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About this course

6 lectures, 15 hours: 3 × (3 + 2)

Objectives

1 Introducing Mean Field Games

2 Presenting the main ideas behind several numerical methods

3 Providing sample codes to experiment with

Interdisciplinary topic

Feel free to ask questions

The slides are available on my webpage:
https://mlauriere.github.io/#teaching

Based on the work of many contributors

Feel free to reach out: mathieu.lauriere@nyu.edu
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Many agent systems

Systems with many agents are ubiquitous in today’s interconnected world
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More examples

Economics & finance, energy management, telecommunications, networks, . . . .
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Groups of animals

Flocking, schooling, herding, . . . have been extensively studied

Predator-prey models

Ex.: Cucker-Smale model of flocking, Lotka-Volterra system

. . .
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Groups of human beings
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Some existing approaches (“What MFGs are not”)

Dynamical systems:
▶ describe the dynamics of one or many agents, sometimes mean field
▶ but usually no rationality (optimization)

Agent based models (ABM):
▶ “Agent-based models are a kind of microscale model that simulate the

simultaneous operations and interactions of multiple agents in an attempt to
re-create and predict the appearance of complex phenomena. ”

▶ “Individual agents are typically characterized as boundedly rational, presumed to
be acting in what they perceive as their own interests, such as reproduction,
economic benefit, or social status, using heuristics or simple decision-making rules.”
(Wikipedia)

Game theory
▶ optimization aspects
▶ notion of Nash equilibrium, social optimum, . . .
▶ but usually limited to a finite (small) number of agents

Evolutionary game theory (EGT)
▶ “application of game theory to evolving populations in biology”
▶ “an evolutionary version of game theory does not require players to act rationally

– only that they have a strategy” (Wikipedia)

Non-atomic anonymous games
▶ continuum of rational players; each player has her own index and own strategy
▶ mostly limited to static games; difficulties for dynamic, stochastic games
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MFG paradigm in a nutshell

Goal for this lecture: discuss the other aspects and motivate numerical methods

Following lectures: focus on numerical methods
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Outline of this course

Lecture 1: Introduction

▶ MFG models in the static setting

▶ Dynamic setting and optimality conditions

Lectures 2 & 3: “Classical” numerical methods (Parts I & II)

Lectures 4 & 5: Deep learning numerical methods (Parts I & II)

Lecture 6: Reinforcement learning methods
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Notations

N players [N ] = {1, . . . , N}

action space A (finite for simplcity)

each player i ∈ [N ] selects an action ai ∈ A

it induces a population profile of actions a = (a1, . . . , aN ) ∈ AN

each player pays a cost f i(a), where f i : AN → R

goal of each player: minimize her own cost minai f i(a)
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Notations

Question: Is there a “stable configuration” in which all the players are “satisfied”?

Intuition: Strategy profile such that no player is interested in deviating by herself

Definition (Nash equilibrium (NE))

â = (â1, . . . , âN ) ∈ AN is a Nash equilibrium if: for every i ∈ [N ], for every ai ∈ A

f i(â) ≤ f i(â1, . . . , âi−1, ai, âi+1, . . . , âN )

Convenient notation: (ai, â−i) = (â1, . . . , âi−1, ai, âi+1, . . . , âN ).

The above condition rewrites: f i(âi, â−i) ≤ f i(ai, â−i)
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The above condition rewrites: f i(âi, â−i) ≤ f i(ai, â−i)
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Example: Population distribution

Example (Target position; no interactions)
Cost:

f i(a) = −|ai − atarget|2

Nash equilibrium:
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Example: Population distribution

Example (Attraction to the group; interaction through the mean)
Cost:

f i(a) = |ai − 1
N

N∑
j=1

aj |

Nash equilibrium:
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Example: Population distribution

Example (Group aversion)
For simplicity, assume A = {1, 2, . . . , d} is a finite set.

Assume there are N = k × d players for some integer k.

Cost:

f i(a) =
N∑

j=1

1{aj =ai}

which is the number of players who choose the same action.

Nash equilibrium?

ai = ⌊i/k⌋ + 1 form a Nash equilibrium with uniform distribution over actions.

Remark: Player i does not know the other players’ actions before choosing her actions

⇒ Need to anticipate
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Example: Population distribution

Exercise
Consider the following example with spatial preferences + group aversion.

Cost:

f i(a) = −|ai − atarget| +
N∑

j=1

1{aj =ai}

Nash equilibrium?
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Example: Population distribution

Example (Example without NE)
Rock-Paper-Scissor game.

Number of player: N = 2.

Action set: A = {R, P, S}.

Cost:

f i(a) =


1 if (ai, a−i) ∈ {(P, R), (R, S), (S, P )}
0 if ai = a−i

−1 otherwise

No Nash equilibrium (in the sense defined previously).
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Nash Theorem

Warning: a pure NE does not always exist

Nash theorem: existence of mixed NE

Source: [Nash, 1951]
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Mixed strategies

N players [N ] = {1, . . . , N}

action space A (finite for simplicity)

each player chooses a mixed strategy πi ∈ P(A) = probability measures on A

each player (independently) picks an action according to her strategy ai ∼ πi

it induces population profiles of strategies π and actions a

each player pays a cost f i(a)

goal for each player: minimize her own expected cost

J i(π) = Eaj ∼πj ,j=1,...,N [f i(a)]

Remark: the distribution 1
N

∑
j

δaj is random. But less and less as N → +∞.
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Mixed Nash equilibrium

Definition (Mixed Nash equilibrium in N-player game)

π̂ ∈ P(A)N is a mixed Nash equilibrium for the N -player game if:

J i(π̂i, π̂−i) ≤ J i(πi, π̂−i), ∀i, ∀πi

Exercise
Revisit the examples which had a solution.

For each example, compute the mixed Nash equilibria.

Question: What happens to the Rock-Paper-Scissor example without a solution?

Answer: (π1, π2) = (π̂, π̂), with π̂ = (1/3, 1/3, 1/3) is a Nash equilibrium.
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Large populations

Question: What if N is very large?

In many applications, the number of players is extremely large

Intuitively,

▶ each player has a negligible impact on the rest of the population
▶ the population distribution of actions becomes deterministic

This should simplify the analysis

Can we formalize this intuition?

Idea: let N go to infinity and study the problem we obtain in the limit

Key assumptions: homogeneity and anonymity

“Mean field game” paradigm [Lasry, Lions; Caines, Huang, Malhamé 2006]
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Notations

We assume homogeneity and anonymity:

f i(a) = f
(

ai,
1
N

N∑
j=1

δaj

)
, i = 1, . . . , N

Passing to the limit (formally) as N → +∞, we have the following setting:
“Infinitely many” players

representative player chooses a (mixed) strategy π ∈ P(A)

player picks an action according to the strategy a ∼ π

the empirical distribution 1
N

∑N

j=1 δaj converges to a population distribution of
actions: π′ ∈ P(A)

representative player pays a cost f(a, π′)

goal for each player: minimize her own average cost J(π, π′) = Ea∼π[f(a, π′)]

Key points:

it is enough to understand the behavior of one representative player

each player has no influence on the rest of the population π′

“mean-field interactions” is more general than “interactions through the mean”
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Mean field Nash equilibrium

The notion of solution in a MFG is:

Definition (Mean field Nash equilibrium (MFNE))
π̂ ∈ P(A) is a mean field Nash equilibrium strategy if:

π̂ is an optimal strategy (best response) for a representative player, given the
population distribution

and the population distribution is π̂

Fixed point formulation:
π̂ ∈ argmin

π

J(π, π̂) = BR(π̂)

This yields a first algorithm: fixed point iterations πk 7→ πk+1.

Simple to implement, but fails to converge on many examples. (More details later.)
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Example: Population distribution

Exercise
Revisit the previous finite-population examples in the MFG setting.

Attraction to the group

Aversion to the group
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From MFG to finite player game

Key motivation for MFG
An MFG equilibrium strategy provides an approximate (and usually decentralized)
Nash equilibrium in the corresponding finite-population game.

Definition (Approximate Nash equilibrium in N-player game)

Let ϵ > 0. π̂ ∈ P(A)N is an ϵ-Nash equilibrium for the N -player game if:

J i(π̂i, π̂−i) ≤ J i(πi, π̂−i) + ϵ, ∀i, ∀πi

Theorem (Informal statement)
Consider an N -player game and the corresponding MFG.

Let π̂ be a mean field NE.

Then, in the N -player game, π̂ is an ϵ-NE, with ϵ → 0 as N → +∞.

Interpretation: If everyone was using a MFG equilibrium policy, then anyone could be
better off by at most ϵ by unilateral deviations.
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Approximate NE: Example

Example (Interaction through the mean)
Consider a cost:

f(a, ν) = φ(a, ν̄), ν̄ = Ea′∼ν [a′]
with φ Lipschitz in ν uniformly in a.

Assumption: Mean field Nash equilibrium property: π̂ such that

J(π̂, π̂) ≤ J(π, π̂), ∀π

Goal: ϵ-Nash equilibrium for N-player game:

J i(π̂, π̂−i) ≤ J i(π, π̂−i) + ϵ, ∀π

where π̂−i = (π̂, . . . , π̂) ∈ P(A)N−1.
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Approximate NE: Example

Proof sketch:
Idea: compare N -player cost with MF cost:

J i(π̂, π̂−i) − J i(π, π̂−i)

= J i(π̂, π̂−i) − J(π̂, π̂)︸ ︷︷ ︸
(i)

+ J(π̂, π̂) − J(π, π̂)︸ ︷︷ ︸
≤ 0

+ J(π, π̂) − J i(π, π̂−i)︸ ︷︷ ︸
(ii)

J i(π̂, π̂−i) = Eâi∼π̂Eâj ∼π̂,j ̸=i

[
φ(âi, ¯̂a)

]
, where ¯̂a := 1

N

∑N

j=1 âj

and J(π̂, π̂) = Eâ∼π̂

[
φ(â, ¯̂π)

]
, where ¯̂π := Ea∼π̂[a]

We have φ is Lipschitz and ¯̂a ≈ ¯̂a−i := 1
N

∑
j ̸=i

âj ≈ ¯̂π, so:∣∣φ(âi, ¯̂a) − φ(âi, ¯̂π)
∣∣ ≤ C|¯̂a − ¯̂π| ≤ C |¯̂a − ¯̂a−i|︸ ︷︷ ︸

= 1
N

|âi|

+C|¯̂a−i − ¯̂π|

Hence:
(i) ≤ C

N
Eâi∼π̂|âi| + C Eâj ∼π̂,j ̸=i|¯̂a

−i − ¯̂π|︸ ︷︷ ︸
→ 0 as N → ∞ by LLN

Similarly for (ii)
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φ(âi, ¯̂a)

]
, where ¯̂a := 1

N

∑N

j=1 âj
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[
φ(â, ¯̂π)

]
, where ¯̂π := Ea∼π̂[a]

We have φ is Lipschitz and ¯̂a ≈ ¯̂a−i := 1
N

∑
j ̸=i

âj ≈ ¯̂π, so:∣∣φ(âi, ¯̂a) − φ(âi, ¯̂π)
∣∣ ≤ C|¯̂a − ¯̂π| ≤ C |¯̂a − ¯̂a−i|︸ ︷︷ ︸

= 1
N

|âi|

+C|¯̂a−i − ¯̂π|

Hence:
(i) ≤ C

N
Eâi∼π̂|âi| + C Eâj ∼π̂,j ̸=i|¯̂a

−i − ¯̂π|︸ ︷︷ ︸
→ 0 as N → ∞ by LLN

Similarly for (ii)
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Definition

Goal: minimize the social cost = average cost for the agents in the population

N -agent social cost:

Jsoc(π) = 1
N

N∑
i=1

J i(π, π−i)

Mean field social cost:
Jsoc(π) = J(π, π)

Optimization problem and not fixed point problem anymore
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Nash Equilibrium vs Social Optimum

In general the two notions are different

i.e., the socially optimal strategy is different from the Nash equilibrium policy

Price of Anarchy [Koutsoupias & Papadimitriou, 1999]:

More on this later (see lectures 2 and 3, LQ setting and crowd motion)
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Nash Equilibrium vs Social Optimum

In some cases, the two notions coincide.

Example: Potential MFG with cost: f(a, ν) = ∇F (ν)(a), A finite for simplicity

The average cost is: J(π, ν) = Ea∼π[f(a, ν)] =
∑

a
π(a)∇F (ν)(a) = π · ∇F (ν)

Assuming the potential F convex, we have the equivalence:

π̂ is a NE ⇔ J(π, π̂) − J(π̂, π̂) ≥ 0, ∀π

⇔ (π − π̂) · ∇F (π̂) ≥ 0, ∀π

⇔ ∇F (π̂) = 0
⇔ π̂ is a minimizer of F

⇔ π̂ is a SO

Example: entropy: F (ν) =
∑

a
ν(a) log(ν(a))

More on this later (see lecture 3, optimization methods for variational MFGs)
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Exercises

Exercise
Design a static MFG with exactly 2 pure NE. How many mixed NE are there?

Exercise
Design a static MFG with exactly 2 mixed social optima.

Exercise
Design a static MFG with a unique mixed NE and a unique mixed SO, such that their
values are different (price of anarchy different from 1).

Same question with “such that their values are the same”.
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Some references

As far as I know, the static MFGs have not been studied extensively

In fact a static MFG can be recast as a dynamic MFG with a single time step and
and a single state

Normal form MFGs (Coop/Betray/Punish, Rock/Paper/Scissor)
[Muller et al., 2022b, Muller et al., 2022a]

Static MFGs Section 2.1 in the survey [Laurière et al., 2022a]
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Overview

Space
Time Discrete Continuous

Discrete

Continuous

For simplicity of presentation, we start with the “discrete & discrete” case.
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Notations

For simplicity of presentation, we start with discrete time & discrete (finite) space.

Time T < +∞, t ∈ [T ] = {0, 1, . . . , T }

State space X finite (for now)

Action space A finite (for now)

Player’s state Xi
t ∈ X

Population’s state mN
t = 1

N

∑N

i=1 δXi
t

∈ P(X )

One-step strategy (deterministic or mixed)

“Control” or “policy”: let us for now focus on the Markovian case:
▶ Control (deterministic): αi : [T ] × X → A
▶ Policy (mixed): πi : [T ] × X → P(A)
▶ Other choices (open-loop, . . . )
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Notations

We assume homogeneity and anonymity, meaning:
▶ same transition rules and same cost functions
▶ interactions only through aggregate quantities

Player’s dynamics:
Xi

t+1 ∼ P (·|Xi
t , Ai

t, mN
t )

where Ai
t = αi(t, Xi

t) or Ai
t ∼ πi(t, Xi

t)

For instance:
Xi

t+1 = F (Xi
t , Ai

t, mt) + ϵi
t+1

where ϵi
t+1 is a random perturbation

Population’s dynamics:

mN
t+1 = 1

N

N∑
i=1

δXi
t

which is random if the players’ states are.
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Notations and Definition

Running cost f : X × A × P(X ) → R

Terminal cost g : X × P(X ) → R

Total cost when player i uses policy πi and the rest of the population uses π−i:

J i(πi, π−i) = E

[
T −1∑
t=0

f(Xi
t , Ai

t, mN
t ) + g(Xi

T , mN
T )

]

Definition (Nash equilibrium in dynamic N-player game)

π̂ ∈ P(A)N is a Nash equilibrium for the N -player game if:

J i(π̂i, π̂−i) ≤ J i(πi, π̂−i), ∀i, ∀πi

The definition of Nash equilibrium is exactly the same, but the definition of J i is more
involved than in the static case.
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Notations

Time T < +∞, t ∈ [T ] = {0, 1, . . . , T }

State space X finite (for now)

Action space A finite (for now)

Player’s state Xt ∈ X

Population’s state mt ∈ P(X ), identified with a vector of dimension |X |

One-step strategy (deterministic or mixed)

“Control” or “policy”: let us for now focus on the Markovian case:
▶ Policy (mixed): π : [T ] × X → P(A)
▶ Control (deterministic): α : [T ] × X → A
▶ Deterministic is a special case of mixed: πt(a|x) = δαt(x)(a)
▶ Other choices (open-loop, . . . )

Remark: decentralized policies/controls are enough (in this setting at least)
i.e., we do not need to add mt as an input to πt or αt
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Notations

Player’s dynamics given a mean-field sequence m = (mt)t=0,...,T :

Xt+1 ∼ P (·|Xt, At, mt)

where At = α(t, Xt) or At ∼ π(t, Xt)

For instance:
Xt+1 = F (Xt, At, mt) + ϵt+1

Population distribution dynamics associated to a policy π:

mπ
t+1 = P π

t mπ
t

where P π
t is the transition matrix

P π
t (x, x′) =

∑
a∈A

πt(a|x)P (x′|x, a, mπ
t )

P π
t depends implicitly on mπ

t ⇒ non linear Markov chain
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Notations

Running cost f : X × A × P(X ) → R

Terminal cost g : X × P(X ) → R

Total cost for a representative player using policy π and the rest of the population
uses π′:

J(π, π′) = E

[
T −1∑
t=0

f(Xt, At, mπ′
t ) + g(XT , mπ′

T )

]

Actually J(π, π′) = J(π, mπ′
), and we can define J(π, m) more generally

Best response (BR) to a mean field m ∈ [T ] × P(X ):

BR(m) = argmin
π

J(π, m)

In general, BR(m) is a set.
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Example: Crowd motion in a grid world

State space: grid world

Dynamics: move to a neighboring cell

Running cost:
▶ cost to move:
▶ discomfort if crowded:

Terminal cost:
▶ spatial preference:

Illustrations: [Geist et al., 2022, Laurière et al., 2022b]
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Mean field Nash equilibrium (dynamic)

The notion of solution in a MFG is:

Definition (Mean field Nash equilibrium (MFNE))
π̂ is a mean field Nash equilibrium policy if:

π̂ is an optimal policy for a representative player, given the population distribution

and the population distribution is generated by π̂

Fixed point formulation:
π̂ ∈ argmin

π

J(π, mπ̂)

This yields a first algorithm: fixed point iterations πk 7→ mk 7→ πk+1.

Simple to implement, but fails to converge on many examples. (See lectures 2 and 6.)
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Existence

Existence of an equilibrium is generally based on the fixed point formulation

Typically:

Banach/Picard fixed point theorem (requires strict contraction)

Brouwer/Schauder fixed point theorem (requires only continuity)
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Uniqueness

Uniqueness is typically ensured through two types of arguments:

Strict contractivity: uniqueness is obtained as a consequence of Banach fixed
point theorem

Monotonicity: uniqueness is a consequence of the monotonicity of the cost

▶ Typical setting: b(x, a, m) = b(x, a), f(x, a, m) = f̃(x, a) + V (x, m)

▶ V is monotone in L2 if: m1, m2 ∈ L2(Rd),∫
(V (x, m1) − V (x, m2))(m1(x) − m2(x))dx ≥ 0

▶ Example: crowd aversion
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Example of existence proof

Sketch of existence proof: look for a fixed point of Φ : π
MF−−→ m̃

BR−−→ π̃

A simple model:

X = {0, 1}, A = {−1, 0, 1}, T = 1

Xt+1 = Xt + At with walls at x = −1, 2

f(x, a, m) = 0, g(x, m) = |x − m̄|, m̄ = mean of m

m0 = ( 1
2 , 1

2 )
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Example of existence proof

Step 1: Convexity and compactness

Step 2: Continuity of Φ

Step 2.a: Continuity of MF?

Step 2.b: Continuity of BR?

44 / 79



Exercises

Exercise
Complete the proof of existence in the previous example (2 states, 1 time step).

Exercise
Define a dynamic MFG such that the following two conditions hold:

1 there is a unique NE

2 given the equilibrium mean field sequence m, BR(m) is not a singleton (there
are multiple optimal policies)
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Some references

Some references on discrete time, finite state space MFGs:

[Gomes et al., 2010]

Link with continuous MFGs [Hadikhanloo and Silva, 2019]

Reinforcement learning for MFGs is often studied in this setting:
[Chen et al., 2022], [Guo et al., 2019], [Subramanian and Mahajan, 2019],
[Elie et al., 2020b], . . .

See lecture 6 for more references on RL for MFGs; survey:
[Laurière et al., 2022a]
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Motivations

Why do we care about continuous time & space?

More natural for many applications

Discretizing a continuous time/space process is not trivial

We can use calculus
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Example: Epidemics (continuous time, discrete space)

Example (SIR model)
3 possible states: Susceptible of infection, Infected, Recovered. Mean field dynamics:

Ṡ(t) = −βI(t)S(t)
İ(t) = βI(t)S(t) − γI(t)
Ṙ(t) = γI(t)

Basic reproduction number: R0 = β/γ.

S I R
βI γ

MFG for epidemics: [Laguzet and Turinici, 2015], [Hubert and Turinici, 2018],
[Elie et al., 2020a], [Lee et al., 2021], [Olmez et al., 2022], [Aurell et al., 2022b],
[Doncel et al., 2022], [Aurell et al., 2022a] . . .
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Example: MFG for epidemics (continuous time, discrete space)

Example (MFG extension of SIR; borrowed from [Aurell et al., 2022b])

Action: αt = “contact factor”

Action and state distribution ρ(a, x)
Individual’s transition rate from S to I: βαt

∫
aρt(a, I)da

S I R
βαt

∫
aρt(a, I)da γ

Exercise
Write the mean field dynamics corresponding to the above model, for a fixed
state-action distribution flow ρ = (ρt)t∈[0,T ], ρt ∈ P(A × X ).

Missing ingredient: to have game, we need to define a cost function.

Other MFG models in discrete space & continuous time:
[Gomes et al., 2013, Kolokoltsov and Bensoussan, 2016, Bayraktar et al., 2021], . . .
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Example: Flocking (continuous time, continuous space)

Example (Cucker-Smale model [Cucker and Smale, 2007])
Position and velocity: 

ẋi(t) = vi(t)

v̇i(t) =
N∑

j=1

vj(t) − vi(t)
(ϵ + |xj − xi|)β

MFG for flocking & acceleration control: [Nourian et al., 2011], [Grover et al., 2018],
[Achdou et al., 2020], [Bardi and Cardaliaguet, 2021],
[Santambrogio and Shim, 2021], [Perrin et al., 2021], . . .
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Example: Flocking (continuous time, continuous space)

Example (MFG model of flocking [Nourian et al., 2011])

Action: αt = acceleration. Dynamics:{
ẋ(t) = v(t)
v̇(t) = α(t)

Running cost: penalizes deviation from neighbors’ velocity:

f((x, v), m) =
∣∣∣∣∫ v′ − v

(ϵ + |x′ − x|)β
m(dx′, dv′)

∣∣∣∣2

[Perrin et al., 2021], video: https://www.youtube.com/watch?v=TdXysW_FA3k
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Interacting particle systems

Diffusion (source: Wikipedia):

Particle’s dynamics: dXt = σdWt, with W a Brownian motion

Macroscopic distribution dynamics: ∂tm(t, x) − σ2

2 ∆m(t, x) = 0

Link with N -particle system: propagation of chaos [Kac, 1956, Sznitman, 1991]

Note: We can also add a transport term (convection–diffusion equation):

▶ dXt = b(t, Xt)dt + σdWt

▶ ∂tm(t, x) − σ2

2 ∆m(t, x) + div(b(t, x)m(t, x)) = 0
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Continuous time, continuous space MFG

Player i’s state Xi
t ∈ Rd

with dynamics:

dXi
t = b(t, Xi

t , αi(t, Xi
t), mN

t )dt + σdW i
t , Xi

0 ∼ m0

W i is an idiosyncratic (individual) noise, independent from other W j ’s

W is a noise for the representative player

The population empirical distribution is:

mN
t = 1

N

N∑
j=1

δ
X

j
t

Here again, it is stochastic . . . but less and less as N → +∞

Passing rigorously to the limit in the MFG framework: see e.g.
[Cardaliaguet et al., 2019], Lacker’s lecture notes [Lacker, 2018, Delarue, 2021]
and the references therein
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Continuous time, continuous space MFG

Time horizon T < +∞, t ∈ [0, T ]

Player’s state Xt ∈ Rd

Player’s control (deterministic) αt, typically:
▶ most often focus on deterministic controls
▶ closed-loop Markovian: αt = α(t, Xt)
▶ open-loop: αt = α(t, ω) progressively measurable

Player’s dynamics:

dXt = b(t, Xt, α(t, Xt), mt)dt + σdWt, X0 ∼ m0

Population dynamics: Kolmogorov-Fokker-Planck equation

∂tm(t, x) − σ2

2 ∆m(t, x) + div(b(t, x, α(t, x))m(t, x)) = 0, m|t=0 = m0
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Continuous time, continuous space MFG

Cost: dependence on the mean field

non-local (typically “regularizing” operator)

f(t, Xt, αt, mt)

local (if the population distribution has a density, still denoted by m)

f(t, Xt, αt, m(t, Xt))
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Next steps

Main question for the rest of this course:

How can we characterize and compute mean field Nash equilibria?

56 / 79



Outline

1. Motivations

2. MFG Models: Static Setting

3. MFG Models: Dynamic setting

4. Optimality & Equilibrium Conditions
Discrete setting
Continuous setting: PDE viewpoint
Continuous setting: SDE viewpoint

5. Conclusion



Literature

Many papers on MFGs start like this:
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Value function

Value of a state = sum of future costs, when starting from this state

Value function of a representative player given a mean field sequence
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Bellman equation

Bellman equation for the value function (Dynamic Programming Principle):

▶ Terminal time: VT (x) = g(XT , mT )

▶ Backward induction:
Vt(x) = mina E [f(Xt, At, mt) + Vt+1(Xt+1)|Xt = x, At = a]

Recovering the optimal control from the value function: using argmin

59 / 79



Forward-backward system

Coupled system:

Forward equation for the mean field:{
mt+1(x) =

∑
x′ mt(x′)

∑
a

πt(a|x)p(x|x′, a, mt),
m0 given

Backward equation for the value function:{
Vt(x) = mina E [f(Xt, At, mt) + Vt+1(Xt+1)|Xt = x, At = a] ,

VT (x) = g(XT , mT )

Equilibrium policy: π satisfies: (1) is optimal against m and (2) generates m

Challenge: We cannot (fully) solve one equation before the other!
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Value function

Value of a state = sum of future costs, when starting from this state

Value function of a representative player given a mean field flow

Dynamic Programming Principle?
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HJB equation

Hamiltonian:

H(x, m, p) = max
a

−L(x, a, m, p), L(x, a, m, p) = f(x, a, m) + b(x, a, m) · p

Hamilton-Jacobi-Bellman equation, given the mean field flow:{
−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m(t), ∇u(t, x))) = 0,

u(T, x) = g(x, m(T ))

Recovering the optimal control: optimizer of the Hamiltonian

Unique action minimizes H under strict convexity assumptions

Warning: Another convention: H(x, m, p) = mina L(x, a, m, p) ⇒ −H in HJB.
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Forward-backward PDE system for MFG

The equilibrium control minimizes the Hamiltonian:

α̂(t, x) = argmax
a

−L(x, a, m(t), ∇u(t, x))

where (m, u) solve the forward-backward PDE system:

Forward equation for the mean field:{
∂tm(t, x) − σ2

2 ∆m(t, x) + div(m(t, x)Hp(x, m(t), ∇u(t, x))) = 0,

m(0, x) = m0(x)

Backward equation for the value function:{
−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m(t), ∇u(t, x))) = 0,

u(T, x) = g(x, m(T ))

Challenge: We cannot (fully) solve one equation before the other!
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Existence and uniqueness of MFNE

Existence: generally obtained by applying a fixed point theorem, such as:

▶ Banach fixed point theorem: typically applicable under “smallness”
conditions (small time or small Lipschitz constants); gives uniqueness too

▶ Schauder fixed point theorem: applicable more generally; does not yield
uniqueness

▶ Compactness can be challenging

Uniqueness:

▶ Contractivity (application of Banach fixed point theorem; “smallness”
assumptions)

▶ Monotonicity condition (Lasry & Lions; “structural” assumption)
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Remark: Variational MFGs

In some cases, the MFG PDE system can be interpreted as the optimality conditions
for a variational problem

See e.g. [Lasry and Lions, 2007], [Cardaliaguet and Graber, 2015], . . .

This can also inspire numerical methods. (More on this in lecture 3.)
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Remark: MFG with common noise

Common noise: randomness affecting the whole population

Example: extra Brownian motion common to all the players

Then the two PDEs become stochastic PDEs

Source: [Cardaliaguet et al., 2019]
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Remark: Master equation

Common noise: randomness affecting the whole population

Example: extra Brownian motion common to all the players

Convergence analysis (as N → ∞) based on the Master equation

Source: [Cardaliaguet et al., 2019]
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Exercises

Exercise
For the following drift and running cost functions (d = 1 to simplicity), write the KFP
equation, the Hamiltonian and the HJB equation:

Linear-quadratic (LQ):

b(x, a, m) = Ax+Ba+Ām̄2, f(x, a, m) = Qx2+Ra2+Q̄m̄2, g(x, m) = QT x2+Q̄T m̄2

with m̄ =
∫

ξm(ξ)dξ

Congestion: b(x, a, m) = a, f(x, a, m) = m(x)|a|2

Aversion: b(x, a, m) = a, f(x, a, m) = |a|2 + m(x)

Exercise
Derive optimality conditions for the social optimum problem.
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Exercises

Exercise [Bogachev, Krylov, Röckner, Shaposhnikov; Thm 9.8.41]
Consider the MFG PDE system:{

−∂tu − ∆u + 1
2 |∇u|2 = F (x, mt), Rd × [0, T )

∂tm − ∆m − div(∇um) = 0, Rd × (0, T ]

with u(T, x) = G(x, m(T )) and m0 = ν.

Part 1: Write the player’s dynamics and the cost function.

Part 2: Show existence of a classical solution, assuming:

ν is a probability distribution on Rd with finite second moment

F, G : Rd × P1(Rd) → R are bounded and Lipschitz

Source: [Bogachev et al., 2022]
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From Bellman equation

Value function of a representative player given a mean field sequence

Hamilton-Jacobi-Bellman equation, given equilibrium mean field flow m̂t:

−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m̂(t), ∇u(t, x))) = 0, u(T, x) = g(x, m(T ))

Actually in practice, we do not really need to know u everywhere

Motivation for probabilistic numerical methods (see lectures 3, 4, 5)

Two approaches, based respectively on Bellman & Pontryagin principles
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From Bellman equation

We want to know u and the control along the path of X

Introduce Yt = u(t, Xt) where u is the value function, solution to HJB

Dynamics of Y :

dYt = d

dt
u(t, Xt)

=
[
∂tu(t, Xt) + σ2

2 ∆u(t, Xt)
]
dt + ∇u(t, Xt)dXt (by Itô’s lemma)

= −f(Xt, A∗
t , m̂t)dt + ZtdWt (by HJB equation)

where A∗
t is the optimal action when at state Xt
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Pontryagin’s maximum principle: ODE

Assume X has a deterministic evolution:

ẋt = b(xt, at), x0 given

Hamiltonian:

H(x, p) = max
a

−L(x, a, p), L(x, a, p) = f(x, a) + b(x, a) · p

Pontryagin’s maximum principle:
ẋ∗

t = b(x∗
t , a∗

t ), x∗
0 given

ẏ∗
t = −∇L(x∗

t , a∗
t , y∗

t ), y∗
T = ∇g(x∗

T )
a∗

t = argmaxa −L(x∗
t , a, y∗

t )

In fact, y∗
t can be interpreted as ∇u(t, x∗

t )
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Pontryagin’s maximum principle: SDE

If X satisfies an SDE:

dXt = b(Xt, At)dt + σdWt, X0 ∼ m0

Hamiltonian:

H(x, p) = max
a

−L(x, a, p), L(x, a, p) = f(x, a) + b(x, a) · p

Stochastic Pontryagin maximum principle:
dX∗

t = b(X∗
t , A∗

t )dt + σdWt, X∗
0 ∼ m0

dY ∗
t = −∇L(X∗

t , A∗
t , Y ∗

t )dt + Z∗
t dWt, Y ∗

T = ∇g(X∗
T )

A∗
t = argmaxa −L(X∗

t , a, Y ∗
t )

In fact, Y ∗
t can be interpreted as ∇u(t, X∗

t )
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Pontryagin’s maximum principle: MKV SDE

If X satisfies a mean field SDE:

dXt = b(Xt, At, m̂t)dt + σdWt, X0 ∼ m0

Hamiltonian:

H(x, p) = max
a

−L(x, a, m, p), L(x, a, m, p) = f(x, a, m) + b(x, a, m) · p

Stochastic Pontryagin maximum principle with mean field interactions:
dX∗

t = b(X∗
t , A∗

t , m̂t)dt + σdWt, X∗
0 ∼ m0

dY ∗
t = −∇L(X∗

t , A∗
t , m̂t, Y ∗

t )dt + Z∗
t dWt, Y ∗

T = ∇g(X∗
T , m̂T )

A∗
t = argmaxa −L(X∗

t , a, m̂t, Y ∗
t )

In fact, Y ∗
t can be interpreted as ∇u(t, X∗

t )

For the equilibrium, we need to include the consistency condition for the MF

m̂t = L(X∗
t )
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MKV FBSDE systems

In both cases (from Bellman or Pontryagin’s principles), we get an instance of a
McKean-Vlasov forward-backward SDEs (MKV-FBSDE):


dXt = B(Xt, Yt, Zt, mt)dt + σdWt, X0 ∼ m0

dYt = F (Xt, Yt, Zt, mt)dt + ZtdWt, YT = G(XT , mT )
mt = L(Xt)

Analysis: existence, uniqueness, . . .

Extensions (common noise, . . . )

Link with Master equation

See book [Carmona and Delarue, 2018a, Carmona and Delarue, 2018b] for
(many) more details
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Exercises

Exercise
For the following drift and running cost functions (d = 1 to simplicity), write the MKV
FBSDE system:

Linear-quadratic (LQ):

b(x, a, m) = Ax+Ba+Ām̄2, f(x, a, m) = Qx2+Ra2+Q̄m̄2, g(x, m) = QT x2+Q̄T m̄2

with m̄ =
∫

ξm(ξ)dξ

Congestion: b(x, a, m) = a, f(x, a, m) = m(x)|a|2

Aversion: b(x, a, m) = a, f(x, a, m) = |a|2 + m(x)

Exercise
Derive an FBSDE system for the social optimum problem.
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Summary

N -player games

Mean field games

Connection in two directions

Several settings (static, dynamics discrete/continuous)

Optimality conditions
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Extensions

From the modeling viewpoint, many possible extensions:

More settings, e.g. MFG with ergodic cost [Cardaliaguet et al., 2012],
[Feleqi, 2013], [Bardi and Priuli, 2014], [Arapostathis et al., 2017],
[Anahtarci et al., 2023], . . .

Interactions through the action distribution (“extended MFGs”, “MFGs of
controls”, . . . ): [Gomes et al., 2014], [Gomes and Voskanyan, 2016],
[Cardaliaguet and Lehalle, 2018], [Achdou and Kobeissi, 2020],
[Laurière and Tangpi, 2022], [Kobeissi, 2022], . . .

Common noise: in the continuous space case see
[Carmona and Delarue, 2018b] and references therein; in the finite state case,
see e.g. [Bertucci et al., 2019], [Bayraktar et al., 2021], . . .

Several populations MFGs: [Huang et al., 2006], [Feleqi, 2013], [Cirant, 2015],
[Achdou et al., 2017], [Bensoussan et al., 2018], . . .

Mean field type games: [Djehiche et al., 2017],
[Barreiro-Gomez and Tembine, 2021] and references therein;
[Miller and Pham, 2019], [Cosso and Pham, 2019], [Carmona et al., 2019], . . .

Mean field control games: [Angiuli et al., 2022b], [Angiuli et al., 2022a]
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Extensions

Major player: [Carmona and Zhu, 2016], [Caines and Kizilkale, 2016],
[Carmona and Wang, 2017], [Lasry and Lions, 2018], [Cardaliaguet et al., 2020],
[Carmona and Dayanıklı, 2021], [Carmona et al., 2022b], . . .

Stackelberg MFGs [Bensoussan et al., 2015], [Moon and Başar, 2018],
[Elie et al., 2019], [Firoozi et al., 2021], [Aurell et al., 2022b],
[Vasal and Berry, 2022], [Guo et al., 2022], [Dayanikli and Lauriere, 2023],. . .

Graphon games [Parise and Ozdaglar, 2019], [Caines and Huang, 2019],
[Caines and Huang, 2021], [Lacker and Soret, 2022], [Gao et al., 2020],
[Vasal et al., 2021], [Carmona et al., 2022a], [Aurell et al., 2022c],
[Aurell et al., 2022a], [Bayraktar et al., 2023], . . .

. . .

For simplicity, in these lectures, we will mostly focus on “plain” MFGs, although many
ideas can be extended.
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu
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[Moon and Başar, 2018] Moon, J. and Başar, T. (2018).
Linear quadratic mean field stackelberg differential games.
Automatica, 97:200–213.

13 / 16



References XIV

[Muller et al., 2022a] Muller, P., Elie, R., Rowland, M., Lauriere, M., Perolat, J., Perrin, S., Geist,
M., Piliouras, G., Pietquin, O., and Tuyls, K. (2022a).
Learning correlated equilibria in mean-field games.
arXiv preprint arXiv:2208.10138.

[Muller et al., 2022b] Muller, P., Rowland, M., Elie, R., Piliouras, G., Perolat, J., Lauriere, M.,
Marinier, R., Pietquin, O., and Tuyls, K. (2022b).
Learning equilibria in mean-field games: Introducing mean-field psro.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 926–934.

[Nash, 1951] Nash, J. (1951).
Non-cooperative games.
Annals of mathematics, pages 286–295.

[Nourian et al., 2011] Nourian, M., Caines, P. E., and Malhamé, R. P. (2011).
Mean field analysis of controlled cucker-smale type flocking: Linear analysis and perturbation
equations.
IFAC Proceedings Volumes, 44(1):4471–4476.

[Olmez et al., 2022] Olmez, S. Y., Aggarwal, S., Kim, J. W., Miehling, E., Başar, T., West, M., and
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