Mean Field Games:
Numerical Methods and
Applications in Machine Learning

Part 5: Deep Learning for MFC and MKV FBSDE

Mathieu LAURIERE

https://mlauriere.github.io/teaching/MFG-PKU-5.pdf

Peking University
Summer School on Applied Mathematics
July 26 — August 6, 2021

RECAP

1/33

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

o Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; Achdou, Camilli, Capuzzo-Dolcetta’13; ...

o Gradient descent: [L., Pironneau'14; Pieiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier14; Achdou, L.16; Andreev'17]
e Primal-dual algo.: [Bricefio-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos Gonzalez'18]
e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
Methods based on a probabilistic approach:
o Cubature: [Chaudru de Raynal, Garcia Trillos'15]
e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
e MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]

2/33

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

o Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; Achdou, Camilli, Capuzzo-Dolcetta’13; . ..

o Gradient descent: [L., Pironneau'14; Pieiffer'16]

e Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]

e Augmented Lagrangian & ADMM: [Benamou, Carlier14; Achdou, L.16; Andreev'17]

e Primal-dual algo.: [Bricefio-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos Gonzalez'18]

e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
Methods based on a probabilistic approach:

o Cubature: [Chaudru de Raynal, Garcia Trillos'15]

e Recursion: [Chassagneux et al"17; Angiuli et al.'18]

o MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
Limitations:

e dimensionality (typically: state in dimension < 3)

e structure of the problem (typically: simple costs, dynamics and noises)

1

2/33

Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

o Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; Achdou, Camilli, Capuzzo-Dolcetta’13; . ..

o Gradient descent: [L., Pironneau'14; Pieiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier14; Achdou, L.16; Andreev'17]
e Primal-dual algo.: [Bricefio-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos Gonzalez'18]
e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
Methods based on a probabilistic approach:
o Cubature: [Chaudru de Raynal, Garcia Trillos'15]
e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
o MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
Limitations:
e dimensionality (typically: state in dimension < 3)
e structure of the problem (typically: simple costs, dynamics and noises)
Recent progress: extending the toolbox with tools from machine learning:
e approximation without a grid (mesh-free methods): opt. control & distribution
—> [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; .. .]
e even when the dynamics / cost are not known (model-free methods)

—> [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; Yang et al.; ...]

Outline

1. Introduction

Ingredient 1: Neural Networks

@ Goal: Minimize over o (-), J(¢) := E¢[L(p, €)]

@ Ex.: Regression: ¢ = (z, f(z)) for some f, L(y,&) = ||l¢(z) — f(z)|?

/33

Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
@ Ex.: Regression: ¢ = (z, f(z)) for some f, L(y,&) = ||l¢(z) — f(z)|?
@ Idea: Instead of min. over all ¢(-), min. over parameters 6 of ¢ (-)
@ Ex.: Feedforward fully-connected neural network:
e with weights & biases 0 = (8%, w ™)1 4
wo(z) =¥ (8“) + w9 @ (8(2> +w®@ MW 4 yMy)) ..)
w(0,z) one hidden layer

where (¥ € { sigmoid, RelLU, ... }: non-linear activation functions
(coordinate-wise)

@ Depth = number of layers; width of a layer = dimension of bias vector

Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
@ Ex.: Regression: ¢ = (z, f(z)) for some f, L(y,&) = ||l¢(z) — f(z)|?
@ Idea: Instead of min. over all ¢(-), min. over parameters 6 of ¢ (-)

@ Ex.: Feedforward fully-connected neural network:
e with weights & biases 0 = (8%, w ™)1 4

wo(z) =¥ (8“) + w9 @ (8(2> +w®@ MW 4 yMy)) ..)
hg —_—
w0,) one hidden layer

where (¥ € { sigmoid, RelLU, ... }: non-linear activation functions
(coordinate-wise)

@ Depth = number of layers; width of a layer = dimension of bias vector

@ Other architectures

Ingredient 1: Neural Networks — Universal Approximation

4/33

Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(0, x)
VWW(G, l’) = ... Vw(g)(p(@7 :C) =...

= can perform SGD on these parameters

Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(0, x)
Vyoe@,z)=..., V,opl,z)=...
= can perform SGD on these parameters
@ With respect to state variable: V¢ (0, z) can be computed by AD too
Oy p(0,2) = ...

= can be used in PDEs

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over o(-), J(p) := E¢[L(p, £)]
Parameterization: J(0) := E¢[L(0,¢)], where L(6, £) := L(s, €)

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
Parameterization: J(6) := E¢[L(6, £)], where L(6, &) := L(gp,)

Setting: the distribution of £ is unknown, but
e we have some samples (i.e. random realizations) of £
e we know L

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
Parameterization: J(6) := E¢[L(6, £)], where L(6, &) := L(gp,)

Setting: the distribution of £ is unknown, but
e we have some samples (i.e. random realizations) of £
e we know L

Ex: Regression: ¢ = (z, f(x)), J(0) := E¢[||o(z) — f(2)||*]

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over ¢(-), J(¢) := E¢[L(p, &)]
Parameterization: J(0) := E¢[L(0,¢)], where L(6, £) := L(s, €)

Setting: the distribution of £ is unknown, but
e we have some samples (i.e. random realizations) of £
e we know L

Ex: Regression: ¢ = (z, f(x)), J(0) := E¢[||o(z) — f(2)||*]

Input: Initial param. 0o; data S = (&:)s=1,...,|s; Nb of steps K; learning rates (7™)
Output: Parameter 0" s.t. @4+ (approximately) minimizes J

1 Initialize 6*) = 6,

2 fork=0,1,2,...,K—1do

3 Pick s € S randomly

4 Compute the gradient VoL(6* %, &) = LL(pye-1,Es)

s | Set0® =t — 0y, L% ¢,

6 return 0

Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

7/33

Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly

Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly

@ Robbins-Monro [RM51]

7/33

Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly
@ Robbins-Monro [RM51]

@ Links with convex minimization & stochastic approximation

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(p) = Eay[L(o(2), y)]
with z ~ pand y = f(z) + € for some noise e where f is unknown

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(‘/’) = Ex,y [L(ap(ac), y)}

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

> minimize over a hypothesis class F of ¢

> finite number of samples, S = (zm, ¥m)m=1,...,m: (regularized) empirical risk:

M
Rs(e) = 22 3 Lle(@m).um) (+requ
m=1

> finite number of optimization steps, say k

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(@) = Ex,y [L(Sp(x)> y)}

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

> minimize over a hypothesis class F of ¢

> finite number of samples, S = (zm, ¥m)m=1,...,m: (regularized) empirical risk:

M
Rs(e) = 22 3 Lle(@m).um) (+requ
m=1

> finite number of optimization steps, say k
@ We are interested in:
> Approximation error: Letting ¢* = argmin,, ¢ » dist(e, f),
€approx = diSt(w*v f)
> Estimation error: Letting 5 = argmin, ¢ » Rs(¢)
€estim = dist(Pg, p™)
> Optimization error: After k steps, we get ga<k);

S
€optim = diSt(WS{) ,$5)

33

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(@) = Ex,y [L(Sp(x)> y)}

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

> minimize over a hypothesis class F of ¢
> finite number of samples, S = (zm, ¥m)m=1,...,m: (regularized) empirical risk:

M
Rs(e) = 22 3 Lle(@m).um) (+requ
m=1

> finite number of optimization steps, say k
@ We are interested in:
> Approximation error: Letting ¢* = argmin,, ¢ » dist(e, f),
€approx = diSt(w*v f)
> Estimation error: Letting 5 = argmin, ¢ » Rs(¢)
€estim = dist(Pg, p™)
> Optimization error: After k steps, we get ga<k);

S
€optim = diSt(WS{) ,$5)

> Generalization error of the learnt gog():

€gene = €approx T €estim T €optim

Outline

2. Deep Learning for MFC

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over v(-, -)

s =2 | (e X0 + ()]

with
X() ~ mo, dXt = b(Xt, ’U(t, Xt)) dt + O'th

/33

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y,

Minimize over neural network parameters 6

50 =5 [[1 (Xpate. X0) de () |
0

with
X() ~ Mo, dXt :b(Xt,QOQ(t,Xt)) dt+Uth

/33

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[Y f Xy oltas X)) At g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn :b(Xna(pG(tn7Xn))At+UAWn

9/33

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[Y f Xy oltas X)) At g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn - b(Xna@G(tann))At+UAWYn

— neural network induces an approximation error

— time discretization induce extra errors

9/33

MFC: Approximate Problem

MFC problem:

Minimize over (-, -)
J(’U()) :]E|:/ f(Xt,//Lt,'U(t,Xt)) dt+g(XT,/J4T) R

where p, = L(X¢) with
X() ~ mo, dXt = b(Xt,/,Lt,’U(t,Xt)) dt+ O’th

10/33

MFC: Approximate Problem

MFC problem: (1) Finite pop.,

Minimize over decentralized controls v(-, -) with NV agents
1o [T
N i N i i N
J (’U('?‘)) =]E|:N Z;/O' f (Xtvut 7’U(t7Xt)) dt+g (XTvl'LT) i|7

where u = £ > | 0y, With

Xy ~mo, dX{ =b(X], ui ot X)) dt + odWY

10/33

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢,

Minimize over neural network parameters 6 with NV agents
1o [T
N 1 N 2 7 N
J (0)_]E|:NZ;/; f(Xt7ﬂt7999(t7Xt)) dt+g(XT7N‘T):|7

where i = £ 37| 0y, With

X) ~mo, dX] =b(X], 1, et X1)) dt + odW]

10/33

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters 0 € © with N agents and N time steps

N Np—1

TNV = B[D0 DT (Xt X)) At g (Xivpsihy)]

i=1 n=0
N .
where i = 3700, 0,5, with

X) ~mo, Xi.— XL =bXD,uh,p0(tn, X))AL + e AW}

10/33

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters 0 € © with N agents and N time steps

N Np—1

TNV = B[D0 DT (Xt X)) At g (Xivpsihy)]

i=1 n=0
N .
where i = 3700, 0,5, with

X(% ~ Mo, XZH»l _X"ZL = b(Xi,/,,Lg,gOg(fn/X%))Af+O’AW7]1
— neural network induces an approximation error

— Finite population and time discretization induce extra errors

10/33

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters 0 € © with N agents and N time steps

N Np—1

TNV = B[D0 DT (Xt X)) At g (Xivpsihy)]

i=1 n=0
where p) = + Zjvzl Oy with
X ~mo, Xi = Xi = b(X0, s o (tn, X0)) AL+ 0 AW,
— neural network induces an approximation error
— Finite population and time discretization induce extra errors

N.B.: decentralized control

10/33

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):

Under suitable assumptions (in particular regularity of the value function),

inf J(o(,)) = fnf TN (0)] < e1(N) + ea(dim(0)) + es(N7)

0coe

1Carmona, R., & Lauriére, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

2

11/33

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):

Under suitable assumptions (in particular regularity of the value function),

&nf) J(v(,-)) = inf JVNT(6)] < e (N) + e2(dim(0)) + e(Nr)

0coe

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to Carmona & L. [CL21]

1 Carmona, R., & Lauriere, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

ZCarmona, R., & Lauriéere, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.
11/33

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):

Under suitable assumptions (in particular regularity of the value function),

inf J(o(,)) = fnf TN (0)] < e1(N) + ea(dim(0)) + es(N7)

0coe

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to Carmona & L. [CL21]

@ The optimization error remains to be studied

1 Carmona, R., & Lauriere, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

ZCarmona, R., & Lauriéere, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.
11/33

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):
Under suitable assumptions (in particular regularity of the value function),

it J(o(,)) = inf TV (0)] < @(N) + ea(dim(0)) + es(Nr)

6cO
@ The estimation error for shallow neural networks can be analyzed using
techniques similar to Carmona & L. [CL21]
@ The optimization error remains to be studied

@ Many extensions to be studied

1 Carmona, R., & Lauriere, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

ZCarmona, R., & Lauriéere, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.
11/33

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X)

inf J(0() - J%ﬁ(-))’ <a(N) €O (NT/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]

12/33

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X)

inf () - J%*(-))’ < a(N) e B (N-1/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(U*(-)) — JN(@9(~))| < e2(dim(0)) € O (dim(ﬁ)_“(d“)).

Proof: Key difficulty: approximate v*(-) by %¢(+) while controlling ||[V@g(+)|| by [[Vo*(4)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from Mhaskar & Micchelli [MM95]

12/33

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X)

inf () - J%*(-))’ < a(N) e B (N-1/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
{JN(U*(-)) — JN(¢9(~))| < e2(dim(0)) € O (dilxl(ﬁ)_“<d+l)).

Proof: Key difficulty: approximate v*(-) by %¢(+) while controlling ||[V@g(+)|| by [[Vo*(4)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from Mhaskar & Micchelli [MM95]
Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ¢ (+),
[TV (@) = IV (g0()] < (V) € O (N7 V7).

Key point: O (-) independent of N and dim(6)

Proof: analysis of strong error rate for Euler scheme (reminiscent of Bossy & Talay [BT97])
12/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: JV-N7 (0) = E[L(,)]
> One sample: ¢ = (Xé, (AW}'L)n,:o,A.A,J\"T—1)].:1 N

— can use Stochastic Gradient Descent

13/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: JV-N7 (0) = E[L(,)]
> One sample: ¢ = (Xé, (AW;{)n:O’MNT_l)]’:l e
— can use Stochastic Gradient Descent
@ Related work:

» Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

13/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: J™-N7 () = E[L(p, £)]
» One Sample: 6 = (X(])z (AVV,,JL),L:()’___)NT,] =1 N
— can use Stochastic Gradient Descent
@ Related work:

> Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

@ Structure:

I

&

13/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: J™-N7 () = E[L(p, £)]
» One sample: £ = (X{J, (AW) o

oNT=1), 1 N

— can use Stochastic Gradient Descent
@ Related work:

> Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

@ Structure:

13/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: J™-N7 () = E[L(p, £)]
» One sample: £ = (X{J, (AW o

oNT=1), 1 N

— can use Stochastic Gradient Descent
@ Related work:

> Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

@ Structure:

Co e CNyp—1 C,y
Mévf/ [“{V('J [7
! o] —e T
G {20 == X o 11+ [01— X

13/33

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: J™-N7 () = E[L(p, £)]
» One sample: £ = (X{J, (AW o

oNT=1), 1 N

— can use Stochastic Gradient Descent
@ Related work:

> Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

@ Structure:

o+ ...+ Cny

®—> Po00 "\p(}.NT—l —>X1,.. . ,XNT

13/33

Numerical lllustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

fapn= @=af + 2. a= [u@w, o =a
distance to cost of ——
mean position MoOvIng mean position

Numerical example with d = 10 (see Carmona & L. [CL19]):

514 N=32,Nr=100 N=32,Ny =100
N=128, Ny =100 N =128, Nr =100
5.0 —— N=1024, Ny =100 100 —— N=1024,N; =100
.9 --- N=1024,N;=20 --- N=1024,N;=20
: --- N=1024,N;=10 --- N=1024,N;=10
4.8
3 5
247 <
107!
4.6
4.5
4.4
43 1072
0 10000 20000 30000 40000 0 10000 20000 30000 40000
SGD iterations SGD iterations
i 2
total cost (= loss function) L*-error on the control

14/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

(More details in Carmona & L. [CL19])
15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-15,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=20.1
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.2
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.3
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=04
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.5
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

—— PDE, %= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.6
e Until T'/2: concentrate around mid-point = 0
o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

—— PDE, %= -15
200 == PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.7

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise
(More details in Carmona & L. [CL19])

15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.8

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.9

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
15/33

Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=1

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
15/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy

16/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R
Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy

Objective: minimize

J(v) = JE{/OT ex (X{)dt + g(X7) — Vp

16/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)
Price process: with v = population’s distribution over actions,

dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy
Objective: minimize
T
90) =] [ex(xiiar+ g(xi) - vi
0

Equivalent problem:

J(v) = E[/OT <cv(1;t) +ex(XY) — *yX;’/]R adu{”(a)) dt + g(Xq”«)}

16/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy
Objective: minimize

T
J(v) = IE[/ ex (X7)dt + g(X3) — VT}
0
Equivalent problem:

J(v) = E[/OT <cv(1;t) +ex(XY) — *yX;’/]R adu{”(a)) dt + g(Xq”«)}

Take: ¢, (v) = 3cov?, ex(x) = 2exa® and g(z) = 1cga?

16/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

0 m— t=0.000
Lo = t=0.100
t=0.200
t=0.300
-2 0.8 t=0.400
t=0.500
t=0.600
-4 206 t=0.700
£ a t=0.800
g 3 [t=0.900
- t=1.000
0.4
-6
0.2
-8
0.0
1 2 3 4 5 6 7
x x

T=1cx=2,co=1,¢g=03,0=0.5,7y=0.2

17/33

Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

= t=0.000
e £=0.100
=0.200

t=0.300
=0.400
t=0.500
t=0.600
=0.700
t=0.800
t=0.900
— t=1.000

control
|

T=1cx=2,co=1,¢g=03,0=05,y=1

17/33

Outline

3. Deep Learning for MKV FBSDE

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, Xy, Y:)dt + dWr, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

18/33

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form
dX; = B(t, Xy, Y:)dt + dWr, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17;...13
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.

18/33

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX: = B(t, Xt, Y;)dt 4+ dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[e - G)17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy, Xo ~ mo,
{ dYy = —F(t, X¢, Y)dt + z(t, Xy¢) - dWy, Yo = yo(Xo).

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.

18/33

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX: = B(t, Xt, Y;)dt 4+ dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[e - G)17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy, Xo ~ mo,
{ dY, = —F(t, X, Y,)dt + 2(t, X1) - dWs, Yo = yo(Xo).

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.

18/33

DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form
dX: = B(t, X, Yi)dt + dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[e - G)17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy, Xo ~ mo,
{ dY, = —F(t, X, Y,)dt + 2(t, X1) - dWs, Yo = yo(Xo).

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN
NB: This problem is not the original stochastic control problem !
SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial

differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.

18/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X;) = Y; where

19/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t,) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

@ X solves the SDE:
dXt = B(t, $)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

19/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t,) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

@ X solves the SDE:
dXt = B(t, $)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z: = 00 u(t, X¢)

19/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t,) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

@ X solves the SDE:
dXt = B(t, x)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z: = 00 u(t, X¢)
@ Connection also works with dX; = dW; and a different Y; ...

19/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t,) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

@ X solves the SDE:
dXt = B(t, x)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z: = 00 u(t, X¢)
@ Connection also works with dX,; = dW; and a different Y; ...
@ Application: solve a PDE by solving the corresponding (F)BSDE

19/33

Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t,) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

X solves the SDE:
dXt = B(t7 x)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

Infact Z, = o0, u(t, X¢)
Connection also works with dX; = dW; and a different Y; ...
Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

19/33

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

20/33

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

20/33

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona & L. [CL19])
Minimize over yo(-) and z(-) = (2:())¢>0

3an(),2()) = B[10" - GO, L)1

under the constraint that (X°*,Y7°-*) solve: Vt € [0, T

dXt = B(t,Xt,L(Xt),Yt)dt-i-th, X() ~ Mo,
dY; = —F(t, Xs, L(X1), Ya)dt + 2(t, X;) - dWs, Yo = yo(Xo).

20/33

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona & L. [CL19])
Minimize over yo(-) and z(-) = (2:())¢>0

3an(),2()) = B[10" - GO, L)1

under the constraint that (X°*,Y7°-*) solve: Vt € [0, T

dXt = B(t,Xt,L(Xt),Yt)dt-i-th, X() ~ Mo,
dY; = —F(t, Xs, L(X1), Ya)dt + 2(t, X;) - dWs, Yo = yo(Xo).

— MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

20/33

Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona & L. [CL19])
Minimize over yo(-) and z(-) = (2:())¢>0

3an(),2()) = B[10" - GO, L)1

under the constraint that (X°*,Y7°-*) solve: Vt € [0, T

dXt = B(t,Xt,L(Xt),Yt)dt-i-th, X() ~ Mo,
dY; = —F(t, Xs, L(X1), Ya)dt + 2(t, X;) - dWs, Yo = yo(Xo).

— MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

NB: This problem is not the original MFG or MFC
20/33

Analysis?

21/33

Implementation

@ Inputs: initial positions X, = (X});, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = C'y,, = terminal penalty; state = (X, Y5)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () = yo(-), z0. () = 2(-, ")

22/33

Implementation

@ Inputs: initial positions X, = (X});, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = C'y,, = terminal penalty; state = (X, Y5)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () = yo(-), z0. () = 2(-, ")

@ Alternative implementation: 1 + N NNs for yo(-), z0(:), ..., z2nvp—1(+)

22/33

Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{ = v.dt + dW; and

T
J(v;pu) =E |:G(X§“~) +/ (%U? + X/ atan </ :v,ut(dm)>> dt:|

23/33

Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{ = v.dt + dW; and

T
J(v;pu) =E |:G(X§“~) +/ (%U? + X/ atan </ xut(dm)>> dt:|

e =+ Y (Algorithm 2)
2 T -0225 =% Yo (benchmark)

/’//
V4 ~0.250
-0.275
S - —0.300
°
-0.325

-0.350

-0375

~0.400

Coupling

Results from [Chassagneux et al.] NN (FBSDE system)
(More details in Carmona & L. [CL19])

23/33

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) = E [/OT Evf — qui(me — Xo) + (7 - Xt)z] dt + £ (mr XT)Q]

where m = (m;):>0 = conditional mean of the population states given 7°, and
dXt = [a(’l’ht — Xt) —+ ’Ut]dt + o (\/ 1-— deWt + det0>

24/33

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) =E [/OT [%vf — qui(my — X¢) + %(mt - Xt)Q} dt + g(ﬁzT - XT)Q]

where m = (m:)+>0 = conditional mean of the population states given 17, and
dXt = [a(’l’ht — Xt) aF ’Ut]dt + o (\/ 1-— Pdet + de,p)

NN for FBSDE system VS (semi) analytical solution (LQ structure)

—— X! (Algorithm 2) X2 (Algorithm 2) —— Y1 (Algorithm 2) Y2 (Algorithm 2)
—— —— X* (benchmark) X2 (benchmark) — == Y (benchmark) Y2 (benchmark)
02
0.0
0.0 0.1
02
-0.2
03
04
-0.4
os
-0s
) o) 5) s) o o) o os
time ¢ time ¢
Samples of X Samples of Y/

(More details in Carmona & L. [CL19])

24/33

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) =E i 11112 — que(me — X)) + E(mt - X)?| dt + E(77_”LT - X7)*
D 2 2 2

where m = (m:)+>0 = conditional mean of the population states given 17, and
dXt = [a(’l’ht — Xt) aF ’Ut]dt + o (\/ 1-— Pdet + def())

NN for FBSDE system VS (semi) analytical solution (LQ structure)

= Nr=100,N=10° —8— Ny=50,N=10° —& Ny=100,N=10?| —— N;=100,N=10* —e— Nr=50,N=10° —k— Ny=100, N=10?

0.035
0.007

0.030
0.006

0.025
0.005

0.004 0.020

0.003 0.015

0.002 0.010

0.001 0.005

0.000 B 0.000
[10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
iteration iteration

L? erroron X L?erroronY
(More details in Carmona & L. [CL19])

24/33

Code Samples

@ Deep learning (Policy Gradient) for Mean Field Control / MKV control:

https://colab.research.google.com/drive/1DilgP3W6rXXgIVoRqUxLMNyvUYdwQ9X0O?usp=sharing

@ Deep learning for MKV FBSDE via shooting method:

https://colab.research.google.com/drive/10Mk jzbHorLDyQbQ1l3viW2nEcQAOsK9s-a?usp=sharing

25/33

https://colab.research.google.com/drive/1Di1gP3W6rXXgIVoRqUxLmNyvUYdwQ9XO?usp=sharing
https://colab.research.google.com/drive/1OMkjzbHorLDyQbQ13vW2nEcQAOsK9s-a?usp=sharing

Outline

4. Other Methods

Methods Based on Dynamic Programming — NNContPI

Method (NNContPl) of Bachouch, Huré, Langrené, Pham [BHLP21]* to minimize:
Np—1

JNT (U) =E Z f(er Un,(Xn)) + g(XNT)

n=0

where Xnt1 = Xn +0(Xn, 00 (Xn)) + €nt1.

4Bach0uch, A., Huré, C., Langrené, N., & Pham, H. (2021). Deep neural networks algorithms for stochastic control problems
on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.
26/33

Methods Based on Dynamic Programming — NNContPI

Method (NNContPl) of Bachouch, Huré, Langrené, Pham [BHLP21]* to minimize:
Np—1

JNT U = Z f(Xn77/r1(Xrb))+g(XNT)

n=0

where Xnt1 = Xn +0(Xn, 00 (Xn)) + €nt1.

Input: Training distributions (yin)n—o,..., N4
Output: Parameters (0},)n—o.... np St. (9o)n—o.....n, (approximately) minimizes JN*
1 forn=Nr—1,Nr—2,...,1,0do
2 Compute (e.g., using SGD) 6;, minimizing:
Np—1
0~ E {f(xn,% + Y F(Xaper, (X00) + g(Xy)

n/=n+1

where X,, ~ u, and

Xpp1 = X0 +b(X 67?0,7(X6))+€n+17
Ko = X +b(X /wvw (X7)) + €nrsa, n' >n.

3 return (0;,),—0,.. N;—1

4Bachouch, A., Huré, C., Langrené, N., & Pham, H. (2021). Deep neural networks algorithms for stochastic control problems
on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.
26/33

Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

Np—1

IV (v) = Z F(Xn, va(X0)) + 9(Xny)

where XnH = X5 +b0(Xn, 00 (Xn)) + €nt1.

27/33

Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:
Np—1

IV (v) = Zf ns V(X)) + 9(Xny)

where XnH = X5 +b0(Xn, 00 (Xn)) + €nt1.
Value function V;.(z) = inf, B[S0 (X, v (X)) + 9(Xng)]

n’/=n

27/33

Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:
Np—1

TN @) =E | Y f(Xn,va(X0)) + 9(Xny)

where Xnt1 = Xn + 0(Xn, 00 (X0n)) + €nt1.

Np—1

Value function V,,(z) = inf, E [" f(X, 00 (Xar)) + 9(Xng)]

Input: Training distributions (i,)n—o,..., N4

Output: Parameters (0;,).~o,..., N, 8.1 (¢ox)n=0,...,n, (@pproximately) minimizes
JNT; Parameters (w},).—o0, . ~. such that ¢, approximates the value
function V,, at time n

1 Set VNT =g

2 forn=Nr—1,Nr—2,...,1,0do

3 Compute 6;, minimizing:

0 = E [f(Xn, 00, (Xn)) + Var1 (Xn41)]

where X, ~ pn, and X2, = X5 + (X5, o, (X)) + €n+t1

Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

Np—1

TN @) =E | Y f(Xn,va(X0)) + 9(Xny)

where Xnt1 = Xn + 0(Xn, 00 (X0n)) + €nt1.
Value function V;.(z) = inf, B[S0 (X, v (X)) + 9(Xng)]

n’/=n

Input: Training distributions (i,)n—o,..., N4
Output: Parameters (0;,).~o,..., N, 8.1 (¢ox)n=0,...,n, (@pproximately) minimizes
JNT; Parameters (w};).—o, . n, such that 1)..» approximates the value
function V,, at time n
1 Set VNT =g
2 forn=Nr—1,Nr—2,...,1,0do
3 Compute 6;, minimizing:

0 = E [f(Xn, 00, (Xn)) + Var1 (Xn41)]

where X, ~ p,, and XZ-H =X, + b(X,UH 4}99”(X2)) +ént1
4 Compute w,, minimizing:

B (15X, 00 (X)) + Voa (X7) = s (X0]

5 return (0),)n—o.... Ny —1, (W))n=0,... N,

27/33

Methods Based on Dynamic Programming — DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19]°
Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:

@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.
6

28/33

Methods Based on Dynamic Programming — DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19]°
Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:

@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

@ or Version 2: Let (V,,, Z,,) = minimizer over (Y,, Z,) of:

E [[¥n41(Xnt1) = Ya(Xn) = £(tn: Xn, Yo (Xn), 0| DaYn(Xn)At = Dy Yo (X)) T oAW1l

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.
6

28/33

Methods Based on Dynamic Programming — DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19]°
Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:

@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

@ or Version 2: Let (V,,, Z,,) = minimizer over (Y,, Z,) of:

E [[¥n41(Xnt1) = Ya(Xn) = £(tn: Xn, Yo (Xn), 0| DaYn(Xn)At = Dy Yo (X)) T oAW1l

For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. Germain, Pham, Warin [GPW21]®

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.

Germain, M, Pham, H., & Warin, X.. Neural networks-based algorithms for stochastic control and PDEs in finance. arXiv
preprint arXiv:2101.08068 (2021).

28/33

Methods Based on Dynamic Programming for MFG & MFC

29/33

Summary

30/33

References |

[BHLP21] Achref Bachouch, Coéme Huré, Nicolas Langrené, and Huyen Pham, Deep neural

[BT97]

[CCD19]

[CD18]

[CFS15]

[CL15]

[CL19]

networks algorithms for stochastic control problems on finite horizon: numerical
applications, Methodology and Computing in Applied Probability (2021), 1-36.

Mireille Bossy and Denis Talay, A stochastic particle method for the McKean-Vlasov
and the Burgers equation, Math. Comp. 66 (1997), no. 217, 157—192. MR 1370849

Jean-Frangois Chassagneux, Dan Crisan, and Frangois Delarue, Numerical method
for FBSDEs of McKean-Vlasov type, Ann. Appl. Probab. 29 (2019), no. 3, 1640-1684.
MR 3914553

René Carmona and Francgois Delarue, Probabilistic theory of mean field games with
applications. I, Probability Theory and Stochastic Modelling, vol. 83, Springer, Cham,
2018, Mean field FBSDEs, control, and games. MR 3752669

René Carmona, Jean-Pierre Fouque, and Li-Hsien Sun, Mean field games and
systemic risk, Commun. Math. Sci. 13 (2015), no. 4, 911-933. MR 3325083

René Carmona and Daniel Lacker, A probabilistic weak formulation of mean field
games and applications, Ann. Appl. Probab. 25 (2015), no. 3, 1189—-1231. MR
3325272

René Carmona and Mathieu Lauriere, Convergence analysis of machine learning
algorithms for the numerical solution of mean field control and games: li-the finite
horizon case, arXiv preprint arXiv:1908.01613. To appear in Annals of Probability
(2019).

31/33

References Il

[CL21]

[FZ20]

[GMO5]

[GMW19]

[GPW21]

[HE16]

[HPW19]

, Convergence analysis of machine learning algorithms for the numerical
solution of mean field control and games i: The ergodic case, SIAM Journal on
Numerical Analysis 59 (2021), no. 3, 1455-1485.

Jean-Pierre Fouque and Zhaoyu Zhang, Deep learning methods for mean field control
problems with delay, Frontiers in Applied Mathematics and Statistics 6 (2020), 11.

Emmanuel Gobet and Rémi Munos, Sensitivity analysis using It6-Malliavin calculus
and martingales, and application to stochastic optimal control, SIAM J. Control Optim.
43 (2005), no. 5, 1676-1713. MR 2137498

Maximilien Germain, Joseph Mikael, and Xavier Warin, Numerical resolution of
mckean-viasov fbsdes using neural networks, arXiv preprint arXiv:1909.12678 (2019).

Maximilien Germain, Huyén Pham, and Xavier Warin, Neural networks-based
algorithms for stochastic control and pdes in finance, arXiv preprint arXiv:2101.08068
(2021).

Jiequn Han and Weinan E, Deep learning approximation for stochastic control
problems, Deep Reinforcement Learning Workshop, NIPS, arXiv preprint
arXiv:1611.07422 (2016).

Come Huré, Huyén Pham, and Xavier Warin, Some machine learning schemes for
high-dimensional nonlinear pdes, arXiv preprint arXiv:1902.01599 (2019), 2.

32/33

References Il

[MM95] Hrushikesh N. Mhaskar and Charles A. Micchelli, Degree of approximation by neural
and translation networks with a single hidden layer, Advances in Applied Mathematics
16 (1995), 151-183.

[RM51] Herbert Robbins and Sutton Monro, A stochastic approximation method, The annals
of mathematical statistics (1951), 400-407.

Unless otherwise specified, the images are from https://unsplash.com

33/33

https://unsplash.com

	Introduction
	Deep Learning for MFC
	Deep Learning for MKV FBSDE
	Other Methods

