Mean Field Games:
Numerical Methods and
Applications in Machine Learning

Part 6: Deep Learning for MFG PDEs

Mathieu LAURIERE

https://mlauriere.github.io/teaching/MFG-PKU-6.pdf

Peking University
Summer School on Applied Mathematics
July 26 — August 6, 2021

RECAP

1/24

Outline

1. Deep Galerkin Method for MFG PDEs

Outline

1. Deep Galerkin Method for MFG PDEs
@ Warm-up: ODE

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

{F(x,np(x),ap’(x), ...)=0, z € [a,b]
0

2/24

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g

z € [a,b]

z € [a,b]

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

Ex~u(lan)) [[F(X, po(X), 06(X), ...)]
+1G(a, o(a), po(a),...)"

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

Ex~u(lan)) [[F(X, po(X), 06(X), ...)]
+1G(a, o(a), po(a),...)"

@ Use SGD

Numerical Illustration

Application to the ODE:

{F(x,w(w)mo’(w)) =¢'(x) = (x —p(x), x€][0,5]
p(0) =1

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, o), ¢’ () = ¢’ () — (. — p(2)),
©(0) =1

Solution:
plr)=—1+2"

x €10, 5]

/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w,w(x),d(x)) =
v(0)=1

Solution:

¢'(z) = (z — o()),

plx)y=o—-1+2e""

z €10, 5]

4.04 — NN, iter=0
=== benchmark

\\\\

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, p(z), ¢ () = ¢'(2) = (x —p(x)), z€][0,5]
v(0)=1

Solution:
plx)y=o—-1+2e""

4.01 — NN, iter=200 ’,
-=- benchmark ’

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, p(z), ¢ () = ¢'(2) = (x —p(x)), z€][0,5]
v(0)=1

Solution:
plx)y=o—-1+2e""

4.0 —— NN, iter=700 .
=== benchmark s

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.091 — NN, iter=1000 p
—-- benchmark

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.091 — NN, iter=1500
—-- benchmark

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.0 — NN, iter=2000
—-- benchmark

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w,w(x)ad(x)) =¢'(@) = (z—p(z), =z€[0,5]

Solution:
plx)y=o—-1+2e""

4.0 — NN, iter=2000
—-- benchmark

https://colab.research.google.com/drive/1LHuV1oE6ey06AQgw3joQjow_uozQWSTw?usp=sharing

3/24

https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Outline

1. Deep Galerkin Method for MFG PDEs

@ Solving MFG PDE system

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Lookforp:R% >z — ¢(x) € Rsit.

{F(x,ap(m),Dgo(x),DQQO(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 00

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Lookforp:R% >z — ¢(x) € Rsit.

{F(x,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 00
@ Look among NN g
{F(a:,wg(x),Dgog(:c),DQcpg(mL...):0, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.
{F(m,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 0N
@ Look among NN g
{F(a:,wg(x),Dgog(:c),D?cpg(mL...):O, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00
@ Rephrase as minimization problem: minimizer over 6
Ex~u@) [|F(X, 06(X), Dps(X), D*p6(X),...)|’]
+Eyuon) [|G(Y,00(Y), Dpa(Y), D?pu(Y),...) "]

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.
{F(m,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 0N
@ Look among NN g
{F(a:,wg(x),Dgog(:c),D?cpg(mL...):O, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00
@ Rephrase as minimization problem: minimizer over 6
Ex~u@) [|F(X, 06(X), Dps(X), D*p6(X),...)|’]
+Eyuon) [|G(Y,00(Y), Dpa(Y), D?pu(Y),...) "]

@ Use SGD

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'

@ Lookforp:R% >z — ¢(x) € Rsit.
{F(Z‘, Lp(iL‘), DQD(ZB), D2QD(ZE), s) =
G(z, p(x), Dy(x), D*p(x), .. .)
@ Look among NN g
{F(Jz7 wo(x), Dpa(x), D*pg(x),...) =0,
G(QZ‘, Lpg(it), D(pg(x), DQLPG(QZ): .) =0,

@ Rephrase as minimization problem: minimizer over 6

)

0
0’

rEN
x € 0N

T € Q
T € 09

IEXNLI(Q) [‘F(Xv@G(X%DSO@(X%D2(P9(X)7"')|2]
+EY~M(69) ['G(K LP@(Y)vD@9(Y)7D2§09(Y)7"")‘2]

@ Use SGD
@ Remarks on the implementation:

> Choice of distribution
> Boundary conditions
> Higher order derivatives computation

1 Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24

DGM Architecture

@ Let 7 = (t,z) be the input
@ Architecture: L + 1 hidden layers (® denotes element-wise multiplication):

s' = o(W'Z 4,
z¢ = cT +walst yv*Y, e=1,...,L,
' = SUItT WIS yb0ty e=1,...,L,
R = o™'Z +wnistymt), e=1,...,L,
oY = SWMtE +whist o R+, e=1,...,L,
sttt = a-cHoeH ' +2z'08" ¢=1,...,L,
ft,z;0) = wsktl g,

@ The parameters are

e:{Wl,bl,(UC"Z,W“’E,b“’Z) ’W’b}‘
£=1...., L,ae{z,9,mh}

@ The number of units in each layer is M and ¢ : R — R is an element-wise
nonlinearity:

() = (6(1), 6(z2), -, 6(za0)).

where ¢ : R — R is a nonlinear activation function.

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou
0= _E(t x) — vAu(t,z) + H(x, m(t,
om .
0= N (t,z) — vAm(t,z) — div (m(t

U(T 'T) - g(x,m(T,))7

m(0,x)

), Vult,z))

’)apH(v m(l

= mo(x)

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t,) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv))7 m(07 'T) = mo(:ﬂ)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/ /m)Jdxr=1,m >0

See Lasry & Lions [LLO7], Bensoussan, Frehse and Yam [BFY13, Chapter 7]

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t,) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv))7 m(07 CL‘) = mo(l‘)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/u /m)Jdxr=1,m >0

See Lasry & Lions [LLO7], Bensoussan, Frehse and Yam [BFY13, Chapter 7]

Analogous PDE systems for MFC problems

Numerical lllustration 1: Ergodic Example with Explicit Solution

Example (of MFC) with explicit solution on T¢ (d = 10)
Following Almulla et al. [AFG17], take

Fw,m,) = 3ol + (@) +In(m(@)),

with f(z) = 2n2 [— Zi csin(27rxi + Zj Ve cos(27rxi)|2} -2 ijl csin(2mx;),
then the solution is given by u(x) = ¢ 37 | sin(27z,) and m(z) = **(*)/ [>

7/24

Numerical lllustration 1: Ergodic Example with Explicit Solution

Example (of MFC) with explicit solution on T¢ (d = 10)
Following Almulla et al. [AFG17], take

Fw,m,) = 3ol + (@) +In(m(@)),

with f(z) = 2n2 [— Zi csin(27rxi + Zd e cos(27rxi)|2} -2 ijl csin(2mx;),
then the solution is given by u(x) = ¢ 37 | sin(27z,) and m(z) = **(*)/ [>

Error vs SGD iterations (see [Carmona, L.21]):

—— L?erroronu —— L2 erroron y

0 10000 20000 30000 40000 50000 60000 70000 80000
iterations of SGD

Relative L? error on w and m
7/24

Numerical lllustration 2: Ergodic Example without Explicit Solution

Example (of MFG) without explicit solution on T (d = 30)
Inspired by Achdou & Capuzzo-Dolcetta [ACD10], take

Flam,o) = 2ol + F@) + (@),

with f(z) = 2n2¢ % [sin(272:) + cos(2ma;)]
Zz—l

8/24

Numerical lllustration 2: Ergodic Example without Explicit Solution

Example (of MFG) without explicit solution on T (d = 30)
Inspired by Achdou & Capuzzo-Dolcetta [ACD10], take

Flam,o) = 2ol + F@) + (@),

with f(z) = 2n%¢c Z;l:l [sin(27x;) + cos(2mz;)]

PDE residuals vs SGD iterations (see [Carmona, L.21]):

—— residual B —— residual KFP

0 10000 20000 30000 40000 50000
iterations of SGD

L? norm of residuals for HIB and KFP

8/24

Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv)dt (player’s wealth)

Objective: given (), maximize
T
E|Xp" +QrSh — AlQ7” ¢/ Qé’|"’dt}
0

where: ¢, A > 0 = penalty for holding inventory

/24

Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv)dt (player’s wealth)

Objective: given (), maximize
T
E|Xp" +QrSh — AlQ7” ¢/ Qz’|2dt}
0

where: ¢, A > 0 = penalty for holding inventory
Ansatz (Cartea & Jaimungal [CJ16]): V(t,z,s,q) = = + gsu(t,q), 0:(q) = 5
where u(-) solves

—Dq = dyu — ¢q° + sup{vdyu — KV}, u(T,q) = —A¢’

9qu(t,q)

/24

Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv)dt (player’s wealth)

Objective: given (), maximize

T
E | X537 + Q4ST — AlQ4| —¢/ Qé’|"’dt}
0

where: ¢, A > 0 = penalty for holding inventory '
Ansatz (Cartea & Jaimungal [CJ16]): V (¢, z,s,q) = = + gsu(t,q), 0:(q) = w
where u(-) solves

—ig = Ou — ¢pg° + sup{vdgu — m;Q}, uw(T,q) = —Ag>
Mean field term: at equilibrium
Oqt(t, q) .
7SS /01‘(q)m(t7dQ) = / %&q)m(tvdq)v

where m solves the KFP equation:

m(0,-) = mo, Orm ~+ 0q4 (mW) =0

Numerical lllustration 3: Crowd Trading

Reduced forward-backward PDE system:

dqu(t, q)? _
0 = —dult,q) + ¢q° — % = Yiiq

0 = dim(t, q) + 0, (m(t, @W)

- aqu(t,q)
Vt—/72/f m(t,q)dg

m(0,-) = mo,u(T,q) = —Aq2.

10/24

Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution
(More details in Carmona & L.’21 [CL21]?; see also Al-Aradi et al. [AACNT19]3):

Evolution of m:

-~~~ benchmark mean

2Carmona, R., & Lauriére, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to
Finance. arXiv preprint arXiv:2107.04568.
3AI-Aradi, A., Correia, A., Naiff, D., Jardim, G., & Saporito, Y. (2018). Solving nonlinear and high-dimensional partial
differential equations via deep learning. arXiv preprint arXiv:1811.08782.
11/24

Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution
(More details in Carmona & L.’21 [CL21]?; see also Al-Aradi et al. [AACNT19]3):

Evolution of equilibrium control :

T

H

H

H

2Carmona, R., & Lauriére, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to

Finance. arXiv preprint arXiv:2107.04568.

3AI-Aradi, A., Correia, A., Naiff, D., Jardim, G., & Saporito, Y. (2018). Solving nonlinear and high-dimensional partial
differential equations via deep learning. arXiv preprint arXiv:1811.08782.

11/24

Outline

1. Deep Galerkin Method for MFG PDEs

@ Link with Generative Adversarial Networks

Examples

12/24

Examples

£

thispersondoesnotexist.com thiscatdoesnotexist.com

12/24

Examples

thispersondoesnotexist.com thiscatdoesnotexist.com

Karras et al. [KLAT20]: Karras, T. Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 8110-8119).

12/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM ™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ ! &= pyata

Goodfellow et al. [GPAM T 14]

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ ! &= pyata

Goodfellow et al. [GPAM T 14]

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata

Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata
Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢,)

minmax{ E,-s, llog Ds(2)] + B flog(1 ~ Ds(G ()] }.

ol 9

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata
Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢,)

min max{ By, log Da(2)] + Bae. [log(1 = Ds(G- ()] .

¥ 9

Variational MFG: inf sup ®(m,u), where
w:[0,TIXRE=R 1[0, T] xR —R

T
P(m,u) = / / [m(—=08tu — eAgu) + mH(z, Vyu, m)] doedt + / [m(T)u(T) — mou(0)] dz
0 Td Td

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata

Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢,)

min max{ By, log Da(2)] + Bae. [log(1 = Ds(G- ()] .

¥ 9

Variational MFG: inf sup ®(m,u), where
w:[0,TIXRE=R 1[0, T] xR —R

T
P(m,u) = / / [m(—=08tu — eAgu) + mH(z, Vyu, m)] doedt + / [m(T)u(T) — mou(0)] dz
0 Td Td

— Conceptual connection GANs/MFGs: Cao, Guo, L. [CGL20]

13/24

GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata

Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢,)

min max{ By, log Da(2)] + Bae. [log(1 = Ds(G- ()] .

¥ 9

Variational MFG: inf sup ®(m,u), where
w:[0,TIXRE=R 1[0, T] xR —R

T
P(m,u) = / / [m(—=08tu — eAgu) + mH(z, Vyu, m)] doedt + / [m(T)u(T) — mou(0)] dz
0 Td Td

— Conceptual connection GANs/MFGs: Cao, Guo, L. [CGL20]
Related work: Domingo-Enrich et al. [DEJM™20], Onken et al. [LFL*20], ...

13/24

Outline

2. Master Equation

Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mg att =0

@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)

14/24

Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mg att =0
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)

@ Value function U/: PDE on the Wasserstein space

14/24

Master Equation

Reminder: equilibrium: (u, ;1) = sol. starting with mg att =0

o
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)
@ Value function U/: PDE on the Wasserstein space

()

Motivations:

> Unknown initial distribution 1o
» Macroscopic shocks, common noise

Main upshot: optimal behavior for every population configuration

14/24

Master Equation

Reminder: equilibrium: (u, ;1) = sol. starting with mg att =0

o
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)
@ Value function U/: PDE on the Wasserstein space

()

Motivations:

> Unknown initial distribution 1o
» Macroscopic shocks, common noise

Main upshot: optimal behavior for every population configuration

Convergence of N-player games, large deviation principles, ...

14/24

Outline

2. Master Equation
@ Master Equation for Finite State MFG

Finite State MFGs

Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix

15/24

Finite State MFGs

Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix

Master PDE for U/:

UT,z,p1) = g(w, 1)

* = ou(t, -,
_8tu(t7$7u‘) =H (t7$aﬂvu(t7'7u))+zwlesQ (tvﬂvu(tv'vu))(l’/) ﬁ
Hamiltonian avg transition classical deriv.

for (t,z, 1) € [0, 7] x S x Al®!

15/24

Finite State MFGs

Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix

Master PDE for U/:

U(T, @, 1) = g(w. 1)

* = ou(t, -,
—8tu(t7$7H) =H (t7‘raﬂvu(t7'7#))+zwlesQ (tvﬂvu(tv'vu))(l’/) ﬁ
Hamiltonian avg transition classical deriv.

for (t,z, 1) € [0, 7] x S x Al®!

Numerical solution?

15/24

Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:
> o = 1 (want to switch level of protection)

> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T

16/24

Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:
> o = 1 (want to switch level of protection)

> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
@ Mean field interactions: more infected units = higher infection rate

16/24

Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:
> o = 1 (want to switch level of protection)

> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
@ Mean field interactions: more infected units = higher infection rate

S q. aA 0
D
. 2o+ t) + t . 0 aA
() = p(t) Ging ﬁD(HiI)E)+ pur(t)) . i
0 aXx g+ Bu(pur(t) + ppr(t))

transition rates

16/24

Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:

> o = 1 (want to switch level of protection)
> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
@ Mean field interactions: more infected units = higher infection rate

S q. aA 0
D
. 2o+ t) + t . 0 aA
() = p(t) Ging ﬁD(HiI)E)+ pur(t)) . i
0 aXx g+ Bu(pur(t) + ppr(t))

transition rates
@ Running cost:
kplipr,psy + krlipr,ury = cost of defense + penalty for being infected

@ Terminal cost: 0

16/24

Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

17/24

Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 1: mg = (1/4,1/4,1/4,1/4)

Evolution of u

u_HB1]
u_HB[2]
u_HB(3]

Evolution of u, 1/

17/24

Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 2: mo = (1,0,0,0)

Bl
(2]
u_HJB[3]

Evolution of Evolution of u, U

17/24

Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t.z, u(t, "))

@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 3: mo = (0,0,0,1)

Evolution of u

Bl
(2]
u_HJB[3]

—
-

Evolution of u, 1/

17/24

Outline

2. Master Equation

@ Master Bellman PDE of MFC

Master Bellman Equation for MFC

@ MFC problem with common noise:

T
JMEC () = E[/ f(Xt,IP’g(t,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"

18/24

Master Bellman Equation for MFC

@ MFC problem with common noise:
T
JMEC () =]E[/ f(Xt,IP’gQ,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"
@ Master Bellman equation in the Wasserstein space P, (R%):

OV + F(u,V,0.V,0:0,V,0.V) = 0, (t, 1) €[0,T) € Po(RY)
V(T,p) = G(u), nePRY),

where:

18/24

Master Bellman Equation for MFC

@ MFC problem with common noise:
T
JMEC () =]E[/ f(Xt,IP’gQ,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"
@ Master Bellman equation in the Wasserstein space P, (R%):

OV + F(u,V,0.V,0:0,V,0.V) = 0, (t, 1) €[0,T) € Po(RY)
V(T,p) = G(u), nePRY),

where:
> 0, V(u)(): R = R, 9,0,V (1) () : R = 84, 02V (w)(.,.) : RY x RY — §¢, are
the L-derivatives of V on P2(R%) (see [Carmona, Delarue’18])
> and

Fluv, Z() T, To()) = [b Z@), T@)utda) + [, o der(c0odTole,a)) u(de)n(da’),
9w = [4 9@ mplde),

1
h(z, p,z,v) = inf [b(z, p,a).z + —tr (o‘o’T'y) + f(z,p, a)] .
acA 2

18/24

Symmetric Neural Networks

@ N agents — mean field: ¥ = L > 5.
otz at 2 = V(e) = Ve,)

@ Approximate V (¢, x,-) by a symmetric function of N inputs (IV large)

19/24

Symmetric Neural Networks

@ N agents — mean field: p¥ = LSV 4,
Mt a2 = V() 5 V(e ™)
@ Approximate V (¢, x,-) by a symmetric function of N inputs (IV large)

@ Symmetric Neural Networks:
> Symmetry by construction; e.g. with a sum:

(2")i= NHZW)= %0 wa

» DeepSets [ZKRT17], PointNet [QSMG17]3,

4Zaheer, M., Kottur, S., Ravanbhakhsh, S., Péczos, B., Salakhutdinov, R., & Smola, A. J. (2017, December). Deep Sets. In
Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 3394-3404).
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).
19/24

Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN (Germain et al. [GLPW21]%)
@ Symmetric NN: V(¢, ', ..., zV)
@ D-Symmetric NN: sym. except in one space variable:
1

Z(',. 2N) o o, v, 2N = N@,ﬂf (% Zj xj) (z")

output: (V,, Z,)no,....np St V(@) & Vitn, 1), Znl@, 2%) & 50,V (tn, u¥)(z")
1 SetVn, (1) = G()
2 fOI'TL:NTfl,Nsz...,l,OdO
3 Compute (V,, Z,) as a minimizer of:

(Vn,Z2n) — E

Vo1 (Xns1) = Va(Xn) + H (tn, X, Vi (Xa), Zn (X)) At

2
)

N N
=YY (B (X, X0) 0 AW

i=1 j=0

where V, is a sym. NN, Z.isa D-sym. NN, H = sym. version of h

4 return (V,, Zp)n—o,.... Ny

6Germain, M., Lauriére, M., Pham, H., & Warin, X. (2021). DeepSets and their derivative networks for solving symmetric
PDEs. arXiv preprint arXiv:2103.00838.

20/24

Summary

21/24

References |

[AACNT19] Ali Al-Aradi, Adolfo Correia, Danilo de Frietas Naiff, Gabriel Jardim, and Yuri

[ACD10]

[AFG17]

[BFY13]

[CGL20]

[CJ16]

[CL18]

Saporito, Applications of the deep galerkin method to solving partial
integro-differential and hamilton-jacobi-bellman equations, arXiv preprint
arXiv:1912.01455 (2019).

Yves Achdou and ltalo Capuzzo-Dolcetta, Mean field games: numerical methods,
SIAM J. Numer. Anal. 48 (2010), no. 3, 1136-1162. MR 2679575

Noha Almulla, Rita Ferreira, and Diogo Gomes, Two numerical approaches to
stationary mean-field games, Dyn. Games Appl. 7 (2017), no. 4, 657-682. MR
3698446

Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam, Mean field games
and mean field type control theory, Springer Briefs in Mathematics, Springer, New
York, 2013.

Haoyang Cao, Xin Guo, and Mathieu Lauriére, Connecting gans, mfgs, and ot,
arXiv preprint arXiv:2002.04112 (2020).

Alvaro Cartea and Sebastian Jaimungal, Incorporating order-flow into optimal
execution, Mathematics and Financial Economics 10 (2016), no. 3, 339-364.

Pierre Cardaliaguet and Charles-Albert Lehalle, Mean field game of controls and an
application to trade crowding, Mathematics and Financial Economics 12 (2018),
no. 3, 335-363.

22/24

References Il

[CL21] René Carmona and Mathieu Lauriére, Deep learning for mean field games and
mean field control with applications to finance, arXiv preprint arXiv:2107.04568
(2021).

[DEJMT20] Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, and Joan
Bruna, A mean-field analysis of two-player zero-sum games, arXiv preprint
arXiv:2002.06277 (2020).

[GLPW21] Maximilien Germain, Mathieu Lauriere, Huyén Pham, and Xavier Warin, Deepsets
and their derivative networks for solving symmetric pdes, arXiv preprint
arXivi2103.00838 (2021).

[GPAM*14] lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, Generative adversarial nets,
Advances in neural information processing systems 27 (2014).

[KB16] Vassili N. Kolokoltsov and Alain Bensoussan, Mean-field-game model for botnet
defense in cyber-security, Appl. Math. Optim. 74 (2016), no. 3, 669-692. MR
3575619

[KLAT20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila, Analyzing and improving the image quality of stylegan, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 8110-8119.

23/24

References Il

[Lau21]

[LFL+20]

[LLO7]

[QSMG17]

[SS18]

[ZKRT17]

Mathieu Lauriere, Numerical methods for mean field games and mean field type
control, arXiv preprint arXiv:2106.06231 (2021).

Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stanley J Osher,
Apac-net: Alternating the population and agent control via two neural networks to
solve high-dimensional stochastic mean field games, arXiv preprint
arXiv:2002.10113 (2020).

Jean-Michel Lasry and Pierre-Louis Lions, Mean field games, Jpn. J. Math. 2
(2007), no. 1, 229-260. MR 2295621

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, Pointnet: Deep
learning on point sets for 3d classification and segmentation, Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 652—-660.

Justin Sirignano and Konstantinos Spiliopoulos, DGM: a deep learning algorithm for
solving partial differential equations, J. Comput. Phys. 375 (2018), 1339-1364. MR
3874585

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan
Salakhutdinov, and Alexander Smola, Deep sets, arXiv preprint arXiv:1703.06114
(2017).

Unless otherwise specified, the images are from https://unsplash.com

24/24

https://unsplash.com

	Deep Galerkin Method for MFG PDEs
	Warm-up: ODE
	Solving MFG PDE system
	Link with Generative Adversarial Networks

	Master Equation
	Master Equation for Finite State MFG
	Master Bellman PDE of MFC

