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Outline

1. MF Analysis of SGD for Wide NN



In a Nutshell

[Rotskoff, Vanden-Eijnden’18]':

“Parameters as interacting particles: long time convergence and asymptotic error
scaling of neural networks”

Main points:

@ Neural networks with a wide layer
@ Mean field of neurons’ parameters
@ Convex loss function

@ SGD: LLN & CLT

Related work:
[Chizat, Bach’18]2, [Mei, Montanari, Nguyen’18]3, [Sirignano, Spiliopoulos’20]* . ..
1 Rotskoff, G. M., & Vanden-Eijnden, E. (2018). Parameters as interacting particles: long time convergence and asymptotic

error scaling of neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems
(pp. 7146-7155).

ZChizat, L., & Bach, F. (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models using
Optimal Transport. Advances in Neural Information Processing Systems, 31, 3036-3046.

Mei, S., Montanari, A., & Nguyen, P. M. (2018). A mean field view of the landscape of two-layer neural networks.
Proceedings of the National Academy of Sciences, 115(33), E7665-E7671.

4Sirignano, J., & Spiliopoulos, K. (2020). Mean field analysis of neural networks: A central limit theorem. Stochastic
Processes and their Applications, 130(3), 1820-1852.



Wide Neural Network

@ Target function f : Q c RY = R

@ Goal: minimize mean-squared error over f:
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@ Target function f : Q c RY = R
@ Goal: minimize mean-squared error over f:

/ (@) — F@)Pdu(a)

@ For f: take a NN with n neurons:

f() f(cy) *lz xyl
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Wide Neural Network

@ Target function f : Q c RY = R
@ Goal: minimize mean-squared error over f:

/ (@) — F@)Pdu(a)

@ For f: take a NN with n neurons:

f() f(cy) *lz xyl

3

where

> (¢y) = (ci,yi)j—y € Rx D)™ C (R x RN)™ are the parameters
> ¢:Q x D — Ris akernel (activation function, ...)

@ NB: U(f, fn) = £(f, fren) IS NOt CONVEX W.LL. (c,y)
@ Here shallow NN but enough to have wide final layer
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Wide Neural Network — Mean Field Limit

@ Rewriting:
) = [ &3 copto)in )y =+ Gulo)
D=

@ where: Weighted empirical distribution:

1 n
G ByHandyl(y)e

i=1
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Wide Neural Network — Mean Field Limit

@ Rewriting:

) = [ &3 copto)in )y =+ Gulo)

@ where: Weighted empirical distribution:

1 n
G 924’—>ng cidy; (y) €

=1
@ Limitn — +oo:
Gn — G, Uf, fn) = Uf, 0% Q)

@ Note: {(f, ) becomes convex
— unique minimal value ¢*; possibly multiple minimizers G*



SGD Convergence

@ Minimizing loss ¢ < Minimizing energy E:

n

E(Clyy17“'7cn7yn):n( (f?.fn Z yl ZciCjK(yiyyj)
i=1 [y
where F(y fQ (z,y)du(x) fQ o(z, z)du(z)



SGD Convergence

@ Minimizing loss ¢ < Minimizing energy E:

n

E(Clyy17~~-7cn7yn):”( (f7.fn Z ZCiCjK(yi,yj)
i=1 i,j:l
where F(y fQ (z,y)dp(z) fQ o(z, z)du(z)
@ Gradient Descent dynamics: coupled ODEs for: =1,...,n

(Yi(0), Ci(0)) ~ pin i.i.d.
Yi = CiVF(Yz- -1 Z’Ll Ci0, VE(Y:,Y))
Ci =F(Y;) - L CiK(Y3,Y))



SGD Convergence — Mean Field Limit

@ Particle empirical distribution:
(ty,c Z(SC 0 (€)dv; ) ()

@ Firstmomentw.rt. c= Gn(t,y); fn(t, z) = (@ x Gn(t))(x)

@ Whenn — oo,
Pn — P

@ p solves the PDE:

PO = Pin
{&pt =V (cVU([pe],y)pt) + 0c(U(lpe], y)pe)
where
U(lpl,y) = —F(y) +/ CK(y, v )ply', ¢ )dy'dd
D xR

@ Gradient descent in Wasserstein space on convex energy functional



SGD Convergence — Mean Field Limit

@ Particle empirical distribution:

(ty,c Z%(z) (©)dvi0) ()

@ Firstmomentw.rt. c= Gn(t,y); fn(t, z) = (@ x Gn(t))(x)

@ Whenn — oo,
Pn — P

@ p solves the PDE:

PO = Pin
{&pt =V (cVU([pe],y)pt) + 0c(U(lpe], y)pe)
where

U(lpl,y) :—F(y)+/ CK(y, v )ply', ¢ )dy'dd
D xR

@ Gradient descent in Wasserstein space on convex energy functional
@ Stochastic version (SGD); LLN; CLT



Some Extensions: Neurons Birth and Death

[Rotskoff, Jelassi, Bruna, Vanden-Eijnden’19]°

“Neuron birth-death dynamics accelerates gradient descent and converges
asymptotically”

5Rotskoff, G., Jelassi, S., Bruna, J., & Vanden-Eijnden, E. (2019, May). Neuron birth-death dynamics accelerates gradient
descent and converges asymptotically. In International Conference on Machine Learning (pp. 5508-5517). PMLR.
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[Rotskoff, Jelassi, Bruna, Vanden-Eijnden’19]°

“Neuron birth-death dynamics accelerates gradient descent and converges
asymptotically”

@ From empirical distribution to mean field distribution:
i (d0) = Z B5,(0)(d0) — p1e(d)
=1
@ satisfying PDE, for a potential V':
Owpe =V - (e VV)
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Some Extensions: Neurons Birth and Death

[Rotskoff, Jelassi, Bruna, Vanden-Eijnden’19]°
“Neuron birth-death dynamics accelerates gradient descent and converges

asymptotically”

@ From empirical distribution to mean field distribution:
i (d0) = Z B5,(0)(d0) — p1e(d)
=1
@ satisfying PDE, for a potential V':
Owpe =V - (e VV)

@ Main idea: add birth/death (and keep mass constant):
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Some Extensions: Neurons Birth and Death

[Rotskoff, Jelassi, Bruna, Vanden-Eijnden’19]°
“Neuron birth-death dynamics accelerates gradient descent and converges

asymptotically”

@ From empirical distribution to mean field distribution:

i (d0) = Zée (0 (d6) = pe(d6)
i=1

@ satisfying PDE, for a potential V':
Owpe =V - (e VV)

@ Main idea: add birth/death (and keep mass constant):
Ope =V - (e VV) — Vi +aV

@ — global convergence to global minimizers (see paper for assumptions)

5Rotskoff, G., Jelassi, S., Bruna, J., & Vanden-Eijnden, E. (2019, May). Neuron birth-death dynamics accelerates gradient
descent and converges asymptotically. In International Conference on Machine Learning (pp. 5508-5517). PMLR.
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Some Extensions: Adversarial Networks (GANS)

[Domingo-Enrich, Jelassi, Mensch, Rotskoff, Bruna’20]®

“A mean-field analysis of two-player zero-sum games”

6Domingo-Enrich, C., Jelassi, S., Mensch, A., Rotskoff, G., & Bruna, J. (2020). A mean-field analysis of two-player zero-sum
games. Advances in neural information processing systems.
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[Domingo-Enrich, Jelassi, Mensch, Rotskoff, Bruna’'20]®

“A mean-field analysis of two-player zero-sum games”

@ Goal: mixed Nash equilibrium for ¢(z, y), i.e., saddle point of

L(p", p?) // (z,y)dp” (z)dp” (y)

@ Finite number of parameters — Mean field
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Some Extensions: Adversarial Networks (GANS)

[Domingo-Enrich, Jelassi, Mensch, Rotskoff, Bruna’'20]®

“A mean-field analysis of two-player zero-sum games”

@ Goal: mixed Nash equilibrium for ¢(z, y), i.e., saddle point of

L(u", pn") // (z,y)du” (x)dp’ (y)

@ Finite number of parameters — Mean field
@ Gradient descent-ascent = PDE system:

{&uf =V (uf Vo Va(ud,2)),  p§ = pao
atlu’f =-V- (u?t/ Vy V(Mfay)% Mg = Hy,0

with

Va(u¥, @) = 25 (0", 1) (x) = [ €(z,y)dp® (y)
V(™) = o5 (0" 1) (y) = [ (e, y)dp ()

6Domingo-Enrich, C., Jelassi, S., Mensch, A., Rotskoff, G., & Bruna, J. (2020). A mean-field analysis of two-player zero-sum
games. Advances in neural information processing systems.
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Link with MKV Control

[Tzen, Raginsky’20]”

“A mean-field theory of lazy training in two-layer neural nets: entropic regularization
and controlled McKean-Vlasov dynamics”

7Tzen, B., & Raginsky, M. (2020). A mean-field theory of lazy training in two-layer neural nets: entropic regularization and
controlled McKean-Vlasov dynamics. arXiv preprint arXiv:2002.01987.
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Link with MKV Control

[Tzen, Raginsky’20]”
“A mean-field theory of lazy training in two-layer neural nets: entropic regularization

and controlled McKean-Vlasov dynamics”

@ Adding entropic regularization with Gaussian prior: KL(u)
= Unique minimizer

@ MKYV optimal control (aka MFC) formulation

@ Optimality condition: HIB-KFP PDE system

7Tzen, B., & Raginsky, M. (2020). A mean-field theory of lazy training in two-layer neural nets: entropic regularization and
controlled McKean-Vlasov dynamics. arXiv preprint arXiv:2002.01987.
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Outline

2. MFC Model for Deep Learning



In a Nutshell

[E, Han, Li"19]®:
“A mean-field optimal control formulation of deep learning”

Main points:

@ Residual Neural Network as dynamical system

@ Continuous time formulation via ODE

@ Loss over a mean-field of samples

@ MFC viewpoint: Pontryagin Maximum Principle & HJB equation

Related work: [E, Ma, Wu'20}°, [Li’20]"°, [Lu, Ma, Lu, Lu, Ying'20]™, ...

sE, W., Han, J., & Li, Q. (2019). A mean-field optimal control formulation of deep learning. Research in the Mathematical
Sciences, 6(1), 1-41.
gE, W., Ma, C., & Wu, L. (2020). Machine learning from a continuous viewpoint, |. Science China Mathematics, 63(11),
2233-2266.
10Li, Q. Dynamical Systems and Machine Learning. (Lecture notes for summer school on Machine Learning and Dynamical
Systems at Peking University)

Lu, Y., Ma, C,, Lu, Y., Lu, J., & Ying, L. (2020, November). A mean field analysis of deep ResNet and beyond: Towards
provably optimization via overparameterization from depth. In International Conference on Machine Learning (pp. 6426-6436).
PMLR.
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Deep Learning with RNN

@ Dataset: S = {(z6,4),i =1,..., Neampies }» (input, output) ~ 1o
@ Goal: Learn how to produce y given x by looking at .S
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@ Dataset: S = {(z6,4),i =1,..., Neampies }» (input, output) ~ 1o
@ Goal: Learn how to produce y given x by looking at .S
@ Residual Neural Network (RNN): feedforward dynamics f : RY x © — R,

o = z (input), o1 =&+ f(&,0:), t=0,1,...,T -1,

where T' = depth (number of layers)
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Deep Learning with RNN

Data set: S = {(z0,75),i =1,..., Neamptes }» (input, output) ~ 1

Goal: Learn how to produce y given z by looking at .S

Residual Neural Network (RNN): feedforward dynamics f : RY x © — R,
& = x (input), &1 =&+ f(&,0:), t=0,1,...,T -1,

where T' = depth (number of layers)

Goal: minimize (discrete-time) empirical loss over 6 : {0,...,T} — ©:

Nsamples T
Ts(0) = ﬁ > l@(&yé) + ) L(&,00)
=1 t=0
subject to
{56 =af,  i=1,..., Neamples
Ela =&+ f(&,0:), t=0,...,T—1,
where

» & = loss for not matching the output
» L =regularizer
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Deep Learning with RNN

Data set: S = {(z0,75),i =1,..., Neamptes }» (input, output) ~ 1
Goal: Learn how to produce y given z by looking at .S
Residual Neural Network (RNN): feedforward dynamics f : RY x © — R,

o = z (input), o1 =&+ f(&,0:), t=0,1,...,T -1,

where T' = depth (number of layers)
Goal: minimize (discrete-time) empirical loss over 6 : {0,...,T} — ©:

Nsamples T
Ts(0) = ﬁ > l@(&yé) + ) L(&,00)
=1 t=0
subject to
{56 =af,  i=1,..., Neamples
Ela =&+ f(&,0:), t=0,...,T—1,
where

» & = loss for not matching the output
» L =regularizer

A Same 0 used for all samples
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Dynamical System Viewpoint

@ Deep RNN: let depth increase but keep T fixed, i.e., let At — 0
@ Continuous time dynamics:

50:337 ét :f(£t79t,)7 te [O’T]
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Dynamical System Viewpoint

@ Deep RNN: let depth increase but keep T fixed, i.e., let At — 0
@ Continuous time dynamics:

50:337 ét :f(£t79t,)7 te [O’T]

@ Goal: minimize continuous-time empirical loss over ¢ : [0,7] — ©:

Nsamples

B0 =5 > [+ [ coal

i=1
subject to
{66_1‘67 izl,---7Nsamples
& = [f(&,0:), tel0,T]
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MFC Formulation

@ Mean field version when Nyampies — o0
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MFC Formulation

@ Mean field version when Nyampies — o0

@ Goal: minimize continuous-time mean field loss over 0 : [0,7] — ©:

T
J(O) = E(zoyyo)Nuo |:¢)(€T,y0) + / L(ft, eﬁ)dt:|
0

subject to:

{§0 =0
ft = f(é-taet)7 te [OvT]

13/24



Main Results

Main theoretical results from [E, Han, Li"19]: optimality conditions through:
@ HJB equation (on the Wasserstein space):
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Main Results

Main theoretical results from [E, Han, Li"19]: optimality conditions through:

@ HJB equation (on the Wasserstein space):
T
'](ta ,LL, 0) = ]E(xt,yo)f\/u |:(I)(£T7 yO) + / L(&s, es)dt:|
t

T
= <<T>,u%“’9>+/ (L0, p"")ds
t
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Main Results

Main theoretical results from [E, Han, Li"19]: optimality conditions through:
@ HJB equation (on the Wasserstein space):

T
J(t, 11, 0) = Eayyo)on |:(I)(5T,y0) +/ L(§S,65)dt}
t

T
= <<T>,u%“’9>+/ (L0, p"")ds
t

@ Existence and uniqueness of viscosity solutions
@ Pontryagin Maximum Principle:

]ENO [H(xZ7p:79:)] Z IEllfO [H(‘T:7pr7€f)}7 V@ € @7 ae.t € [07T]
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Outline

3. MFG Model for Clustering Analysis



In a Nutshell

[Aquilanti, Cacace, Camilli, De Maio’20a]":

“A mean field games approach to cluster analysis”

Main points:

@ Data points: X = {x1,...,zr}, z; € R?

@ Number of clusters: K

@ Goal: Find a partition of X into K clusters S1,..., Sk
@ Two algorithms: K-means & Expectation-Maximization
@ Interpretation of optimality conditions as MFG

Related work: [Pequito et al.’11]", [Coron’18]"*, [Aquilanti et al.’20b]"®

12Aquilanti, L., Cacace, S., Camilli, F., & De Maio, R. (2020). A mean field games approach to cluster analysis. Applied
Mathematics & Optimization, 1-25.

13F‘equi'to, S., Aguiar, A.P,, Sinopoli, B. & Gomes, D., Unsupervised learning of finite mixture models using Mean Field
Games, in Annual Allerton Conference on Communication, Control and Computing, 2011, 321-328.

14Coron, J.L., Quelques exemples de jeux a champ moyen, Ph.D. thesis, Université Paris-Dauphine, 2018

15Aquilanti, L., Cacace, S., Camilli, F., & De Maio, R. (2020). A Mean Field Games model for finite mixtures of Bernoulli and
Categorical distributions. arXiv preprint arXiv:2004.08119.
15/24



Cluster Analysis - K-Means

@ K clusters: (S1,...,S5k)
@ Barycentres: i = (p1, ... ux) € (RH)F
@ Cluster assignment: ¢ = (c1,...,¢ck), ¢ € {1,...,K}:

g=k&sx €8y
@ Goal: minimize over (y, c)

I K
J(p,c) = ZZ 1{ci:k}|fﬂz‘ — ,uk\2
k=1

i=1
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Cluster Analysis - K-Means

@ K clusters: (S1,...,S5k)
@ Barycentres: i = (p1, ... ux) € (RH)F
@ Cluster assignment: ¢ = (c1,...,¢ck), ¢ € {1,...,K}:

=k x; €Sk
@ Goal: minimize over (y, c)

I K
= Z Z Lic;=k} |z — :Ufk‘2

=1 k=1
@ K-means algorithm:

(i) Cluster assignment:

(“+1) = argmin,, J(p @ cz,c(nf) = argmin; [z; — #;n)‘27 i=1....1
(n+1) —{zeX: C<n+1)_k} k=1,....K
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Cluster Analysis - K-Means

@ K clusters: (S1,...,S5k)
@ Barycentres: i = (p1, ... ux) € (RH)F
@ Cluster assignment: ¢ = (c1,...,¢ck), ¢ € {1,...,K}:

ci=k& x; €85
@ Goal: minimize over (y, c)

I K
= Z Z Lic;=k} |z — :Ufk‘2

=1 k=1
@ K-means algorithm:

(i) Cluster assignment:

(n+1) = argmin,, J(p (@) cl,c(nz) = argmin; |z; — ,u;n)F, i=1,...,1
s(““) —{wiex: =k}, k=1,... K

(i) Barycentre update:
I

@ty _ 1 Z _ _
Hy, = |S(“+1)\ T, k=1,...,.K
k es](anrl)
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MFG Model for K-Means

Following [Coron’18]:

@ Continuum of data points: = ~ f for some PDF f

@ Each point belongs to the cluster with the closest barycentre
— minimization problem

@ Barycentres positions depend on choices of other points
— mean field coupling
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MFG Model for K-Means

Following [Coron’18]:

@ Continuum of data points: = ~ f for some PDF f

@ Each point belongs to the cluster with the closest barycentre
— minimization problem

@ Barycentres positions depend on choices of other points
— mean field coupling

@ K-population MFG:

> (ma,...,my): populations densities, corresponding to dynamics:
dXp(t) = ap(O)dt + V2edWy(t),t >0, Xo==
> (u1,...,uk): players’ value functions: letting

_ 1
Bar(my) = W fle xzmy(z)dz,

ug(z) = inf B, / e P® %\ak(s)|2 + k| Xk (s) — Bar(my(s))]? | ds
ak
0 F(X3(s)mi ()

> Clusters: Sy = {z € R? : ug(z) = minj_1, . u;(z)}
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Following [Coron’18]:

@ Continuum of data points: = ~ f for some PDF f

@ Each point belongs to the cluster with the closest barycentre
— minimization problem

@ Barycentres positions depend on choices of other points
— mean field coupling

@ K-population MFG:

> (ma,...,my): populations densities, corresponding to dynamics:
dXp(t) = ap(O)dt + V2edWy(t),t >0, Xo==
> (u1,...,uk): players’ value functions: letting

_ 1
Bar(my) = W fle xzmy(z)dz,

ug(z) = ian}f]Ez / e P® %\ak(s)|2 + K| X (s) — Bar(my(s))|? | ds
” 0 F(Xi(s),mi(5)
> Clusters: Sy = {z € R : uy(z) = minj—1,. i u;(z)}
@ Consistency rule:

Bar(my) = Bar(1s, f)
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MFG Model for K-Means

Following [Coron’18]:

@ Continuum of data points: = ~ f for some PDF f

@ Each point belongs to the cluster with the closest barycentre
— minimization problem

@ Barycentres positions depend on choices of other points
— mean field coupling

@ K-population MFG:

> (ma,...,my): populations densities, corresponding to dynamics:
dXp(t) = ap(O)dt + V2edWy(t),t >0, Xo==
> (u1,...,uk): players’ value functions: letting

_ 1
Bar(my) = m fIRd xzmy(z)dz,

ug(z) = i;lfIEz / e P* %\ak(s)|2 + K| X (s) — Bar(my(s))|? | ds
' 0 (X (3),m ()
> Clusters: Sy = {z € R : uy(z) = minj—1,. i u;(z)}
@ Consistency rule:
Bar(my) = Bar(1s, f)

@ [Coron’18] proved “K-MFG PDE system <+ consistency rule”
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MFG Model for K-Means — PDE System

Recall: -
ui(z) = inf E, [ / e re (§|ak<s)|2 + F(Xk(s),mk@») ds]
ag 0
subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x
and with Bar(my) = f L

i fRd xmy(z)dz
Rrd ¥
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MFG Model for K-Means — PDE System

Recall: -
ug(z) = inf E, [/ e <%|ak(3)|2 + F(Xk(s), mk(S))) ds]
ag 0
subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x
and with Bar(my) = m f]Rd xmy(z)dz

K-Population MFG PDE system: fork =1,..., K,
{ pur — eAui(z) + 3| Duk(z)|* = F(x, my), z € RY,

pmi(z) — eAmy(z) — div(Dug (2)ms(2)) = pfi. = € RY,
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MFG Model for K-Means — PDE System

Recall:

ui(w) = inf E, U " (%m(s)ﬁ + F(Xk(s),mk(s))> ds]
subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x

1

and with Bar(my) = f f]Rd xmy(z)dz

4 M (@)da

K-Population MFG PDE system: fork =1,..., K,
pur — eAui(z) + 3| Duk(z)|* = F(x, my), z € RY,
{ prk () — eAmi(z) — div(Dug(z)me(2)) = pfr. = € RY,

where k = 1*7”, and f; is a Gaussian distribution with mean
. fSk zf(x)dx
Uk ==
[y, [(@)dz
and variance ¢, and the cluster S, = S (u) related to g is defined by

Sp={z e R :up(z) = min wu;(z)}.
PRSI ¢

,,,,,
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Cluster Analysis - Expectation Maximization

@ Distribution P(z Zk L arpr(z|0x), params. = (ax, 01 )k, densities (pi )«
@ Goal: MaX|m|ze log-likelihood:

In P(X|o,0) Zln (Z(Mpk x;|0r) )
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Cluster Analysis - Expectation Maximization

@ Distribution P(z Zk L arpr(z|0x), params. = (ax, 01 )k, densities (pi )«
@ Goal: MaX|m|ze log-likelihood:

In P(X|o,0) Zln (Zakpk x;|0r) )

@ Data completion: random ¥ = {y:}{_,, y; = k < =; generated by p;
@ Responsibility of z; w.r.t. k-th cluster: v (z:) = pr(ys = k|zi, 0r)
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Cluster Analysis - Expectation Maximization

Distribution P(z Zk 1 axpr(x]0r), params. = (au, Or)x, densities (px )
Goal: MaX|m|ze log-likelihood:

In P(X|o,0) Zln (Z(Mpk x;|0r) )

Data completion: random Y = {y;}i_,, yi = k < x; generated by py
Responsibility of ; w.r.t. k-th cluster: i (x:) = pr(yi = k|zi, 0r)
Goal: Maximize expected log-likelihood of complete data:

Ey[Inp(X, V]e, 0)] = > > yu(as) Inpr (w:]0x))

i=1 k=1

— optimality conditions for ~; or ay, 0%
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Cluster Analysis - Expectation Maximization
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Cluster Analysis - Expectation Maximization

Distribution P(z Zk 1 axpr(x]0r), params. = (au, Or)x, densities (px )
Goal: MaX|m|ze log-likelihood:

In P(X|o,0) Zln (Z(Mpk x;|0r) )

Data completion: random Y = {y;}i_,, yi = k < x; generated by py
Responsibility of ; w.r.t. k-th cluster: i (x:) = pr(yi = k|zi, 0r)
Goal: Maximize expected log-likelihood of complete data:

Ey[Inp(X, V]a, 0)] = > > (@) In(anpr(@i]0r))

i=1 k=1

— optimality conditions for ~; or ay, 0%

Special case: pi(-|0x) = N (|, Zk)

EM algorithm:

(i) E-step: posterior: 'y<n+1>(7:i) =P(y; = k|xi7/1§:), Z,ﬁ“)) =...
n+1 n+1

(1) _ Do) ey _ 2wl V@) g _
T e = =

Zi W;EDH)(IL') Tk

(i) M-step: params.: o),
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MFG Model for EM

Continuum of data points: = ~ f for some PDF f
Mixture: m(z) = >, cmy ()

Responsibilities: v, (z) = 2&mxlz)

m(x)
. zyg () f(@)dz

Mean and covariance: ux = ‘[dei,
Joa @ (@)de

Cost:

Jl@w) = lm LE. { / E'”’(S)'Q + PO0(),me (X)), m()@(s)))] ds} ,
subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x

where (m ~ v ~ px): F(z,me,m) = §(x — pe) (51 Sy (@ — )
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MFG Model for EM

@ Continuum of data points: « ~ f for some PDF f

Mixture: m(z) = >, cmy ()

@ Responsibilities: ;(z) = 2&melz)

m(x)
, 27 () (2)dw

@ Mean and covariance: u = ﬁ@dki,
Joa @ (@)de

@ Cost:

T—+o00 T

Je(z,a1) = lim IEI{/ B|ak(s)|2+F(Xk(s),mk(Xk(s)),m(Xk(s)))]ds},

subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x
where (m ~ yi ~ )i F(a,my,m) = §(z — ) (5.1 S0 (@ — )
@ m(z) =), AN (x|vk, Ty) is consistent with the data set f if:
~ Jaw(@)f(2)de J (@ —v)(@ — vi)'yw () f(2)da

Y @) e T [ @) (2)da = / (@) f(e)dw

@ [Aquilanti et al’20a]: “K-MFG PDE system <« consistent density family”
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MFG Model for EM — PDE System

Recall:

Je(z,ar) = lim lIE {/ |:;|ak-(s)2+Fk(Xk(SLmk(Xk(s)),m(Xk(s))):|ds},

T—4o00 T v

subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x
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MFG Model for EM — PDE System

Recall:

Je(z,ar) = lim 1lg {/ |:;|(lk(3)2+Flc(Xk(S)/n’lk(Xk(S)),m(Xk(S))):|dS},

T—4o00 T v

subj. to:
dXy(t) = ap(t)dt + V2edWi(t),t >0, Xo==x

K-Population MFG PDE system: fork =1,..., K,

—1

—eAug(x) + 5|Dur(@)” + X = §(z — ) (B S (@ — pw),  x €RY,
eAmy(x) + div(mg(x) Dug(z)) = 0, r € RY,
ok = [a (@) f (2)dz,
my >0, [o.mu(z)de = 1, uk(px) = 0,

where i, uk, X are defined as previously

awmi(a) Jpa 2k (@) f (2)da . Joa (@ = ) (@ — pui) i () f () dac
’ Joa (@) f (2)d Jra ve(@) [ (2)dac
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Further results

Also in [Aquilanti et al.’20a]:

@ EM algorithm & MFG in more general case than GMM

@ Numerical results

In [Aquilanti et al.’20b]:

@ Finite state space multi-pop. MFG PDE system
« critical points of log-likelihood functional for a Bernoulli mixture

@ MFG to compute the parameters of the mixture model
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Summary
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