
Mean Field Games:
Numerical Methods and

Applications in Machine Learning

Part 8: Learning in MFGs

Mathieu LAURIÈRE

https://mlauriere.github.io/teaching/MFG-PKU-8.pdf

Peking University
Summer School on Applied Mathematics

July 26 – August 6, 2021

RECAP

1 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods

4. Unifying RL for MFC and MFG: a Two Timescale Approach

Warning

B Terminology “learning”:

Game theory, economics, . . . :
Fudenberg & Levine [FL09]1: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

Machine learning, RL, . . . :
Mitchell [M+97]2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

1

Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ., 1(1), 385-420.

2

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN: 978-0-07-042807-2

2 / 28

Warning

B Terminology “learning”:

Game theory, economics, . . . :
Fudenberg & Levine [FL09]1: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

Machine learning, RL, . . . :
Mitchell [M+97]2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

1
Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ., 1(1), 385-420.

2

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN: 978-0-07-042807-2

2 / 28

Warning

B Terminology “learning”:

Game theory, economics, . . . :
Fudenberg & Levine [FL09]1: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

Machine learning, RL, . . . :
Mitchell [M+97]2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

1
Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ., 1(1), 385-420.

2
Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN: 978-0-07-042807-2

2 / 28

Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

I Banach-Picard iterations
I idem + damping/mixing/smoothing
I Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. Fudenberg & Levine [FL+98]3

Non-atomic games. see e.g. Hadikhanloo et al. [HLMS21]4

Mean Field Games, see e.g. Hadikhanloo [Had18]5

3

Fudenberg, D., & Levine, D. (1998). The Theory of Learning in Games. The MIT Press.

4

Hadikhanloo, S., Laraki, R., Mertikopoulos, P., & Sorin, S. (2021). Learning in nonatomic games, Part I: Finite action spaces
and population games. arXiv preprint arXiv:2107.01595.

5

Hadikhanloo, S. (2018). Learning in Mean Field Games (Doctoral dissertation, Université Paris sciences et lettres).

3 / 28

Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

I Banach-Picard iterations
I idem + damping/mixing/smoothing
I Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. Fudenberg & Levine [FL+98]3

Non-atomic games. see e.g. Hadikhanloo et al. [HLMS21]4

Mean Field Games, see e.g. Hadikhanloo [Had18]5

3
Fudenberg, D., & Levine, D. (1998). The Theory of Learning in Games. The MIT Press.

4
Hadikhanloo, S., Laraki, R., Mertikopoulos, P., & Sorin, S. (2021). Learning in nonatomic games, Part I: Finite action spaces

and population games. arXiv preprint arXiv:2107.01595.
5

Hadikhanloo, S. (2018). Learning in Mean Field Games (Doctoral dissertation, Université Paris sciences et lettres).
3 / 28

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

4 / 28

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

4 / 28

MFG Setup

Generic Mean Field model: for a typical infinitesimal agent

Dynamics: discrete time

Xα,µ
n+1 = F (Xα,µ

n , αn, µn, εn+1, ε
0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

I Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ U ⊆ Rk : action

I εn ∼ ν : idiosyncratic noise, ε0n ∼ ν0 : common noise (random env.)
I p(x′|x, a, µ): corresponding transition probability distribution
I µn ∈ P(X ×A): a state-action distribution
I πn: a policy; randomized actions: αn ∼ πn(·|sn, µn)

Reward B : J(π;µ) = Eε,ε0

[∑∞
n=0 γ

nr
(
Xα,µ
n , αn, µn

)]
Two scenarios:

I Cooperative (MFC): Find π∗ s.t.

π∗ maximizes π 7→ JMFC(π) = J(π;µπ) where µπn = P0
X
α,µπ
n

I Non-Cooperative (MFG): Find (π̂, µ̂) s.t.{
π̂ maximizes π 7→ JMFG(π; µ̂) = J(π; µ̂)
µ̂n = P0

X
α̂,µ̂
n

5 / 28

MFG Setup

Generic Mean Field model: for a typical infinitesimal agent

Dynamics: discrete time

Xα,µ
n+1 = F (Xα,µ

n , αn, µn, εn+1, ε
0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

I Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ U ⊆ Rk : action

I εn ∼ ν : idiosyncratic noise, ε0n ∼ ν0 : common noise (random env.)
I p(x′|x, a, µ): corresponding transition probability distribution
I µn ∈ P(X ×A): a state-action distribution
I πn: a policy; randomized actions: αn ∼ πn(·|sn, µn)

Reward B : J(π;µ) = Eε,ε0

[∑∞
n=0 γ

nr
(
Xα,µ
n , αn, µn

)]
Two scenarios:

I Cooperative (MFC): Find π∗ s.t.

π∗ maximizes π 7→ JMFC(π) = J(π;µπ) where µπn = P0
X
α,µπ
n

I Non-Cooperative (MFG): Find (π̂, µ̂) s.t.{
π̂ maximizes π 7→ JMFG(π; µ̂) = J(π; µ̂)
µ̂n = P0

X
α̂,µ̂
n

5 / 28

Best Response and Population Behavior Maps

We focus on MFG and write J = JMFG. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMFG(·;µ)

Population Behavior induced when everyone using a policy:

PB : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈S

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ S

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = PB(π)
π̂ = BR(µ̂)

B µ̂ can be unique without π̂ being unique!

6 / 28

Best Response and Population Behavior Maps

We focus on MFG and write J = JMFG. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMFG(·;µ)

Population Behavior induced when everyone using a policy:

PB : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈S

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ S

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = PB(π)
π̂ = BR(µ̂)

B µ̂ can be unique without π̂ being unique!
6 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods

4. Unifying RL for MFC and MFG: a Two Timescale Approach

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

7 / 28

Banach-Picard Fixed Point Iterations

Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that

µ(k) 7→ π(k+1)

π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

B First assumption is hard to check! Can be relaxed with entropy regularization

Remark: version with damping/mixing/smoothing

See e.g., Caines et al. [HMC+06]; Guo et al. [GHXZ19]; Anahtarci et al. [AKS20]; . . .

8 / 28

Banach-Picard Fixed Point Iterations

Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that

µ(k) 7→ π(k+1)

π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

B First assumption is hard to check! Can be relaxed with entropy regularization

Remark: version with damping/mixing/smoothing

See e.g., Caines et al. [HMC+06]; Guo et al. [GHXZ19]; Anahtarci et al. [AKS20]; . . .

8 / 28

Banach-Picard Fixed Point Iterations

Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that

µ(k) 7→ π(k+1)

π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

B First assumption is hard to check! Can be relaxed with entropy regularization

Remark: version with damping/mixing/smoothing

See e.g., Caines et al. [HMC+06]; Guo et al. [GHXZ19]; Anahtarci et al. [AKS20]; . . .

8 / 28

Banach-Picard Fixed Point Iterations

Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that

µ(k) 7→ π(k+1)

π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

B First assumption is hard to check! Can be relaxed with entropy regularization

Remark: version with damping/mixing/smoothing

See e.g., Caines et al. [HMC+06]; Guo et al. [GHXZ19]; Anahtarci et al. [AKS20]; . . .

8 / 28

Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion
Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0
See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .

9 / 28

Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG
Typically ensured by assuming that:

p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion
Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0
See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .

9 / 28

Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG
Typically ensured by assuming that:

p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion

Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0
See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .

9 / 28

Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG
Typically ensured by assuming that:

p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion
Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0

See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .

9 / 28

Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG
Typically ensured by assuming that:

p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion
Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0
See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .

9 / 28

Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy:

Update population’s behavior: µ(k+1) = Pop(π(k+1))

10 / 28

Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy:

Update population’s behavior: µ(k+1) = Pop(π(k+1))

10 / 28

Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxa∈AQ(k+1)(x, a), x ∈ S

Update population’s behavior: µ(k+1) = Pop(π(k+1))
10 / 28

Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxπ∈Π〈Q(k+1)(x, ·), π〉, x ∈ S

Update population’s behavior: µ(k+1) = Pop(π(k+1))
10 / 28

Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax
See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .

11 / 28

Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))
where

Γ(y) := ∇h∗(y) = argmax
p∈P(A)

[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax
See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .

11 / 28

Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))
where

Γ(y) := ∇h∗(y) = argmax
p∈P(A)

[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax
See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .

11 / 28

Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))
where

Γ(y) := ∇h∗(y) = argmax
p∈P(A)

[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .

11 / 28

Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))
where

Γ(y) := ∇h∗(y) = argmax
p∈P(A)

[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax
See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .

11 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods
Examples of RL Algorithms
Examples of Applications in MFGs

4. Unifying RL for MFC and MFG: a Two Timescale Approach

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

12 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods
Examples of RL Algorithms
Examples of Applications in MFGs

4. Unifying RL for MFC and MFG: a Two Timescale Approach

RL Taxonomy

Source: [OpenAI Spinning Up]6

6
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

13 / 28

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

DQN

Source: Mnih et al. [MKS+13]7

7
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013). Playing Atari with

Deep Reinforcement Learning.
14 / 28

DDPG

Source: Lillicrap et al. [LHP+16]8

8
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. & Wierstra, D. (2016). Continuous control with

deep reinforcement learning. ICLR 2016.
15 / 28

SAC

Source: Haarnoja et al. [HZAL18]9

9
Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor. ICML 2018.
16 / 28

Population Distribution Approximation

What about the population behavior µ?

Empirical distribution µN

Histogram (state space discretization)

ε-net in P(X)

Function approximation for the density:

I Kernels
I Neural nets: normalizing flows, . . .
I . . .

. . .

17 / 28

Population Distribution Approximation

What about the population behavior µ?

Empirical distribution µN

Histogram (state space discretization)

ε-net in P(X)

Function approximation for the density:

I Kernels
I Neural nets: normalizing flows, . . .
I . . .

. . .

17 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods
Examples of RL Algorithms
Examples of Applications in MFGs

4. Unifying RL for MFC and MFG: a Two Timescale Approach

Systemic Risk

Revisiting: Systemic risk model of Carmona, Fouque, Sun [CFS15]

J((an)n; (mn)n) = −E
[NT∑
n=0

(
a2
n −qan(mn −Xn)︸ ︷︷ ︸

borrow if Xn < mn
lend if Xn > mn

+κ(mn−Xn)2
)

+c(mNT −XNT)2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + εn+1 + ε0n+1

At equilibrium: mn = E[Xn|ε0], n ≥ 0

Perrin et al. [PPL+20]: Fictitious Play with Backward Induction or tabular Q-learning

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability

18 / 28

Systemic Risk

Revisiting: Systemic risk model of Carmona, Fouque, Sun [CFS15]

J((an)n; (mn)n) = −E
[NT∑
n=0

(
a2
n −qan(mn −Xn)︸ ︷︷ ︸

borrow if Xn < mn
lend if Xn > mn

+κ(mn−Xn)2
)

+c(mNT −XNT)2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + εn+1 + ε0n+1

At equilibrium: mn = E[Xn|ε0], n ≥ 0

Perrin et al. [PPL+20]: Fictitious Play with Backward Induction or tabular Q-learning

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability

18 / 28

Crowd Aversion

Revisiting: Crowd aversion model of Alumulla, Ferreira, Gomes [AFG17]
MFG on T,

f(x,m, v) = 1
2 |v|

2 + f̃(x) + ln(m(x)),

with f̃(x) = 2π2
[
−
∑d

i=1 c sin(2πxi) +
∑d

i=1 |c cos(2πxi)|2
]
− 2
∑d

i=1 c sin(2πxi),

then the solution is given by u(x) = c
∑d

i=1 sin(2πxi) and m(x) = e2u(x)/
∫
e2u

Elie et al. [EPL+20]: Fictitious Play & DDPG (continuous spaces)

Analytical m m Learnt by Deep RL

19 / 28

Crowd Aversion

Revisiting: Crowd aversion model of Alumulla, Ferreira, Gomes [AFG17]
MFG on T,

f(x,m, v) = 1
2 |v|

2 + f̃(x) + ln(m(x)),

with f̃(x) = 2π2
[
−
∑d

i=1 c sin(2πxi) +
∑d

i=1 |c cos(2πxi)|2
]
− 2
∑d

i=1 c sin(2πxi),

then the solution is given by u(x) = c
∑d

i=1 sin(2πxi) and m(x) = e2u(x)/
∫
e2u

Elie et al. [EPL+20]: Fictitious Play & DDPG (continuous spaces)

Analytical m m Learnt by Deep RL

19 / 28

Flocking

Revisiting: Flocking aversion model of Nourian, Caines, Malhamé [NCM11]
Perrin et al. [PLP+21]: For continuous space problems: Deep RL
• Deep RL (SAC) for the policy (≈ control)
• Deep NN (normalizing flow) for the population distribution

state = (position, velocity) = (x, v) ∈ R2d,
{

xn+1 = xn + vn∆t,
vn+1 = vn + an∆t+ εn+1,

with running cost: fflock
β (x, v, µ) =

∥∥∥∥∫
R2d

(v − v′)
(1 + ‖x− x′‖2)β

dµ(x′, v′)
∥∥∥∥2

,

where β ≥ 0, and µ is the position-velocity distribution.

Initial distribution At convergence
Video: https://www.youtube.com/watch?v=TdXysW_FA3k

20 / 28

https://www.youtube.com/watch?v=TdXysW_FA3k

Flocking

Revisiting: Flocking aversion model of Nourian, Caines, Malhamé [NCM11]
Perrin et al. [PLP+21]: For continuous space problems: Deep RL
• Deep RL (SAC) for the policy (≈ control)
• Deep NN (normalizing flow) for the population distribution

state = (position, velocity) = (x, v) ∈ R2d,
{

xn+1 = xn + vn∆t,
vn+1 = vn + an∆t+ εn+1,

with running cost: fflock
β (x, v, µ) =

∥∥∥∥∫
R2d

(v − v′)
(1 + ‖x− x′‖2)β

dµ(x′, v′)
∥∥∥∥2

,

where β ≥ 0, and µ is the position-velocity distribution.

Initial distribution At convergence
Video: https://www.youtube.com/watch?v=TdXysW_FA3k

20 / 28

https://www.youtube.com/watch?v=TdXysW_FA3k

Building Evacuation

A model for crowd motion during building evacuation:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Pérolat et al. [PPE+21]: OMD (no RL for now)

Initial distribution

21 / 28

Building Evacuation

A model for crowd motion during building evacuation:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Pérolat et al. [PPE+21]: OMD (no RL for now)

FP (red, α = 10−5), FP damped (green, α = 10−3) and OMD (blue, α = 10−4)
21 / 28

Outline

1. Introduction

2. Learning/Optimization Methods

3. Reinforcement Learning Methods

4. Unifying RL for MFC and MFG: a Two Timescale Approach

Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]

22 / 28

Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]

22 / 28

Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]

22 / 28

Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]

22 / 28

Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]

22 / 28

Numerical Results on LQ Example (Angiuli, Fouque, L. [AFL20])

Restricted environment: the agent needs to estimate the distribution

Environment

Agent

Cost

ftn+1

State

Xtn+1

Distribution
µtn

Action

Atn

Cost

ftn

State

Xtn

Numerical illustration: Linear-quadratic example

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
state x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFC solution (ρQ < ρµ)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFG solution (ρQ > ρµ)

23 / 28

Numerical Results on LQ Example (Angiuli, Fouque, L. [AFL20])

Restricted environment: the agent needs to estimate the distribution

Environment

Agent

Cost

ftn+1

State

Xtn+1

Distribution
µtn

Action

Atn

Cost

ftn

State

Xtn

Numerical illustration: Linear-quadratic example

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
state x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFC solution (ρQ < ρµ)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFG solution (ρQ > ρµ)

23 / 28

Summary

24 / 28

References I

[AFG17] Noha Almulla, Rita Ferreira, and Diogo Gomes, Two numerical approaches to
stationary mean-field games, Dyn. Games Appl. 7 (2017), no. 4, 657–682. MR
3698446

[AFL20] Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Laurière, Unified reinforcement
q-learning for mean field game and control problems, arXiv preprint
arXiv:2006.13912 (2020).

[AKS20] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi, Q-learning in regularized
mean-field games, arXiv preprint arXiv:2003.12151 (2020).

[CFS15] René Carmona, Jean-Pierre Fouque, and Li-Hsien Sun, Mean field games and
systemic risk, Commun. Math. Sci. 13 (2015), no. 4, 911–933. MR 3325083

[CH17] Pierre Cardaliaguet and Saeed Hadikhanloo, Learning in mean field games: the
fictitious play, ESAIM Control Optim. Calc. Var. 23 (2017), no. 2, 569–591. MR
3608094

[EPL+20] Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin,
On the convergence of model free learning in mean field games, Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 7143–7150.

[FL+98] Drew Fudenberg, David K Levine, et al., The theory of learning in games, MIT Press
Books 1 (1998).

25 / 28

References II

[FL09] Drew Fudenberg and David K Levine, Learning and equilibrium, Annu. Rev. Econ. 1
(2009), no. 1, 385–420.

[GHXZ19] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang, Learning mean-field games,
Advances in Neural Information Processing Systems 32 (2019), 4966–4976.

[GPL+21] Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier
Bachem, Rémi Munos, and Olivier Pietquin, Concave utility reinforcement learning:
the mean-field game viewpoint, arXiv preprint arXiv:2106.03787 (2021).

[Had18] Saeed Hadikhanloo, Learning in mean field games, Ph.D. thesis, PSL Research
University, 2018.

[HLMS21] Saeed Hadikhanloo, Rida Laraki, Panayotis Mertikopoulos, and Sylvain Sorin,
Learning in nonatomic games, part i: Finite action spaces and population games,
arXiv preprint arXiv:2107.01595 (2021).

[HMC+06] Minyi Huang, Roland P Malhamé, Peter E Caines, et al., Large population stochastic
dynamic games: closed-loop mckean-vlasov systems and the nash certainty
equivalence principle, Communications in Information & Systems 6 (2006), no. 3,
221–252.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor,
International conference on machine learning, PMLR, 2018, pp. 1861–1870.

26 / 28

References III

[LHP+16] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra, Continuous control with deep
reinforcement learning., ICLR (Poster), 2016.

[M+97] Tom M Mitchell et al., Machine learning.

[MJdC18] David Mguni, Joel Jennings, and Enrique Munoz de Cote, Decentralised learning in
systems with many, many strategic agents, Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller, Playing atari with deep reinforcement learning,
arXiv preprint arXiv:1312.5602 (2013).

[NCM11] Mojtaba Nourian, Peter E Caines, and Roland P Malhamé, Mean field analysis of
controlled cucker-smale type flocking: Linear analysis and perturbation equations,
IFAC Proceedings Volumes 44 (2011), no. 1, 4471–4476.

[PLP+21] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, and
Olivier Pietquin, Mean field games flock! the reinforcement learning way, arXiv
preprint arXiv:2105.07933. Accepted to IJCA’21 (2021).

[PPE+21] Julien Perolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,
Matthieu Geist, Karl Tuyls, and Olivier Pietquin, Scaling up mean field games with
online mirror descent, arXiv preprint arXiv:2103.00623 (2021).

27 / 28

References IV

[PPL+20] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and
Olivier Pietquin, Fictitious play for mean field games: Continuous time analysis and
applications, Advances in Neural Information Processing Systems (2020).

[SM19] Jayakumar Subramanian and Aditya Mahajan, Reinforcement learning in stationary
mean-field games, Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, 2019, pp. 251–259.

Unless otherwise specified, the images are from https://unsplash.com

28 / 28

https://unsplash.com

	Introduction
	Learning/Optimization Methods
	Reinforcement Learning Methods
	Examples of RL Algorithms
	Examples of Applications in MFGs

	Unifying RL for MFC and MFG: a Two Timescale Approach

