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1. Deep Galerkin Method for MFG PDEs
@ Warm-up: ODE



Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

{F(x,np(x),ap’(x), ...)=0, z € [a,b]
0
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Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g
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Ex~u(lan)) [[F(X, po(X), 06(X), ... )]
+1G(a, o(a), po(a),... )"



Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

Ex~u(lan)) [[F(X, po(X), 06(X), ... )]
+1G(a, o(a), po(a),... )"

@ Use SGD



Numerical Illustration

Application to the ODE:

{F(x,w(w)mo’(w)) =¢'(x) = (x —p(x), x€][0,5]
p(0) =1


https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, o), ¢’ () = ¢’ () — (. — p(2)),
©(0) =1

Solution:
plr)=—1+2"

x €10, 5]

/24


https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w,w(x),d(x)) =
v(0)=1

Solution:

¢'(z) = (z — o()),

plx)y=o—-1+2e""

z €10, 5]

4.04 — NN, iter=0
=== benchmark

\\\\
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, p(z), ¢ () = ¢'(2) = (x —p(x)), z€][0,5]
v(0)=1

Solution:
plx)y=o—-1+2e""

4.01 — NN, iter=200 ’,
-=- benchmark ’
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, p(z), ¢ () = ¢'(2) = (x —p(x)), z€][0,5]
v(0)=1

Solution:
plx)y=o—-1+2e""

4.0 —— NN, iter=700 .
=== benchmark s
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.091 — NN, iter=1000 p
—-- benchmark
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.091 — NN, iter=1500
—-- benchmark
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w, e(z),¢'(2)) = ¢'(2) — (x —¢(z)), x€]0,5]
©(0) =1

Solution:
plx)y=o—-1+2e""

4.0 — NN, iter=2000
—-- benchmark
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https://colab.research.google.com/drive/1LHuV1oE6eyO6AQgw3joQjow_uozQWSTw?usp=sharing

Numerical Illustration

Application to the ODE:

{F(w,w(x)ad(x)) =¢'(@) = (z—p(z), =z€[0,5]

Solution:
plx)y=o—-1+2e""

4.0 — NN, iter=2000
—-- benchmark

https://colab.research.google.com/drive/1LHuV1oE6ey06AQgw3joQjow_uozQWSTw?usp=sharing
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1. Deep Galerkin Method for MFG PDEs

@ Solving MFG PDE system



Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Lookforp:R% >z — ¢(x) € Rsit.

{F(x,ap(m),Dgo(x),DQQO(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 00

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.
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Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Lookforp:R% >z — ¢(x) € Rsit.

{F(x,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 00
@ Look among NN g
{F(a:,wg(x),Dgog(:c),DQcpg(mL...):0, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.
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Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.
{F(m,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 0N
@ Look among NN g
{F(a:,wg(x),Dgog(:c),D?cpg(mL...):O, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00
@ Rephrase as minimization problem: minimizer over 6
Ex~u@) [|F(X, 06(X), Dps(X), D*p6(X),...)|’]
+Eyuon) [|G(Y,00(Y), Dpa(Y), D?pu(Y),...) "]

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.
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Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.
{F(m,np(m),Dgo(x),D2go(:v), ...)=0, x e
G(z, p(x), Dp(x), D*p(x),...) =0, x € 0N
@ Look among NN g
{F(a:,wg(x),Dgog(:c),D?cpg(mL...):O, z€eQ
G(z, po(x), Dpo(z), D*po(x),...) =0, x €00
@ Rephrase as minimization problem: minimizer over 6
Ex~u@) [|F(X, 06(X), Dps(X), D*p6(X),...)|’]
+Eyuon) [|G(Y,00(Y), Dpa(Y), D?pu(Y),...) "]

@ Use SGD

1Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.

4/24



Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by Sirignano & Spiliopoulos [SS18]'

@ Lookforp:R% >z — ¢(x) € Rsit.
{F(Z‘, Lp(iL‘), DQD(ZB), D2QD(ZE), s ) =
G(z, p(x), Dy(x), D*p(x), .. .)
@ Look among NN g
{F(Jz7 wo(x), Dpa(x), D*pg(x),...) =0,
G(QZ‘, Lpg(it), D(pg(x), DQLPG(QZ): . ) =0,

@ Rephrase as minimization problem: minimizer over 6

)

0
0’

rEN
x € 0N

T € Q
T € 09

IEXNLI(Q) [‘F(Xv@G(X%DSO@(X%D2(P9(X)7"')|2]
+EY~M(69) ['G(K LP@(Y)vD@9(Y)7D2§09(Y)7"")‘2]

@ Use SGD
@ Remarks on the implementation:

> Choice of distribution
> Boundary conditions
> Higher order derivatives computation

1 Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of

computational physics, 375, 1339-1364.
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DGM Architecture

@ Let 7 = (t,z) be the input
@ Architecture: L + 1 hidden layers (® denotes element-wise multiplication):

s' = o(W'Z 4,
z¢ = cT +walst yv*Y, e=1,...,L,
' = SUItT WIS yb0ty e=1,...,L,
R = o™'Z +wnistymt), e=1,...,L,
oY = SWMtE +whist o R+, e=1,...,L,
sttt = a-cHoeH ' +2z'08" ¢=1,...,L,
ft,z;0) = wsktl g,

@ The parameters are

e:{Wl,bl,(UC"Z,W“’E,b“’Z) ’W’b}‘
£=1...., L,ae{z,9,mh}

@ The number of units in each layer is M and ¢ : R — R is an element-wise
nonlinearity:

() = (6(1), 6(z2), -, 6(za0) ).

where ¢ : R — R is a nonlinear activation function.



MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou
0= _E(t x) — vAu(t,z) + H(x, m(t,
om .
0= N (t,z) — vAm(t,z) — div (m(t

U(T 'T) - g(x,m(T, ))7

m(0,x)

), Vult,z))

’ )apH(v m(l

= mo(x)



MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t, ) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv ))7 m(07 'T) = mo(:ﬂ)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/ /m )Jdxr=1,m >0

See Lasry & Lions [LLO7], Bensoussan, Frehse and Yam [BFY13, Chapter 7]



MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t, ) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv ))7 m(07 CL‘) = mo(l‘)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/u /m )Jdxr=1,m >0

See Lasry & Lions [LLO7], Bensoussan, Frehse and Yam [BFY13, Chapter 7]

Analogous PDE systems for MFC problems



Numerical lllustration 1: Ergodic Example with Explicit Solution

Example (of MFC) with explicit solution on T¢ (d = 10)
Following Almulla et al. [AFG17], take

Fw,m, ) = 3ol + (@) +In(m(@)),

with f(z) = 2n2 [— Zi csin(27rxi + Zj Ve cos(27rxi)|2} -2 ijl csin(2mx;),
then the solution is given by u(x) = ¢ 37 | sin(27z,) and m(z) = **(*)/ [ >
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Numerical lllustration 1: Ergodic Example with Explicit Solution

Example (of MFC) with explicit solution on T¢ (d = 10)
Following Almulla et al. [AFG17], take

Fw,m, ) = 3ol + (@) +In(m(@)),

with f(z) = 2n2 [— Zi csin(27rxi + Zd e cos(27rxi)|2} -2 ijl csin(2mx;),
then the solution is given by u(x) = ¢ 37 | sin(27z,) and m(z) = **(*)/ [ >

Error vs SGD iterations (see [Carmona, L.21]):

—— L?erroronu  —— L2 erroron y

0 10000 20000 30000 40000 50000 60000 70000 80000
iterations of SGD

Relative L? error on w and m
7/24



Numerical lllustration 2: Ergodic Example without Explicit Solution

Example (of MFG) without explicit solution on T (d = 30)
Inspired by Achdou & Capuzzo-Dolcetta [ACD10], take

Flam,o) = 2ol + F@) + (@),

with f(z) = 2n2¢ % [sin(272:) + cos(2ma;)]
Zz—l

8/24



Numerical lllustration 2: Ergodic Example without Explicit Solution

Example (of MFG) without explicit solution on T (d = 30)
Inspired by Achdou & Capuzzo-Dolcetta [ACD10], take

Flam,o) = 2ol + F@) + (@),

with f(z) = 2n%¢c Z;l:l [sin(27x;) + cos(2mz;)]

PDE residuals vs SGD iterations (see [Carmona, L.21]):

—— residual B —— residual KFP

0 10000 20000 30000 40000 50000
iterations of SGD

L? norm of residuals for HIB and KFP

8/24



Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv )dt  (player’s wealth)

Objective: given (), maximize
T
E|Xp" +QrSh — AlQ7” ¢/ Qé’|"’dt}
0

where: ¢, A > 0 = penalty for holding inventory

/24



Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv )dt  (player’s wealth)

Objective: given (), maximize
T
E|Xp" +QrSh — AlQ7” ¢/ Qz’|2dt}
0

where: ¢, A > 0 = penalty for holding inventory
Ansatz (Cartea & Jaimungal [CJ16]): V(t,z,s,q) = = + gsu(t,q), 0:(q) = 5
where u(-) solves

—Dq = dyu — ¢q° + sup{vdyu — KV}, u(T,q) = —A¢’

9qu(t,q)

/24



Numerical lllustration 3: Crowd Trading

Model of crowd trading by Cardaliaguet &Lehalle [CL18]:

dS? = yudt + odWs (price)
dQy = vidt (player’s inventory)
dXV = —u(SY + kv )dt  (player’s wealth)

Objective: given (), maximize

T
E | X537 + Q4ST — AlQ4| —¢/ Qé’|"’dt}
0

where: ¢, A > 0 = penalty for holding inventory '
Ansatz (Cartea & Jaimungal [CJ16]): V (¢, z,s,q) = = + gsu(t,q), 0:(q) = w
where u(-) solves

—ig = Ou — ¢pg° + sup{vdgu — m;Q}, uw(T,q) = —Ag>
Mean field term: at equilibrium
Oqt(t, q) .
7SS /01‘(q)m(t7dQ) = / %&q)m(tvdq)v

where m solves the KFP equation:

m(0,-) = mo, Orm ~+ 0q4 (mW) =0



Numerical lllustration 3: Crowd Trading

Reduced forward-backward PDE system:

dqu(t, q)? _
0 = —dult,q) + ¢q° — % = Yiiq

0 = dim(t, q) + 0, (m(t, @W)

- aqu(t,q)
Vt—/72/f m(t,q)dg

m(0,-) = mo,u(T,q) = —Aq2.

10/24



Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution
(More details in Carmona & L.’21 [CL21]?; see also Al-Aradi et al. [AACNT19]3):

Evolution of m:

-~~~ benchmark mean

2Carmona, R., & Lauriére, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to
Finance. arXiv preprint arXiv:2107.04568.
3AI-Aradi, A., Correia, A., Naiff, D., Jardim, G., & Saporito, Y. (2018). Solving nonlinear and high-dimensional partial
differential equations via deep learning. arXiv preprint arXiv:1811.08782.
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Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution
(More details in Carmona & L.’21 [CL21]?; see also Al-Aradi et al. [AACNT19]3):

Evolution of equilibrium control :

T

H

H

H

2Carmona, R., & Lauriére, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to

Finance. arXiv preprint arXiv:2107.04568.

3AI-Aradi, A., Correia, A., Naiff, D., Jardim, G., & Saporito, Y. (2018). Solving nonlinear and high-dimensional partial
differential equations via deep learning. arXiv preprint arXiv:1811.08782.
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1. Deep Galerkin Method for MFG PDEs

@ Link with Generative Adversarial Networks



Examples
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Examples
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Examples

thispersondoesnotexist.com thiscatdoesnotexist.com

Karras et al. [KLAT20]: Karras, T. Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 8110-8119).
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GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z
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Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata
Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢, )

minmax{ E,-s, llog Ds(2)] + B flog(1 ~ Ds(G ()] }.

ol 9
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Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:
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Idea: learn G : Z — S such that p. o G~ & paata
Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢, )

min max{ By, log Da(2)] + Bae. [log(1 = Ds(G- ()] .

¥ 9

Variational MFG: inf sup ®(m,u), where
w:[0,TIXRE=R 1[0, T] xR —R

T
P(m,u) = / / [m(—=08tu — eAgu) + mH(z, Vyu, m)] doedt + / [m(T)u(T) — mou(0)] dz
0 Td Td
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— Conceptual connection GANs/MFGs: Cao, Guo, L. [CGL20]

13/24



GANs & MFGs

Generative Adversarial Nets Goodfellow et al. [GPAM™ 14]:

Setup: data space S (e.g. images of fixed size); unknown data distribution pyata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — S such that p. o G~ & paata

Idea++: also learn D : S — R to distinguish between samples from p. o G~ and paasa

Mathematically: min-max game between two neural networks D, G, (params: ¢, )

min max{ By, log Da(2)] + Bae. [log(1 = Ds(G- ()] .

¥ 9

Variational MFG: inf sup ®(m,u), where
w:[0,TIXRE=R 1[0, T] xR —R

T
P(m,u) = / / [m(—=08tu — eAgu) + mH(z, Vyu, m)] doedt + / [m(T)u(T) — mou(0)] dz
0 Td Td

— Conceptual connection GANs/MFGs: Cao, Guo, L. [CGL20]
Related work: Domingo-Enrich et al. [DEJM™20], Onken et al. [LFL*20], ...
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2. Master Equation



Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mg att =0

@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)

14/24



Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mg att =0
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)

@ Value function U/: PDE on the Wasserstein space

14/24



Master Equation

Reminder: equilibrium: (u, ;1) = sol. starting with mg att =0

o
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)
@ Value function U/: PDE on the Wasserstein space

()

Motivations:

> Unknown initial distribution 1o
» Macroscopic shocks, common noise

Main upshot: optimal behavior for every population configuration
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Master Equation

Reminder: equilibrium: (u, ;1) = sol. starting with mg att =0

o
@ Idea: express the value function of a typical player as u(¢, z) = U(t, z, pt)
@ Value function U/: PDE on the Wasserstein space

()

Motivations:

> Unknown initial distribution 1o
» Macroscopic shocks, common noise

Main upshot: optimal behavior for every population configuration

Convergence of N-player games, large deviation principles, ...
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Outline

2. Master Equation
@ Master Equation for Finite State MFG



Finite State MFGs

Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix
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Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix

Master PDE for U/:

UT,z,p1) = g(w, 1)

* = ou(t, -,
_8tu(t7$7u‘) =H (t7$aﬂvu(t7'7u))+zwlesQ (tvﬂvu(tv'vu))(l’/) ﬁ
Hamiltonian avg transition classical deriv.

for (t,z, 1) € [0, 7] x S x Al®!
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Finite State MFGs

Finite state MFG:
@ Finite state space S
@ uc AlS
@ [t = Q(ue), Q = transition rate matrix

Master PDE for U/:

U(T, @, 1) = g(w. 1)

* = ou(t, -,
—8tu(t7$7H) =H (t7‘raﬂvu(t7'7#))+zwlesQ (tvﬂvu(tv'vu))(l’/) ﬁ
Hamiltonian avg transition classical deriv.

for (t,z, 1) € [0, 7] x S x Al®!

Numerical solution?
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Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:
> o = 1 (want to switch level of protection)

> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
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@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:
> o = 1 (want to switch level of protection)

> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
@ Mean field interactions: more infected units = higher infection rate

S q. aA 0
D
. 2o+ t) + t . 0 aA
() = p(t) Ging ﬁD(HiI)E )+ pur(t)) . i
0 aXx g+ Bu(pur(t) + ppr(t))

transition rates
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Example: Cyber-Security Model

Cyber-security model (see Kolokoltsov & Bensoussan [KB16])

@ State space: S = {DI,DS,UI,US}
> defended/unprotected
> infected/susceptible

@ Actions:

> o = 1 (want to switch level of protection)
> or 0 (happy)
> in each case: event happens at rate A

@ Time: continuous time, finite time horizon T
@ Mean field interactions: more infected units = higher infection rate

S q. aA 0
D
. 2o+ t) + t . 0 aA
() = p(t) Ging ﬁD(HiI)E )+ pur(t)) . i
0 aXx g+ Bu(pur(t) + ppr(t))

transition rates
@ Running cost:
kplipr,psy + krlipr,ury = cost of defense + penalty for being infected

@ Terminal cost: 0
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Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system
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Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 1: mg = (1/4,1/4,1/4,1/4)

Evolution of u

u_HB1]
u_HB[2]
u_HB(3]

Evolution of u, 1/
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Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 2: mo = (1,0,0,0)

Bl
(2]
u_HJB[3]

Evolution of Evolution of u, U
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Numerical lllustration: DGM for Master Equation

We apply the Deep Galerkin Method (see L.21 [Lau21])

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x S x Al®!

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t.z, u(t, "))

@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 3: mo = (0,0,0,1)

Evolution of u

Bl
(2]
u_HJB[3]

—
-

Evolution of u, 1/
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Outline

2. Master Equation

@ Master Bellman PDE of MFC



Master Bellman Equation for MFC

@ MFC problem with common noise:

T
JMEC () = E[/ f(Xt,IP’g(t,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"
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@ MFC problem with common noise:
T
JMEC () = ]E[/ f(Xt,IP’gQ,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"
@ Master Bellman equation in the Wasserstein space P, (R%):

OV + F(u,V,0.V,0:0,V,0.V) = 0, (t, 1) €[0,T) € Po(RY)
V(T,p) = G(u), nePRY),

where:
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Master Bellman Equation for MFC

@ MFC problem with common noise:
T
JMEC () = ]E[/ f(Xt,IP’gQ,q;,,)dt+g(XT,IP’g(T)]
0

subj. to: dX; = b(X,P%,, vi)dt + odWy + ood V!,
where P%, = conditional law of X; given the common noise 11"
@ Master Bellman equation in the Wasserstein space P, (R%):

OV + F(u,V,0.V,0:0,V,0.V) = 0, (t, 1) €[0,T) € Po(RY)
V(T,p) = G(u), nePRY),

where:
> 0, V(u)(): R = R, 9,0,V (1) () : R = 84, 02V (w)(.,.) : RY x RY — §¢, are
the L-derivatives of V on P2(R%) (see [Carmona, Delarue’18])
> and

Fluv, Z() T, To()) = [ b Z@), T@)utda) + [, o der(c0odTole,a)) u(de)n(da’),
9w = [ 4 9@ mplde),

1
h(z, p,z,v) = inf [b(z, p,a).z + —tr (o‘o’T'y) + f(z,p, a)] .
acA 2
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Symmetric Neural Networks

@ N agents — mean field: ¥ = L > 5.
otz at 2 = V(e ) = Ve, )

@ Approximate V (¢, x,-) by a symmetric function of N inputs (IV large)
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Symmetric Neural Networks

@ N agents — mean field: p¥ = LSV 4,
Mt a2 = V() 5 V(e ™)
@ Approximate V (¢, x,-) by a symmetric function of N inputs (IV large)

@ Symmetric Neural Networks:
> Symmetry by construction; e.g. with a sum:

(2")i= NHZW )= %0 wa

» DeepSets [ZKRT17], PointNet [QSMG17]3,

4Zaheer, M., Kottur, S., Ravanbhakhsh, S., Péczos, B., Salakhutdinov, R., & Smola, A. J. (2017, December). Deep Sets. In
Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 3394-3404).
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).
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Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN (Germain et al. [GLPW21]%)
@ Symmetric NN: V(¢, ', ..., zV)
@ D-Symmetric NN: sym. except in one space variable:
1

Z(',. 2N ) o o, v, 2N = N@,ﬂf (% Zj xj) (z")

output: (V,, Z,)no,....np St V(@) & Vitn, 1), Znl@, 2%) & 50,V (tn, u¥)(z")
1 SetVn, (1) = G()
2 fOI'TL:NTfl,Nsz...,l,OdO
3 Compute (V,, Z,) as a minimizer of:

(Vn,Z2n) — E

Vo1 (Xns1) = Va(Xn) + H (tn, X, Vi (Xa), Zn (X)) At

2
)

N N
=YY (B (X, X0) 0 AW

i=1 j=0

where V, is a sym. NN, Z.isa D-sym. NN, H = sym. version of h

4 return (V,, Zp)n—o,.... Ny

6Germain, M., Lauriére, M., Pham, H., & Warin, X. (2021). DeepSets and their derivative networks for solving symmetric
PDEs. arXiv preprint arXiv:2103.00838.
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Summary
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