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Warning

B Terminology “learning”:

Game theory, economics, . . . :
Fudenberg & Levine [FL09]1: “The theory of learning in games [. . . ] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

Machine learning, RL, . . . :
Mitchell [M+97]2: “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.”

1

Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annu. Rev. Econ., 1(1), 385-420.

2

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. ISBN: 978-0-07-042807-2
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Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

I Banach-Picard iterations
I idem + damping/mixing/smoothing
I Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. Fudenberg & Levine [FL+98]3

Non-atomic games. see e.g. Hadikhanloo et al. [HLMS21]4

Mean Field Games, see e.g. Hadikhanloo [Had18]5

3

Fudenberg, D., & Levine, D. (1998). The Theory of Learning in Games. The MIT Press.

4

Hadikhanloo, S., Laraki, R., Mertikopoulos, P., & Sorin, S. (2021). Learning in nonatomic games, Part I: Finite action spaces
and population games. arXiv preprint arXiv:2107.01595.

5

Hadikhanloo, S. (2018). Learning in Mean Field Games (Doctoral dissertation, Université Paris sciences et lettres).
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Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop
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MFG Setup

Generic Mean Field model: for a typical infinitesimal agent

Dynamics: discrete time

Xα,µ
n+1 = F (Xα,µ

n , αn, µn, εn+1, ε
0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

I Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ U ⊆ Rk : action

I εn ∼ ν : idiosyncratic noise, ε0n ∼ ν0 : common noise (random env.)
I p(x′|x, a, µ): corresponding transition probability distribution
I µn ∈ P(X ×A): a state-action distribution
I πn: a policy; randomized actions: αn ∼ πn(·|sn, µn)

Reward B : J(π;µ) = Eε,ε0

[∑∞
n=0 γ

nr
(
Xα,µ
n , αn, µn

)]
Two scenarios:

I Cooperative (MFC): Find π∗ s.t.

π∗ maximizes π 7→ JMFC(π) = J(π;µπ) where µπn = P0
X
α,µπ
n

I Non-Cooperative (MFG): Find (π̂, µ̂) s.t.{
π̂ maximizes π 7→ JMFG(π; µ̂) = J(π; µ̂)
µ̂n = P0

X
α̂,µ̂
n
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Best Response and Population Behavior Maps

We focus on MFG and write J = JMFG. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMFG(·;µ)

Population Behavior induced when everyone using a policy:

PB : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈S

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ S

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = PB(π)
π̂ = BR(µ̂)

B µ̂ can be unique without π̂ being unique!
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Banach-Picard Fixed Point Iterations

Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that

µ(k) 7→ π(k+1)

π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

B First assumption is hard to check! Can be relaxed with entropy regularization

Remark: version with damping/mixing/smoothing

See e.g., Caines et al. [HMC+06]; Guo et al. [GHXZ19]; Anahtarci et al. [AKS20]; . . .
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Fictitious Play

Method: For k = 0, 1, 2, . . . , K:
Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1µ
(k+1) + 1

k+1µ
(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
p is independent of µ
r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
r̃ is monotone: 〈r̃(x, µ)− r̃(x, µ′), µ− µ′〉 ≤ 0

Example: crowd aversion
Consequence:

0 ≥
[
J(π;µ)− J(π;µ′)

]
−
[
J(π′;µ)− J(π′;µ′)

]
=:M(π, µ, π′, µ′)

If (µ̂, π̂) and (µ̂′, π̂′) are two Nash equilibria,

M(π̂, µ̂, π̂′, µ̂′) =
[
J(π̂; µ̂)− J(π̂′; µ̂)

]
+
[
J(π̂′; µ̂′)− J(π̂; µ̂′)

]
≥ E(π̂′; µ̂) + E(π̂; µ̂′) ≥ 0

where E denotes the exploitability of π facing µ: E(π;µ) = sup J(·;µ)− J(π;µ) ≥ 0
See e.g., Cardaliaguet & Hadikhanloo [CH17]; Elie et al. [EPL+20]; Perrin et al.
[PPL+20]; Geist et al. [GPL+21]; . . .
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Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy:

Update population’s behavior: µ(k+1) = Pop(π(k+1))

10 / 28



Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy:

Update population’s behavior: µ(k+1) = Pop(π(k+1))

10 / 28



Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxa∈AQ(k+1)(x, a), x ∈ S

Update population’s behavior: µ(k+1) = Pop(π(k+1))
10 / 28



Banach-Picard Fixed Point Iterations – with Q-function

Reminder:
Method: For k = 0, 1, 2, . . . , K:

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = Pop(π(k+1))

Or, using a Q-function defined as:

Qπ,µ(x, a)

= E
[∑
n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxπ∈Π〈Q(k+1)(x, ·), π〉, x ∈ S

Update population’s behavior: µ(k+1) = Pop(π(k+1))
10 / 28



Online Mirror Descent

Method: For k = 0, 1, 2, . . . , K:

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = Pop(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[〈y, p〉 − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[〈y, p〉 − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax
See e.g., Hadikhanloo [Had18]; Pérolat et al. [PPE+21]; Geist et al. [GPL+21]; . . .
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Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

I value function
I policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

12 / 28
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RL Taxonomy

Source: [OpenAI Spinning Up]6

6
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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DQN

Source: Mnih et al. [MKS+13]7

7
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013). Playing Atari with

Deep Reinforcement Learning.
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DDPG

Source: Lillicrap et al. [LHP+16]8

8
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. & Wierstra, D. (2016). Continuous control with

deep reinforcement learning. ICLR 2016.
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SAC

Source: Haarnoja et al. [HZAL18]9

9
Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor. ICML 2018.
16 / 28



Population Distribution Approximation

What about the population behavior µ?

Empirical distribution µN

Histogram (state space discretization)

ε-net in P(X )

Function approximation for the density:

I Kernels
I Neural nets: normalizing flows, . . .
I . . .

. . .
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Systemic Risk

Revisiting: Systemic risk model of Carmona, Fouque, Sun [CFS15]

J((an)n; (mn)n) = −E
[ NT∑
n=0

(
a2
n −qan(mn −Xn)︸ ︷︷ ︸

borrow if Xn < mn
lend if Xn > mn

+κ(mn−Xn)2
)

+c(mNT −XNT )2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + εn+1 + ε0n+1

At equilibrium: mn = E[Xn|ε0], n ≥ 0

Perrin et al. [PPL+20]: Fictitious Play with Backward Induction or tabular Q-learning

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability
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Crowd Aversion

Revisiting: Crowd aversion model of Alumulla, Ferreira, Gomes [AFG17]
MFG on T,

f(x,m, v) = 1
2 |v|

2 + f̃(x) + ln(m(x)),

with f̃(x) = 2π2
[
−
∑d

i=1 c sin(2πxi) +
∑d

i=1 |c cos(2πxi)|2
]
− 2
∑d

i=1 c sin(2πxi),

then the solution is given by u(x) = c
∑d

i=1 sin(2πxi) and m(x) = e2u(x)/
∫
e2u

Elie et al. [EPL+20]: Fictitious Play & DDPG (continuous spaces)

Analytical m m Learnt by Deep RL
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Flocking

Revisiting: Flocking aversion model of Nourian, Caines, Malhamé [NCM11]
Perrin et al. [PLP+21]: For continuous space problems: Deep RL
• Deep RL (SAC) for the policy (≈ control)
• Deep NN (normalizing flow) for the population distribution

state = (position, velocity) = (x, v) ∈ R2d,
{

xn+1 = xn + vn∆t,
vn+1 = vn + an∆t+ εn+1,

with running cost: fflock
β (x, v, µ) =

∥∥∥∥∫
R2d

(v − v′)
(1 + ‖x− x′‖2)β

dµ(x′, v′)
∥∥∥∥2

,

where β ≥ 0, and µ is the position-velocity distribution.

Initial distribution At convergence
Video: https://www.youtube.com/watch?v=TdXysW_FA3k
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Building Evacuation

A model for crowd motion during building evacuation:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Pérolat et al. [PPE+21]: OMD (no RL for now)

Initial distribution
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A model for crowd motion during building evacuation:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Pérolat et al. [PPE+21]: OMD (no RL for now)

FP (red, α = 10−5), FP damped (green, α = 10−3) and OMD (blue, α = 10−4)
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Definitions & Unification via Two timescales (Angiuli, Fouque, L. [AFL20])

MFControl: Fix a control v, compute induced distribution µv, update v, . . .
MFGame: Fix a distribution µ, compute best response vµ, update µ, . . .

Unification: update both v, µ simultaneously but at different rates ρv, ρµ

• ρv < ρµ ⇒ v evolves slowly⇒ MFControl
• ρv > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑
x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is v̂Q(x) = argminaQ(x, a).

The scheme can be written as:
{
Qk+1 = Qk + ρQk T (Qk, µk)
µk+1 = µk + ρµk P(Qk, µk),

where
{
T (Q,µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x

′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),
P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), with PQ,µ(x, x′) = p(x′|x, v̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al. [MJdC18], Subramanian et al. [SM19]
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Numerical Results on LQ Example (Angiuli, Fouque, L. [AFL20])

Restricted environment: the agent needs to estimate the distribution

Environment

Agent

Cost

ftn+1

State

Xtn+1

Distribution
µtn

Action

Atn

Cost

ftn

State

Xtn

Numerical illustration: Linear-quadratic example
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