Mean Field Games:
Numerical Methods and
Applications in Machine Learning

Part 5: Deep Learning for MFC and MKV FBSDE

Mathieu LAURIERE

https://mlauriere.github.io/teaching/MFG-PKU-5.pdf

Peking University
Summer School on Applied Mathematics
July 26 — August 6, 2021



RECAP

1/33



Numerical Methods for MFG: Some references

Methods based on a deterministic approach:

o Finite diff. & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; Achdou, Camilli, Capuzzo-Dolcetta’13; ...

o Gradient descent: [L., Pironneau'14; Pieiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier14; Achdou, L.16; Andreev'17]
e Primal-dual algo.: [Bricefio-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos Gonzalez'18]
e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
Methods based on a probabilistic approach:
o Cubature: [Chaudru de Raynal, Garcia Trillos'15]
e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
e MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
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e Monotone operators: [Amulla et al.'17; Gomes, Salide'18; Gomes, Yang'18]
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e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
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Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
Limitations:

e dimensionality (typically: state in dimension < 3)

e structure of the problem (typically: simple costs, dynamics and noises)
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Methods based on a probabilistic approach:
o Cubature: [Chaudru de Raynal, Garcia Trillos'15]
e Recursion: [Chassagneux et al"17; Angiuli et al.'18]
o MC & Regression: [Balata, Huré, L., Pham, Pimentel'18]
Surveys and lecture notes: [Achdou'13 (LNM); Achdou, L.20 (Cetraro); L'21 (AMS)]
Limitations:
e dimensionality (typically: state in dimension < 3)
e structure of the problem (typically: simple costs, dynamics and noises)
Recent progress: extending the toolbox with tools from machine learning:
e approximation without a grid (mesh-free methods): opt. control & distribution
—> [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; .. .]
e even when the dynamics / cost are not known (model-free methods)

—> [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; Yang et al.; ...]
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1. Introduction



Ingredient 1: Neural Networks

@ Goal: Minimize over o (-), J(¢) := E¢[L(p, €)]

@ Ex.: Regression: ¢ = (z, f(z)) for some f, L(y,&) = ||l¢(z) — f(z)|?
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@ Depth = number of layers; width of a layer = dimension of bias vector



Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
@ Ex.: Regression: ¢ = (z, f(z)) for some f, L(y,&) = ||l¢(z) — f(z)|?
@ Idea: Instead of min. over all ¢(-), min. over parameters 6 of ¢ (-)

@ Ex.: Feedforward fully-connected neural network:
e with weights & biases 0 = (8%, w ™)1 4

wo(z) =¥ (8“) + w9 @ (8(2> +w®@ MW 4 yMy) ) .. )
hg —_—
w0, ) one hidden layer

where (¥ € { sigmoid, RelLU, ... }: non-linear activation functions
(coordinate-wise)

@ Depth = number of layers; width of a layer = dimension of bias vector

@ Other architectures



Ingredient 1: Neural Networks — Universal Approximation
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Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(0, x)
VWW(G, l’) = ... Vw(g)(p(@7 :C) =...

= can perform SGD on these parameters



Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(0, x)
Vyoe@,z)=..., V,opl,z)=...
= can perform SGD on these parameters
@ With respect to state variable: V¢ (0, z) can be computed by AD too
Oy p(0,2) = ...

= can be used in PDEs



Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over o(-), J(p) := E¢[L(p, £)]
Parameterization: J(0) := E¢[L(0,¢)], where L(6, £) := L(s, €)
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e we know L
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Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over ¢(-), J(¢) := E¢[L(p, &)]
Parameterization: J(0) := E¢[L(0,¢)], where L(6, £) := L(s, €)

Setting: the distribution of £ is unknown, but
e we have some samples (i.e. random realizations) of £
e we know L

Ex: Regression: ¢ = (z, f(x)), J(0) := E¢[||o(z) — f(2)||*]

Input: Initial param. 0o; data S = (&:)s=1,...,|s; Nb of steps K; learning rates (7™ )
Output: Parameter 0" s.t. @4+ (approximately) minimizes J

1 Initialize 6*) = 6,

2 fork=0,1,2,...,K—1do

3 Pick s € S randomly

4 Compute the gradient VoL(6* %, &) = LL(pye-1,Es)

s | Set0® =t — 0y, L% ¢,

6 return 0




Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

7/33



Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly



Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly

@ Robbins-Monro [RM51]

7/33



Ingredient 2: Stochastic Gradient Descent — cont.

@ Many variants:

> Learning rate: ADAM (Adaptive Moment Estimation), ...
> Samples: Mini-batches, ...

@ Generator for ¢ = can generate Monte Carlo samples on the fly
@ Robbins-Monro [RM51]

@ Links with convex minimization & stochastic approximation



Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(p) = Eay[L(o(2), y)]
with z ~ pand y = f(z) + € for some noise e where f is unknown
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Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(@) = Ex,y [L(Sp(x)> y)}

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

> minimize over a hypothesis class F of ¢

> finite number of samples, S = (zm, ¥m)m=1,...,m: (regularized) empirical risk:

M
Rs(e) = 22 3 Lle(@m).um)  (+requ
m=1

> finite number of optimization steps, say k
@ We are interested in:
> Approximation error: Letting ¢* = argmin,, ¢ » dist(e, f),
€approx = diSt(w*v f)
> Estimation error: Letting 5 = argmin, ¢ » Rs(¢)
€estim = dist(Pg, p™)
> Optimization error: After k steps, we get ga<k);

S
€optim = diSt(WS{) ,$5)
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Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(@) = Ex,y [L(Sp(x)> y)}

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

> minimize over a hypothesis class F of ¢
> finite number of samples, S = (zm, ¥m)m=1,...,m: (regularized) empirical risk:

M
Rs(e) = 22 3 Lle(@m).um)  (+requ
m=1

> finite number of optimization steps, say k
@ We are interested in:
> Approximation error: Letting ¢* = argmin,, ¢ » dist(e, f),
€approx = diSt(w*v f)
> Estimation error: Letting 5 = argmin, ¢ » Rs(¢)
€estim = dist(Pg, p™)
> Optimization error: After k steps, we get ga<k);

S
€optim = diSt(WS{) ,$5)

> Generalization error of the learnt gog():

€gene = €approx T €estim T €optim



Outline

2. Deep Learning for MFC



Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over v(-, -)

s =2 | (e X0 + ()]

with
X() ~ mo, dXt = b(Xt, ’U(t, Xt)) dt + O'th
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y,

Minimize over neural network parameters 6

50 =5 [ [ 1 (Xpate. X0) de () |
0

with
X() ~ Mo, dXt :b(Xt,QOQ(t,Xt)) dt+Uth
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[ Y f Xy oltas X)) At g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn :b(Xna(pG(tn7Xn))At+UAWn
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[ Y f Xy oltas X)) At g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn - b(Xna@G(tann))At+UAWYn

— neural network induces an approximation error

— time discretization induce extra errors
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MFC: Approximate Problem

MFC problem:

Minimize over (-, -)
J(’U()) :]E|:/ f(Xt,//Lt,'U(t,Xt)) dt+g(XT,/J4T) R

where p, = L(X¢) with
X() ~ mo, dXt = b(Xt,/,Lt,’U(t,Xt)) dt+ O’th

10/33



MFC: Approximate Problem

MFC problem: (1) Finite pop.,

Minimize over decentralized controls v(-, -) with NV agents
1o [T
N i N i i N
J (’U('?‘)) = ]E|:N Z;/O' f (Xtvut 7’U(t7Xt)) dt+g (XTvl'LT) i|7

where u = £ > | 0y, With

Xy ~mo, dX{ =b(X], ui ot X)) dt + odWY
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢,

Minimize over neural network parameters 6 with NV agents
1o [T
N 1 N 2 7 N
J (0)_]E|:NZ;/; f(Xt7ﬂt7999(t7Xt)) dt+g(XT7N‘T):|7

where i = £ 37| 0y, With

X) ~mo, dX] =b(X], 1, et X1)) dt + odW]
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters 0 € © with N agents and N time steps

N Np—1

TNV = B[ D0 DT (Xt X)) At g (Xivpsihy) ]

i=1 n=0
N .
where i = 3700, 0,5, with

X) ~mo, Xi.— XL =bXD,uh,p0(tn, X))AL + e AW}
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters 0 € © with N agents and N time steps

N Np—1

TNV = B[ D0 DT (Xt X)) At g (Xivpsihy) ]

i=1 n=0
where p) = + Zjvzl Oy with
X ~mo,  Xi = Xi = b(X0, s o (tn, X0)) AL+ 0 AW,
— neural network induces an approximation error
— Finite population and time discretization induce extra errors

N.B.: decentralized control
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Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):

Under suitable assumptions (in particular regularity of the value function),

inf J(o(,)) = fnf TN (0)] < e1(N) + ea(dim(0)) + es(N7)

0coe

1Carmona, R., & Lauriére, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

2
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Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):

Under suitable assumptions (in particular regularity of the value function),

&nf) J(v(,-)) = inf JVNT(6)] < e (N) + e2(dim(0)) + e(Nr)

0coe

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to Carmona & L. [CL21]

1 Carmona, R., & Lauriere, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

ZCarmona, R., & Lauriéere, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.
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Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved (see Carmona & L. [CL19]"):
Under suitable assumptions (in particular regularity of the value function),

it J(o(,)) = inf TV (0)] < @(N) + ea(dim(0)) + es(Nr)

6cO
@ The estimation error for shallow neural networks can be analyzed using
techniques similar to Carmona & L. [CL21]
@ The optimization error remains to be studied

@ Many extensions to be studied

1 Carmona, R., & Lauriere, M. (2019). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games: Il-The Finite Horizon Case. arXiv preprint arXiv:1908.01613. To appear in Annals of Applied
Probability

ZCarmona, R., & Lauriéere, M. (2021). Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of
Mean Field Control and Games I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3), 1455-1485.
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X )

inf J(0() - J%ﬁ(-))’ <a(N) €O (NT/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X )

inf () - J%*(-))’ < a(N) e B (N-1/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(U*(-)) — JN(@9(~))| < e2(dim(0)) € O (dim(ﬁ)_“(d“)).

Proof: Key difficulty: approximate v*(-) by %¢(+) while controlling ||[V@g(+)|| by [[Vo*(4)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from Mhaskar & Micchelli [MM95]
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v* s.t. (d = dimension of X )

inf () - J%*(-))’ < a(N) e B (N-1/9).

Proof: propagation of chaos type argument Carmona & Delarue [CD18]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
{JN(U*(-)) — JN(¢9(~))| < e2(dim(0)) € O (dilxl(ﬁ)_“<d+l)).

Proof: Key difficulty: approximate v*(-) by %¢(+) while controlling ||[V@g(+)|| by [[Vo*(4)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from Mhaskar & Micchelli [MM95]
Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ¢ (+),
[TV (@) = IV (g0()] < (V) € O (N7 V7).

Key point: O (-) independent of N and dim(6)

Proof: analysis of strong error rate for Euler scheme (reminiscent of Bossy & Talay [BT97])
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: JV-N7 (0) = E[L(, )]
> One sample: ¢ = (Xé, (AW}'L)n,:o,A.A,J\"T—1)].:1 N

— can use Stochastic Gradient Descent
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
> Loss function = cost: J™-N7 () = E[L(p, £)]
» One sample: £ = (X{J, (AW o

oNT=1), 1 N

— can use Stochastic Gradient Descent
@ Related work:

> Extends standard stochastic control ... ; Gobet & Munos [GMO05]; Han & E [HE16]
> Related work with mean field: Fouque & Zhang [FZ20]; Germain et al. [GMW19]; ...

@ Structure:

o+ ...+ Cny

®—> Po00 "\p(}.NT—l —>X1,.. . ,XNT
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Numerical lllustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

fapn= @=af + 2. a= [u@w, o =a
distance to  cost of ——
mean position  MoOvIng mean position

Numerical example with d = 10 (see Carmona & L. [CL19]):

514 N=32,Nr=100 N=32,Ny =100
N=128, Ny =100 N =128, Nr =100
5.0 —— N=1024, Ny =100 100 —— N=1024,N; =100
.9 --- N=1024,N;=20 --- N=1024,N;=20
: --- N=1024,N;=10 --- N=1024,N;=10
4.8
3 5
247 <
107!
4.6
4.5
4.4
43 1072
0 10000 20000 30000 40000 0 10000 20000 30000 40000
SGD iterations SGD iterations
i 2
total cost (= loss function) L*-error on the control
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-15,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

(More details in Carmona & L. [CL19])

15/33



Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=20.1
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.2
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.3
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=04
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

— PDE, £%=0
—= PDE, =0
= DS,e0=0
e DS, €°=0

t=0.5
e Until T'/2: concentrate around mid-point = 0

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):

o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

—— PDE, %= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.6
e Until T'/2: concentrate around mid-point = 0
o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0=01,T=1,& =-1.5,& =+1.5
o Numerics: neural network (¢, X, €) VS benchmark with system of 6 PDEs

—— PDE, %= -15
200 == PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.7

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise
(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.8

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=0.9

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: min-LQ MFC with common noise

MFC with simple CN (inspired by [Salhab, Malhamé, Le Ny] and [Achdou, Lasry]):
o dX; = ¢y(Xy, €))dt + adWy, € = 0 until t = T/2, and then &; or & w.p. 1/2
o running cost |¢:(X¢, ¢))|?, final cost (X1 — €7)? + Qr(mr — Xr)?

eEx:0c=01T=16=-15,&6&=+15
o Numerics: neural network o, (t, X, ¢{) VS benchmark with system of 6 PDEs

— PDE, €= -15
== PDE, €= +15
e DS, 0= -15
e DS, %= +15

t=1

e Until T'/2: concentrate around mid-point = 0

o After T'/2: move towards the target selected by common noise

(More details in Carmona & L. [CL19])
15/33



Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy
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Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R
Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy

Objective: minimize

J(v) = JE{/OT ex (X{)dt + g(X7) — Vp
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Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)
Price process: with v = population’s distribution over actions,

dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy
Objective: minimize
T
90) =] [ ex(xiiar+ g(xi) - vi
0

Equivalent problem:

J(v) = E[/OT <cv(1;t) +ex(XY) — *yX;’/]R adu{”(a)) dt + g(Xq”«)}
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Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model (see Carmona & Lacker [CL15], Carmona & Delarue [CD18],
L)

Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW,
R

Typical agent’s inventory: dX; = v.dt + odW;
Typical agent's wealth: dK; = — (v, S¢ + co(v))dt
Typical agent’s portfolio value: V" = K¢ + XSy
Objective: minimize

T
J(v) = IE[ / ex (X7)dt + g(X3) — VT}
0
Equivalent problem:

J(v) = E[/OT <cv(1;t) +ex(XY) — *yX;’/]R adu{”(a)) dt + g(Xq”«)}

Take: ¢, (v) = 3cov?, ex(x) = 2exa® and g(z) = 1cga?
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Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

0 m— t=0.000
Lo = t=0.100
t=0.200
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T=1cx=2,co=1,¢g=03,0=0.5,7y=0.2

17/33



Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

= t=0.000
e £=0.100
=0.200

t=0.300
=0.400
t=0.500
t=0.600
=0.700
t=0.800
t=0.900
— t=1.000

control
|

T=1cx=2,co=1,¢g=03,0=05,y=1
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Outline

3. Deep Learning for MKV FBSDE



DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, Xy, Y:)dt + dWr, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

18/33



DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form
dX; = B(t, Xy, Y:)dt + dWr, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17;...13
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.
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DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX: = B(t, Xt, Y;)dt 4+ dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[ e - G )17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy,  Xo ~ mo,
{ dYy = —F(t, X¢, Y)dt + z(t, Xy¢) - dWy, Yo = yo(Xo).

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.
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DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX: = B(t, Xt, Y;)dt 4+ dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[ e - G )17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy,  Xo ~ mo,
{ dY, = —F(t, X, Y,)dt + 2(t, X1) - dWs, Yo = yo(Xo).

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.
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DeepBSDE: Shooting Method for FBSDE

Solutions of sto. control problems can be characterized by FBSDEs of the form
dX: = B(t, X, Yi)dt + dWy, Xo ~ mo — state
dY, = =F(t, X, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = 0, H)

Shooting: Guess Y, and (Z;); [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ... 3
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(),20) = E[ e - G )17
under the constraint that (X ¥°* Y¥°-*) solve: Vt € [0, T
dX, = B(t, Xy, Ye)dt + dWy,  Xo ~ mo,
{ dY, = —F(t, X, Y,)dt + 2(t, X1) - dWs, Yo = yo(Xo).

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN
NB: This problem is not the original stochastic control problem !
SE, W., Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial

differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4),
349-380.

18/33



Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X;) = Y; where
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Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t, ) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

@ X solves the SDE:
dXt = B(t, $)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,
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@ Infact Z: = 00 u(t, X¢)
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@ Infact Z: = 00 u(t, X¢)
@ Connection also works with dX; = dW; and a different Y; ...
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Application to Solve PDEs

Feynman-Kac formula: correspondence u(t, X:) = Y; where
@ u solves the PDE

{u(T, z) = G(z) .
Su(t,x) + B(t, ) 34 (t, x) + 50> 22 (t,x) + F(t,z) =0

X solves the SDE:
dXt = B(t7 x)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

Infact Z, = o0, u(t, X¢)
Connection also works with dX; = dW; and a different Y; ...
Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions
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Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)
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Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form
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Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona & L. [CL19])
Minimize over yo(-) and z(-) = (2:())¢>0

3an(),2()) = B[ 10" - GO, L)1

under the constraint that (X°*,Y7°-*) solve: Vt € [0, T

dXt = B(t,Xt,L(Xt),Yt)dt-i-th, X() ~ Mo,
dY; = —F(t, Xs, L(X1), Ya)dt + 2(t, X;) - dWs, Yo = yo(Xo).
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Shooting Method for MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X¢, L(X;), Y:)dt + dWy, Xo ~ mo — state
dYy = —=F(t, Xe, L(X4),Ye)dt + Z¢ - AWy, Yr = G(Xr,L(X71)) — control/cost
(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F = 9, H)

Shooting: Guess Y, and (Z;). [Kohimann & Zhou; Sannikov; Han, Jentzen, E'17; ...]
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem (Carmona & L. [CL19])
Minimize over yo(-) and z(-) = (2:())¢>0

3an(),2()) = B[ 10" - GO, L)1

under the constraint that (X°*,Y7°-*) solve: Vt € [0, T

dXt = B(t,Xt,L(Xt),Yt)dt-i-th, X() ~ Mo,
dY; = —F(t, Xs, L(X1), Ya)dt + 2(t, X;) - dWs, Yo = yo(Xo).

— MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

NB: This problem is not the original MFG or MFC
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Analysis?
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Implementation

@ Inputs: initial positions X, = (X});, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = C'y,, = terminal penalty; state = (X, Y5)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () = yo(-), z0. () = 2(-, ")
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Implementation

@ Inputs: initial positions X, = (X});, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = C'y,, = terminal penalty; state = (X, Y5)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () = yo(-), z0. () = 2(-, ")

@ Alternative implementation: 1 + N NNs for yo(-), z0(:), ..., z2nvp—1(+)
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Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{ = v.dt + dW; and

T
J(v;pu) =E |:G(X§“~) +/ (%U? + X/ atan </ :v,ut(dm)>> dt:|
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Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from Chassagneux et al. [CCD19] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{ = v.dt + dW; and

T
J(v;pu) =E |:G(X§“~) +/ (%U? + X/ atan </ xut(dm)>> dt:|

e =+ Y (Algorithm 2)
2 T -0225 =% Yo (benchmark)

/’//
V4 ~0.250
-0.275
S - —0.300
°
-0.325

-0.350

-0375

~0.400

Coupling

Results from [Chassagneux et al.] NN (FBSDE system)
(More details in Carmona & L. [CL19])
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Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) = E [/OT Evf — qui(me — Xo) + (7 - Xt)z] dt + £ (mr XT)Q]

where m = (m;):>0 = conditional mean of the population states given 7°, and
dXt = [a(’l’ht — Xt) —+ ’Ut]dt + o (\/ 1-— deWt + det0>
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Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) =E [/OT [%vf — qui(my — X¢) + %(mt - Xt)Q} dt + g(ﬁzT - XT)Q]

where m = (m:)+>0 = conditional mean of the population states given 17, and
dXt = [a(’l’ht — Xt) aF ’Ut]dt + o (\/ 1-— Pdet + de,p)

NN for FBSDE system VS (semi) analytical solution (LQ structure)

—— X! (Algorithm 2) X2 (Algorithm 2) —— Y1 (Algorithm 2) Y2 (Algorithm 2)
—— —— X* (benchmark) X2 (benchmark) — == Y (benchmark) Y2 (benchmark)
02
0.0
0.0 0.1
02
-0.2
03
04
-0.4
os
-0s
) o ) 5 ) s ) o o ) o os
time ¢ time ¢
Samples of X Samples of Y/

(More details in Carmona & L. [CL19])
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Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending (Carmona, Fouque, Sun [CFS15])
X =log-monetary reserve, v = rate of borrowing/lending to central bank, cost:

J(v;m) =E i 11112 — que(me — X)) + E(mt - X)?| dt + E(77_”LT - X7)*
D 2 2 2

where m = (m:)+>0 = conditional mean of the population states given 17, and
dXt = [a(’l’ht — Xt) aF ’Ut]dt + o (\/ 1-— Pdet + def())

NN for FBSDE system VS (semi) analytical solution (LQ structure)

= Nr=100,N=10° —8— Ny=50,N=10° —& Ny=100,N=10?| —— N;=100,N=10* —e— Nr=50,N=10° —k— Ny=100, N=10?

0.035
0.007

0.030
0.006

0.025
0.005

0.004 0.020

0.003 0.015

0.002 0.010

0.001 0.005

0.000 B 0.000
[ 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
iteration iteration

L? erroron X L?erroronY
(More details in Carmona & L. [CL19])

24/33



Code Samples

@ Deep learning (Policy Gradient) for Mean Field Control / MKV control:

https://colab.research.google.com/drive/1DilgP3W6rXXgIVoRqUxLMNyvUYdwQ9X0O?usp=sharing

@ Deep learning for MKV FBSDE via shooting method:

https://colab.research.google.com/drive/10Mk jzbHorLDyQbQ1l3viW2nEcQAOsK9s-a?usp=sharing
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Outline

4. Other Methods



Methods Based on Dynamic Programming — NNContPI

Method (NNContPl) of Bachouch, Huré, Langrené, Pham [BHLP21]* to minimize:
Np—1

JNT (U) =E Z f(er Un,(Xn)) + g(XNT)

n=0

where Xnt1 = Xn +0(Xn, 00 (Xn)) + €nt1.

4Bach0uch, A., Huré, C., Langrené, N., & Pham, H. (2021). Deep neural networks algorithms for stochastic control problems
on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.
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Methods Based on Dynamic Programming — NNContPI

Method (NNContPl) of Bachouch, Huré, Langrené, Pham [BHLP21]* to minimize:
Np—1

JNT U = Z f(Xn77/r1(Xrb))+g(XNT)

n=0

where Xnt1 = Xn +0(Xn, 00 (Xn)) + €nt1.

Input: Training distributions (yin)n—o,..., N4
Output: Parameters (0},)n—o.... np St. (9o )n—o.....n, (approximately) minimizes JN*
1 forn=Nr—1,Nr—2,...,1,0do
2 Compute (e.g., using SGD) 6;, minimizing:
Np—1
0~ E {f(xn,% + Y F(Xaper, (X00) + g(Xy)

n/=n+1

where X,, ~ u, and

Xpp1 = X0 +b(X 67?0,7(X6))+€n+17
Ko = X +b(X /wvw (X7)) + €nrsa, n' >n.

3 return (0;,),—0,.. N;—1

4Bachouch, A., Huré, C., Langrené, N., & Pham, H. (2021). Deep neural networks algorithms for stochastic control problems
on finite horizon: numerical applications. Methodology and Computing in Applied Probability, 1-36.
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Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

Np—1

IV (v) = Z F(Xn, va(X0)) + 9(Xny)

where XnH = X5 +b0(Xn, 00 (Xn)) + €nt1.
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Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:
Np—1

IV (v) = Zf ns V(X)) + 9(Xny)

where XnH = X5 +b0(Xn, 00 (Xn)) + €nt1.
Value function V;.(z) = inf, B[S0 (X, v (X)) + 9(Xng )]

n’/=n
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Methods Based on Dynamic Programming — Hybrid-Now
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Np—1

TN @) =E | Y f(Xn,va(X0)) + 9(Xny)

where Xnt1 = Xn + 0(Xn, 00 (X0n)) + €nt1.

Np—1

Value function V,,(z) = inf, E [ " f( X, 00 (Xar)) + 9(Xng)]

Input: Training distributions (i, )n—o,..., N4

Output: Parameters (0;,).~o,..., N, 8.1 (¢ox )n=0,...,n, (@pproximately) minimizes
JNT; Parameters (w},).—o0, . ~. such that ¢, approximates the value
function V,, at time n

1 Set VNT =g

2 forn=Nr—1,Nr—2,...,1,0do

3 Compute 6;, minimizing:

0 = E [f(Xn, 00, (Xn)) + Var1 (Xn41)]

where X, ~ pn, and X2, = X5 + (X5, o, (X)) + €n+t1




Methods Based on Dynamic Programming — Hybrid-Now

Method (Hybrid-Now) of Bachouch, Huré, Langrené, Pham [BHLP21] to minimize:

Np—1

TN @) =E | Y f(Xn,va(X0)) + 9(Xny)

where Xnt1 = Xn + 0(Xn, 00 (X0n)) + €nt1.
Value function V;.(z) = inf, B[S0 (X, v (X)) + 9(Xng )]

n’/=n

Input: Training distributions (i, )n—o,..., N4
Output: Parameters (0;,).~o,..., N, 8.1 (¢ox )n=0,...,n, (@pproximately) minimizes
JNT; Parameters (w};).—o, . n, such that 1)..» approximates the value
function V,, at time n
1 Set VNT =g
2 forn=Nr—1,Nr—2,...,1,0do
3 Compute 6;, minimizing:

0 = E [f(Xn, 00, (Xn)) + Var1 (Xn41)]

where X, ~ p,, and XZ-H =X, + b(X,UH 4}99”(X2)) +ént1
4 Compute w,, minimizing:

B (15X, 00 (X)) + Voa (X7) = s (X0 ]

5 return (0),)n—o.... Ny —1, (W) )n=0,... N,
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Methods Based on Dynamic Programming — DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19]°
Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:

@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.
6
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@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

@ or Version 2: Let (V,,, Z,,) = minimizer over (Y,, Z,) of:

E [[¥n41(Xnt1) = Ya(Xn) = £(tn: Xn, Yo (Xn), 0| DaYn(Xn)At = Dy Yo (X)) T oAW1l

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.
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Methods Based on Dynamic Programming — DBDP

Deep Backward Dynamic Programming (DBDP) of Huré, Pham, Warin [HPW19]°
Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:

@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:

@ Version 1: Let (Y, Z,,) = minimizer over (Y,, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = f(tn, Xn, Yo (Xn), Z0 (X)) Al = Zn(Xn) - AWpp1]

@ or Version 2: Let (V,,, Z,,) = minimizer over (Y,, Z,) of:

E [[¥n41(Xnt1) = Ya(Xn) = £(tn: Xn, Yo (Xn), 0| DaYn(Xn)At = Dy Yo (X)) T oAW1l

For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. Germain, Pham, Warin [GPW21]®

5Huré, C., Pham, H. & Warin, X. . Deep backward schemes for highdimensional nonlinear PDEs. In: Math. Comp. 89.324
(2020), pp. 1547— 1580.

Germain, M, Pham, H., & Warin, X.. Neural networks-based algorithms for stochastic control and PDEs in finance. arXiv
preprint arXiv:2101.08068 (2021).
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Methods Based on Dynamic Programming for MFG & MFC
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Summary
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