}=\left(\Delta W_{n}^{i}\right)_{i}$, for all n
- Loss function: total cost $=C_{N_{T}}=$ terminal penalty; state $=\left(X_{n}, Y_{n}\right)$
- SGD to optimize over the param. θ_{y}, θ_{z} of 2 NN for $y_{\theta_{y}}(\cdot) \approx y_{0}(\cdot), z_{\theta_{z}}(\cdot, \cdot) \approx z(\cdot, \cdot)$

Implementation

- Inputs: initial positions $\mathbf{X}_{0}=\left(X_{0}^{i}\right)_{i}$, BM increments: $\Delta \mathbf{W}_{n}=\left(\Delta W_{n}^{i}\right)_{i}$, for all n
- Loss function: total cost $=C_{N_{T}}=$ terminal penalty; state $=\left(X_{n}, Y_{n}\right)$
- SGD to optimize over the param. θ_{y}, θ_{z} of 2 NN for $y_{\theta_{y}}(\cdot) \approx y_{0}(\cdot), z_{\theta_{z}}(\cdot, \cdot) \approx z(\cdot, \cdot)$
- Alternative implementation: $1+N_{T}$ NNs for $y_{0}(\cdot), z_{0}(\cdot), \ldots, z_{N_{T}-1}(\cdot)$

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] ($\rho=$ coupling parameter)

$$
\begin{aligned}
& d X_{t}=-\rho Y_{t} d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\
& d Y_{t}=\operatorname{atan}\left(\mathbb{E}\left[X_{t}\right]\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G^{\prime}\left(X_{T}\right):=\operatorname{atan}\left(X_{T}\right)
\end{aligned}
$$

Comes from the MFG defined by $d X_{t}^{v}=v_{t} d t+d W_{t}$ and

$$
J(v ; \mu)=\mathbb{E}\left[G\left(X_{T}^{v}\right)+\int_{0}^{T}\left(\frac{1}{2 \rho} v_{t}^{2}+X_{t}^{v} \operatorname{atan}\left(\int x \mu_{t}(d x)\right)\right) d t\right]
$$

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] ($\rho=$ coupling parameter)

$$
\begin{aligned}
& d X_{t}=-\rho Y_{t} d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\
& d Y_{t}=\operatorname{atan}\left(\mathbb{E}\left[X_{t}\right]\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G^{\prime}\left(X_{T}\right):=\operatorname{atan}\left(X_{T}\right)
\end{aligned}
$$

Comes from the MFG defined by $d X_{t}^{v}=v_{t} d t+d W_{t}$ and

$$
J(v ; \mu)=\mathbb{E}\left[G\left(X_{T}^{v}\right)+\int_{0}^{T}\left(\frac{1}{2 \rho} v_{t}^{2}+X_{t}^{v} \operatorname{atan}\left(\int x \mu_{t}(d x)\right)\right) d t\right]
$$

Results from [Chassagneux et al.]

NN (FBSDE system)
(More details in Carmona \& L. [CL19])

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])

$X=$ log-monetary reserve, $v=$ rate of borrowing/lending to central bank, cost:

$$
J(v ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} v_{t}^{2}-q v_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+v_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])

$X=$ log-monetary reserve, $v=$ rate of borrowing/lending to central bank, cost:

$$
J(v ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} v_{t}^{2}-q v_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+v_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

NN for FBSDE system VS (semi) analytical solution (LQ structure)

(More details in Carmona \& L. [CL19])

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
$X=$ log-monetary reserve, $v=$ rate of borrowing/lending to central bank, cost:

$$
J(v ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} v_{t}^{2}-q v_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+v_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

NN for FBSDE system VS (semi) analytical solution (LQ structure)

(More details in Carmona \& L. [CL19])

Code Samples

- Deep learning (Policy Gradient) for Mean Field Control / MKV control:
https://colab.research.google.com/drive/1Di1gP3W6rXXgIVoRqUxLmNyvUYdwQ9XO?usp=sharing
- Deep learning for MKV FBSDE via shooting method:
https://colab.research.google.com/drive/10MkjzbHorLDyQbQ13vW2nEcQAOsK9s-a?usp=sharing

Outline

1. Introduction

2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Other Methods

Methods Based on Dynamic Programming - NNContPI

Method (NNContPI) of Bachouch, Huré, Langrené, Pham [BHLP21] ${ }^{4}$ to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1}
\end{aligned}
$$

${ }^{4}$ Bachouch, A., Huré, C., Langrené, N., \& Pham, H. (2021). Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.

Methods Based on Dynamic Programming - NNContPI

Method (NNContPI) of Bachouch, Huré, Langrené, Pham [BHLP21] ${ }^{4}$ to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1}
\end{aligned}
$$

Input: Training distributions $\left(\mu_{n}\right)_{n=0, \ldots, N_{T}}$
Output: Parameters $\left(\theta_{n}^{\star}\right)_{n=0, \ldots, N_{T}}$ s.t. $\left(\varphi_{\theta_{n}^{\star}}\right)_{n=0, \ldots, N_{T}}$ (approximately) minimizes $J^{N_{T}}$
for $n=N_{T}-1, N_{T}-2, \ldots, 1,0$ do
Compute (e.g., using SGD) θ_{n}^{*} minimizing:

$$
\theta \mapsto \mathbb{E}\left[f\left(X_{n}, \varphi_{\theta_{n}}\left(X_{n}\right)\right)+\sum_{n^{\prime}=n+1}^{N_{T}-1} f\left(X_{n^{\prime}}^{\theta}, \varphi_{\theta_{n^{\prime}}^{*}}\left(X_{n^{\prime}}^{\theta}\right)\right)+g\left(X_{N_{T}}^{v}\right)\right]
$$

where $X_{n} \sim \mu_{n}$ and

$$
\left\{\begin{array}{l}
X_{n+1}^{\theta}=X_{n}^{\theta}+b\left(X_{n}^{\theta}, \varphi_{\theta_{n}}\left(X_{n}^{\theta}\right)\right)+\epsilon_{n+1}, \\
X_{n^{\prime}+1}^{\theta}=X_{n^{\prime}}^{\theta}+b\left(X_{n^{\prime}}^{\theta}, \varphi_{\theta_{n^{\prime}}^{*}}\left(X_{n^{\prime}}^{\theta}\right)\right)+\epsilon_{n^{\prime}+1}, \quad n^{\prime}>n
\end{array}\right.
$$

3 return $\left(\theta_{n}^{*}\right)_{n=0, \ldots, N_{T}-1}$

[^8]
Methods Based on Dynamic Programming - Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1} .
\end{aligned}
$$

Methods Based on Dynamic Programming - Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1}
\end{aligned}
$$

Value function $V_{n}(x)=\inf _{v} \mathbb{E}\left[\sum_{n^{\prime}=n}^{N_{T}-1} f\left(X_{n^{\prime}}, v_{n^{\prime}}\left(X_{n^{\prime}}\right)\right)+g\left(X_{N_{T}}\right)\right]$

Methods Based on Dynamic Programming - Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1}
\end{aligned}
$$

Value function $V_{n}(x)=\inf _{v} \mathbb{E}\left[\sum_{n^{\prime}=n}^{N_{T}-1} f\left(X_{n^{\prime}}, v_{n^{\prime}}\left(X_{n^{\prime}}\right)\right)+g\left(X_{N_{T}}\right)\right]$

```
Input: Training distributions \(\left(\mu_{n}\right)_{n=0, \ldots, N_{T}}\)
Output: Parameters \(\left(\theta_{n}^{\star}\right)_{n=0, \ldots, N_{T}}\) s.t. \(\left(\varphi_{\theta_{n}^{\star}}\right)_{n=0, \ldots, N_{T}}\) (approximately) minimizes
    \(J^{N_{T}}\); Parameters \(\left(\omega_{n}^{*}\right)_{n=0, \ldots, N_{T}}\) such that \(\psi_{\omega_{n}^{*}}\) approximates the value
    function \(V_{n}\) at time \(n\)
Set \(\hat{V}_{N_{T}}=g\)
for \(n=N_{T}-1, N_{T}-2, \ldots, 1,0\) do
    Compute \(\theta_{n}^{*}\) minimizing:
\[
\theta \mapsto \mathbb{E}\left[f\left(X_{n}, \varphi_{\theta_{n}}\left(X_{n}\right)\right)+\hat{V}_{n+1}\left(X_{n+1}^{\theta}\right)\right]
\]
\[
\text { where } X_{n} \sim \mu_{n} \text { and } X_{n+1}^{\theta}=X_{n}^{\theta}+b\left(X_{n}^{\theta}, \varphi_{\theta_{n}}\left(X_{n}^{\theta}\right)\right)+\epsilon_{n+1}
\]
```


Methods Based on Dynamic Programming - Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

$$
\begin{aligned}
& J^{N_{T}}(v)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, v_{n}\left(X_{n}\right)\right)+g\left(X_{N_{T}}\right)\right] \\
& \text { where } \quad X_{n+1}=X_{n}+b\left(X_{n}, v_{n}\left(X_{n}\right)\right)+\epsilon_{n+1} .
\end{aligned}
$$

Value function $V_{n}(x)=\inf _{v} \mathbb{E}\left[\sum_{n^{\prime}=n}^{N_{T}-1} f\left(X_{n^{\prime}}, v_{n^{\prime}}\left(X_{n^{\prime}}\right)\right)+g\left(X_{N_{T}}\right)\right]$

```
Input: Training distributions ( }\mp@subsup{\mu}{n}{}\mp@subsup{)}{n=0,\ldots,\mp@subsup{N}{T}{}}{
Output: Parameters }(\mp@subsup{0}{n}{\star}\mp@subsup{)}{n=0,\ldots,\mp@subsup{N}{T}{}}{}\mathrm{ s.t. ( }\mp@subsup{\varphi}{\mp@subsup{0}{n}{\star}}{*}\mp@subsup{)}{n=0,\ldots,\mp@subsup{N}{T}{}}{}\mathrm{ (approximately) minimizes
        J NT
        function }\mp@subsup{V}{n}{}\mathrm{ at time n
Set }\mp@subsup{\hat{V}}{\mp@subsup{N}{T}{}}{}=
for }n=\mp@subsup{N}{T}{}-1,\mp@subsup{N}{T}{}-2,\ldots,1,0 d
    Compute }\mp@subsup{0}{n}{*}\mathrm{ minimizing:
                                    0\mapsto\mathbb{E}[f(\mp@subsup{X}{n}{},\mp@subsup{\varphi}{\mp@subsup{0}{n}{}}{}(\mp@subsup{X}{n}{}))+\mp@subsup{\hat{V}}{n+1}{}(\mp@subsup{X}{n+1}{0})]
    where }\mp@subsup{X}{n}{}~\mp@subsup{\mu}{n}{}\mathrm{ and }\mp@subsup{X}{n+1}{0}=\mp@subsup{X}{n}{0}+b(\mp@subsup{X}{n}{0},\mp@subsup{\varphi}{\mp@subsup{0}{n}{}}{}(\mp@subsup{X}{n}{0}))+\mp@subsup{\epsilon}{n+1}{
    Compute }\mp@subsup{\omega}{n}{*}\mathrm{ minimizing:
\[
\mathbb{E}\left[\left|f\left(X_{n}, \varphi_{\theta_{n}^{*}}\left(X_{n}\right)\right)+\hat{V}_{n+1}\left(X_{n+1}^{\theta_{n}^{*}}\right)-\psi_{\omega_{n}^{*}}\left(X_{n}\right)\right|^{2}\right]
\]
\[
5 \text { return }\left(\theta_{n}^{*}\right)_{n=0, \ldots, N_{T}-1},\left(\omega_{n}^{*}\right)_{n=0, \ldots, N_{T}}
\]
```


Methods Based on Dynamic Programming - DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19] ${ }^{5}$

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left\{\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1} \mid\right]\right.
$$

[^9]
Methods Based on Dynamic Programming - DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19] ${ }^{5}$

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1}\right|\right]
$$

- or Version 2: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), \sigma^{\top} D_{x} Y_{n}\left(X_{n}\right)\right) \Delta t-D_{x} Y_{n}\left(X_{n}\right)^{\top} \sigma \Delta W_{n+1}\right|\right]
$$

[^10]
Methods Based on Dynamic Programming - DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19] ${ }^{5}$

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1}\right|\right]
$$

- or Version 2: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), \sigma^{\top} D_{x} Y_{n}\left(X_{n}\right)\right) \Delta t-D_{x} Y_{n}\left(X_{n}\right)^{\top} \sigma \Delta W_{n+1}\right|\right]
$$

For more details on deep learning methods for (non-mean field) optimal control problems, see e.g. Germain, Pham, Warin [GPW21] ${ }^{6}$

[^11]
Methods Based on Dynamic Programming for MFG \& MFC

Summary

References I

[BHLP21] Achref Bachouch, Côme Huré, Nicolas Langrené, and Huyen Pham, Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications, Methodology and Computing in Applied Probability (2021), 1-36.
[BT97] Mireille Bossy and Denis Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Math. Comp. 66 (1997), no. 217, 157-192. MR 1370849
[CCD19] Jean-François Chassagneux, Dan Crisan, and François Delarue, Numerical method for FBSDEs of McKean-Vlasov type, Ann. Appl. Probab. 29 (2019), no. 3, 1640-1684. MR 3914553
[CD18] René Carmona and François Delarue, Probabilistic theory of mean field games with applications. I, Probability Theory and Stochastic Modelling, vol. 83, Springer, Cham, 2018, Mean field FBSDEs, control, and games. MR 3752669
[CFS15] René Carmona, Jean-Pierre Fouque, and Li-Hsien Sun, Mean field games and systemic risk, Commun. Math. Sci. 13 (2015), no. 4, 911-933. MR 3325083
[CL15] René Carmona and Daniel Lacker, A probabilistic weak formulation of mean field games and applications, Ann. Appl. Probab. 25 (2015), no. 3, 1189-1231. MR 3325272
[CL19] René Carmona and Mathieu Laurière, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: li-the finite horizon case, arXiv preprint arXiv:1908.01613. To appear in Annals of Probability (2019).

References II

[CL21] , Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games i: The ergodic case, SIAM Journal on Numerical Analysis 59 (2021), no. 3, 1455-1485.
[FZ20] Jean-Pierre Fouque and Zhaoyu Zhang, Deep learning methods for mean field control problems with delay, Frontiers in Applied Mathematics and Statistics 6 (2020), 11.
[GM05] Emmanuel Gobet and Rémi Munos, Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control, SIAM J. Control Optim. 43 (2005), no. 5, 1676-1713. MR 2137498
[GMW19] Maximilien Germain, Joseph Mikael, and Xavier Warin, Numerical resolution of mckean-vlasov fbsdes using neural networks, arXiv preprint arXiv:1909.12678 (2019).
[GPW21] Maximilien Germain, Huyên Pham, and Xavier Warin, Neural networks-based algorithms for stochastic control and pdes in finance, arXiv preprint arXiv:2101.08068 (2021).
[HE16] Jiequn Han and Weinan E, Deep learning approximation for stochastic control problems, Deep Reinforcement Learning Workshop, NIPS, arXiv preprint arXiv:1611.07422 (2016).
[HPW19] Côme Huré, Huyên Pham, and Xavier Warin, Some machine learning schemes for high-dimensional nonlinear pdes, arXiv preprint arXiv:1902.01599 (2019), 2.

References III

[MM95] Hrushikesh N. Mhaskar and Charles A. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Advances in Applied Mathematics 16 (1995), 151-183.
[RM51] Herbert Robbins and Sutton Monro, A stochastic approximation method, The annals of mathematical statistics (1951), 400-407.

Unless otherwise specified, the images are from https://unsplash.com

[^0]: ${ }^{1}$ Carmona, R., \& Laurière, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied Probability

 2

[^1]: ${ }^{1}$ Carmona, R., \& Laurière, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied Probability
 ${ }^{2}$ Carmona, R., \& Laurière, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.

[^2]: ${ }^{1}$ Carmona, R., \& Laurière, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied Probability
 ${ }^{2}$ Carmona, R., \& Laurière, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.

[^3]: ${ }^{1}$ Carmona, R., \& Laurière, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied Probability
 ${ }^{2}$ Carmona, R., \& Laurière, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.

[^4]: ${ }^{3}$ E, W., Han, J., \& Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4), 349-380.

[^5]: ${ }^{3}$ E, W., Han, J., \& Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4), 349-380.

[^6]: ${ }^{3}$ E, W., Han, J., \& Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4), 349-380.

[^7]: ${ }^{3}$ E, W., Han, J., \& Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4), 349-380.

[^8]: 4 Bachouch, A., Huré, C., Langrené, N., \& Pham, H. (2021). Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.

[^9]: ${ }^{5}$ Huré, C., Pham, H. \& Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324 (2020), pp. 1547-1580.

[^10]: ${ }^{5}$ Huré, C., Pham, H. \& Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324 (2020), pp. 1547-1580.

[^11]: ${ }^{5}$ Huré, C., Pham, H. \& Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324 (2020), pp. 1547-1580.
 ${ }^{6}$ Germain, M, Pham, H., \& Warin, X.. Neural networks-based algorithms for stochastic control and PDEs in finance. arXiv preprint arXiv:2101.08068 (2021).

