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Continuous time, continuous space MFG

Time horizon T < +∞, t ∈ [0, T ]

Player’s control (deterministic) αt, typically:
▶ closed-loop Markovian: αt = α(t, Xt)
▶ open-loop: αt = α(t, ω) progressively measurable

Player’s dynamics:

dXt = b(t, Xt, αt, mt)dt + σdWt, X0 ∼ m0

Population dynamics: Kolmogorov-Fokker-Planck equation

∂tm(t, x) − σ2

2 ∆m(t, x) + div(b(t, x, α(t, x))m(t, x)) = 0, m|t=0 = m0

To stress the dependence on the control, we will sometimes write Xα and mα.
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Continuous time, continuous space MFG

Cost: dependence on the mean field

non-local (typically “regularizing” operator)

f(t, Xt, αt, mt)

local (if the population distribution has a density, still denoted by m)

f(t, Xt, αt, m(t, Xt))
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HJB equation

Hamiltonian:

H(x, m, p) = max
a

−L(x, a, m, p), L(x, a, m, p) = f(x, a, m) + b(x, a, m) · p

Hamilton-Jacobi-Bellman equation, given the mean field flow:{
−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m(t), ∇u(t, x))) = 0,

u(T, x) = g(x, m(T ))

Recovering the optimal control: optimizer of the Hamiltonian

Unique action minimizes H under strict convexity assumptions

Warning: Another convention: H(x, m, p) = mina L(x, a, m, p) ⇒ −H in HJB.
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Forward-backward PDE system for MFG

The equilibrium control minimizes the Hamiltonian:

α̂(t, x) = argmax
a

−L(x, a, m(t), ∇u(t, x))

where (m, u) solve the forward-backward PDE system:

Forward equation for the mean field:{
∂tm(t, x) − σ2

2 ∆m(t, x) + div(m(t, x)Hp(x, m(t), ∇u(t, x))) = 0,

m(0, x) = m0(x)

Backward equation for the value function:{
−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m(t), ∇u(t, x))) = 0,

u(T, x) = g(x, m(T ))

Challenge: We cannot (fully) solve one equation before the other!

4 / 40



Exercises

Exercise
For the following drift and running cost functions (d = 1 to simplicity), write the KFP
equation, the Hamiltonian and the HJB equation:

Linear-quadratic (LQ):

b(x, a, m) = Ax+Ba+Ām̄2, f(x, a, m) = Qx2+Ra2+Q̄m̄2, g(x, m) = QT x2+Q̄T m̄2

with m̄ =
∫

ξm(ξ)dξ

Congestion: b(x, a, m) = a, f(x, a, m) = m(x)|a|2

Aversion: b(x, a, m) = a, f(x, a, m) = |a|2 + m(x)

Exercise
Derive optimality conditions for the social optimum problem.
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Social optimum: Mean Field Control

The social optimum problem is referred to as

mean field (type) control

control of McKean-Vlasov (MKV) dynamics

Definition (Mean field control (MFC) problem)
α∗ is a solution to the MFC problem if it minimizes

JMF C(α) = E
[∫ T

0
f(Xα

t , αt, mα
t )dt + g(Xα

T , mα
T )

]
.

Main difference with MFG: here not only X but m too is controlled by α.

Optimality conditions? Several approaches:

Dynamic programming value function depending on m; value function V

Calculus of variations taking m as a state; adjoint state u

Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y
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Forward-backward PDE system for MFC

Approach by calculus of variations, assuming that X has a density in L2. The optimal
control minimizes the Hamiltonian:

α∗(t, x) = argmax
a

−L(t, x, a, ∇u(t, x))

where (m, u) solve the forward-backward PDE system:

Forward equation for the mean field:{
∂tm(t, x) − σ2

2 ∆m(t, x) + div(m(t, x)Hp(x, m(t), ∇u(t, x))) = 0,

m(0, x) = m0(x)

Backward equation for the value function adjoint state:
−∂tu(t, x) − σ2

2 ∆u(t, x) + H(x, m(t), ∇u(t, x)))

+
∫

∂mH(ξ, m(t), ∇u(t, ξ))(x)m(t, ξ)dξ = 0,

u(T, x) = g(x, m(T )) +
∫

∂mg(ξ, m(T ))(x)m(t, ξ)dξ

where ∂mH denotes the derivative wrt m, so that for a differentiable φ : L2(Rd) → R,

d

dθ
φ(m + θm̃)∣∣θ=0

=
∫

∂mφ(m)(ξ)m̃(ξ)dξ.

See e.g. [Bensoussan et al., 2013], Section 4.1.
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Linear-Quadratic (LQ) Setting

In this section, we are going to focus on the following example.

Example (Linear-Quadratic (LQ) Setting)

b(x, a, m) = Ax + Ām̄ + Ba

f(x, a, m) = 1
2

[
x⊤Qx + (x − Sm̄)⊤Q̄(x − Sm̄) + a⊤Ca

]
g(x, m) = 1

2
[
x⊤QT x + (x − ST m̄)⊤Q̄T (x − ST m̄)

]
m̄ =

∫
ξm(ξ)dξ

where A, Ā, . . . are constant matrices of suitable dimensions.

So:
The interactions are only through the mean.
The drift is linear in the state, the action and the mean.
The costs are quadratic in these variables.

Key point: MFG equilibrium can be computed with ODEs. No need to solve PDEs.
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HJB equation

For simplicity, consider the case d = 1.
Hamiltonian:

H(x, m, p) = max
a

−L(x, a, m, p), L(x, a, m, p) = f(x, a, m) + b(x, a, m) · p

Here
L(x, a, m, p) = 1

2(Qx2 + Q̄(x − Sm̄)2 + Ca2) + (Ax + Ām̄ + Ba)p

The optimal a satisfies (first order optimality condition):

Ca + Bp = 0 ⇒ a = −B

C
p

So

H(x, m, p) = −[ 1
2 (Qx2 + Q̄(x − Sm̄)2 + B2

C
p2) + (Ax + Ām̄ − B2

C
p)p]

= −1
2 [Qx2 + Q̄(x − Sm̄)2] − [Ax + Ām̄]p + B2

2C
p2

and Hp(x, m, p) = −[Ax + Ām̄] + B2

C
p

Hamilton-Jacobi-Bellman equation:
−∂tu(t, x) − σ2

2 ∆u(t, x)
− 1

2 [Qx2 + Q̄(x − Sm̄t)2] − [Ax + Ām̄t]∇u(t, x) + B2

2C
|∇u(t, x)|2 = 0,

u(T, x) = QT x2 + Q̄T (x − Sm̄(T ))2
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HJB equation: solution

Hamilton-Jacobi-Bellman equation:
−∂tu(t, x) − σ2

2 ∆u(t, x)
− 1

2 [Qx2 + Q̄(x − Sm̄t)2] − [Ax + Ām̄t]∇u(t, x) + B2

2C
|∇u(t, x)|2 = 0,

u(T, x) = QT x2 + Q̄T (x − Sm̄(T ))2

First remark: The value function has a special form (ansatz):

u(t, x) = 1
2ptx

2 + rtx + st,

with p, r, s : [0, T ] → R to be determined. We have:
∂tu(t, x) = 1

2 ṗtx
2 + ṙtx + ṡt

∇u(t, x) = ptx + rt, and ∆u(t, x) = pt

Second remark: This equation depends on m only through m̄. We do not need the
full KFP equation

∂tm(t, x) − σ2

2 ∆m(t, x) + div(m(t, x)Hp(x, m(t), ∇u(t, x))) = 0

but only the ODE for the mean, obtained by integrating the KFP:

dm̄

dt
−

∫
m(t, x)Hp(x, m(t), ∇u(t, x)))dx = 0,

Note:
∫

m(t, x)Hp(x, m(t), ∇u(t, x)))dx = −[Am̄t + Ām̄t] + B2

C
[ptm̄t + rt]
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Forward-backward ODE system for MFG

Consequence: the MFG solution is given by:
Mean: m̄α̂

t = zt,

Control: α̂(t, x) = −B

C
(ptx + rt),

Value function: u(t, x) = 1
2ptx

2 + rtx + st,

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

dz

dt
= (A + Ā − B2C−1pt)zt − B2C−1rt, z0 = m̄0,

−dp

dt
= 2Apt − B2C−1p2

t + Q + Q̄, pT = QT + Q̄T ,

−dr

dt
= (A − B2C−1pt)rt + (ptĀ − Q̄S)zt, rT = −Q̄T ST zT ,

−ds

dt
= νpt − 1

2B2C−1r2
t + rtĀzt + 1

2S2Q̄z2
t , sT = 1

2 Q̄T S2
T z2

T .

Key points:

coupling between z and r

forward-backward structure
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= (A + Ā − B2C−1pt)zt − B2C−1rt, z0 = m̄0,

−dp

dt
= 2Apt − B2C−1p2

t + Q + Q̄, pT = QT + Q̄T ,

−dr

dt
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= (A + Ā − B2C−1pt)zt − B2C−1rt, z0 = m̄0,

−dp

dt
= 2Apt − B2C−1p2

t + Q + Q̄, pT = QT + Q̄T ,

−dr

dt
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LQ MFC

We can apply the same strategy to the MFC PDE system.
Recall:

H(x, m, p) = −1
2 [Qx2 + Q̄(x − Sm̄)2] − [Ax + Ām̄]p + B2

2C
p2

So:

d

dθ
H(x, m + θ ¯̃m, p)∣∣θ=0

= [Q̄(x − Sm̄)S ¯̃m] − [Ā ¯̃m]p

=
∫ [

Q̄(x − Sm̄)S − Āp
]

ξm̃(ξ)dξ

Hence, by definition, ∂mH(x, m, p)(ξ) = [Q̄(x − Sm̄)S − Āp]ξ, and thus (swap x and ξ)∫
∂mH(ξ, m, ∇u(t, ξ))(x)m(ξ)dξ =

∫
[Q̄(ξ − Sm̄)S − Ā∇u(t, ξ)]xm(ξ)dξ

=
[

Q̄(S − S2)m̄ − Ā

∫
∇u(t, ξ)m(ξ)dξ

]
x

=
[
Q̄(S − S2)m̄ − Ā(p̌tm̄t + řt)

]
x

where we use an ansatz u(t, x) = 1
2 p̌tx

2 + řtx + št
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Forward-backward ODE system for MFC

We obtain that the MFC optimum is given by:

Mean: m̄α∗
t = žt,

Control: α∗(t, x) = −B

C
(p̌tx + řt),

Value: JMF C(α∗) = 1
2 p̌0(σ2

0 + m̄2
0) + ř0m̄0 + š0 + (1 − ST )Q̄T ST ž2

T

−
∫ T

0

[
(p̌tžt + řt)Āžt − (1 − St)Q̄Sž2

t

]
dt

where (ž, p̌, ř, š) solve the following system of ODEs:

dž

dt
= (A + Ā − B2C−1p̌t)žt − B2C−1řt, ž0 = m̄0,

−dp̌

dt
= 2Ap̌t − B2C−1p̌2

t + Q + Q̄, p̌T = QT + Q̄T ,

−dř

dt
= (A + Ā − B2C−1p̌t)řt + (2p̌tĀ − 2Q̄S + Q̄S2)žt, řT = (−2Q̄T ST + Q̄T S2

T )žT ,

−ds

dt
= νp̌t − 1

2B2C−1ř2
t + řtĀžt + 1

2S2Q̄ž2
t , šT = 1

2 Q̄T S2
T ž2

T .

Same system as for MFG, except for a few terms
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−dp̌

dt
= 2Ap̌t − B2C−1p̌2

t + Q + Q̄, p̌T = QT + Q̄T ,

−dř
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t , šT = 1
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Linear-Quadratic (LQ) Setting

Remarks:

LQ models are useful because they have (almost) analytical solutions

The above model is inspired by [Bensoussan et al., 2013], Chapter 6

It is possible to have much more general LQ MFG models (see e.g.,
[Huang et al., 2006], [Barreiro-Gomez and Tembine, 2021], [Graber, 2016], . . . )

Extension with common noise, see e.g. [Carmona et al., 2015, Graber, 2016]

In some cases, using a different ansatz, the equations can be decoupled, see
[Malhamé and Graves, 2020] (AMS’20 minicourse lecture notes)

The equation for p can be solved by itself; sometimes it has an analytical
solution, see e.g. [Carmona and Delarue, 2018], p. 110

The equation for s can be solved by itself after computing p, z, r

In the sequel, we focus on computing z and r
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Time Discretization

The experiments that follow are borrowed from [Laurière, 2021], Section 2.

In practice, the following algorithms are implemented a discrete time system:

We focus on the coupled system for (z, r)

Uniform grid on [0, T ], step ∆t, tn = n × ∆t, n = 0, . . . , NT

Approximate z, r : [0, T ] → R by vectors Z, R ∈ RNT +1

Discrete ODE system:

Zn+1 − Zn

∆t
= (A + Ā − B2C−1P n)Zn+1 − B2C−1Rn,

Z0 = m̄0,

− Rn+1 − Rn

∆t
= (A − B2C−1P n)Rn + (P nĀ − Q̄S)Zn+1,

RNT = −Q̄T ST ZNT .

To alleviate the notation, most of the algorithms are described using the ODEs
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Algorithm 1: Banach-Picard Iterations

Algorithm: Fixed-point iterations
Input: Initial guess (z̃, r̃); number of iterations K
Output: Approximation of (ẑ, r̂)

1 Initialize z(0) = z̃, r(0) = r̃
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let r(k+1) be the solution to:

−dr

dt
= (A − ptB

2C−1)rt + (ptĀ − Q̄S)z(k)
t , rT = −Q̄T ST z

(k)
T

4 Let z(k+1) be the solution to:

dz

dt
= (A + Ā − B2C−1)zt − B2C−1r

(k+1)
t , z0 = m̄0

5 return (z(K), r(K))
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Algorithm 1: Banach-Picard Iterations – Illustration 1

Test case 1 (for the values of A, Ā, . . . , see [Laurière, 2021], Section 2)

0 10 20 30 40 50
iteration k

10 5

10 3

10 1 |z(k + 1) z(k)|
|r(k + 1) r(k)|

0.0 0.2 0.4 0.6 0.8 1.0
time
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1.0

z
r
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Algorithm 1: Banach-Picard Iterations – Illustration 2

Test case 2 (for the values of A, Ā, . . . , see [Laurière, 2021], Section 2)

0 50 100 150 200
iteration k

101

102 |z(k + 1) z(k)|
|r(k + 1) r(k)|

0.0 0.2 0.4 0.6 0.8 1.0
time

50

0

50
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r

0.0 0.2 0.4 0.6 0.8 1.0
time

50

0

50

z
r
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Algorithm 1: Banach-Picard Iterations – Remarks

In fact this algorithm is related to a proof technique for the existence and
uniqueness of a Nash equilibrium (see lecture 1)

See e.g. [Huang et al., 2006]

Here, the approach converges if z(k) 7→ r(k) 7→ z(k+1) is a strict contraction

Typically true if T is small enough or the coefficients are small enough

Otherwise, it is common to see non-convergence

Can we “fix” this algorithm?
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Banach-Picard Iterations with Damping

Algorithm: Fixed-point iterations with damping
Input: Initial guess (z̃, r̃); damping δ ∈ [0, 1); number of iterations K
Output: Approximation of (ẑ, r̂)

1 Initialize z(0) = z̃(0) = z̃, r(0) = r̃
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let r(k+1) be the solution to:

−dr

dt
= (A − ptB

2C−1)rt + (ptĀ − Q̄S)z̃(k)
t , rT = −Q̄T ST z̃

(k)
T

4 Let z(k+1) be the solution to:

dz

dt
= (A + Ā − B2C−1)zt − B2C−1r

(k+1)
t , z0 = m̄0

5 Let z̃(k+1) = δz̃(k) + (1 − δ)z(k+1)

6 return (z(K), r(K))
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Algorithm 1’: Banach-Picard Iterations with Damping – Illustration 1

Test case 2
Damping = 0.1

0 50 100 150 200
iteration k
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Algorithm 1’: Banach-Picard Iterations with Damping – Illustration 2

Test case 2
Damping = 0.01

0 50 100 150 200
iteration k

1.8 × 100
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Algorithm 2: Fictitious Play

Introduced by [Brown, 1951], [Robinson, 1951]

Converge proof for several classes of games

In the MFG setting, FP has been introduced in
[Cardaliaguet and Hadikhanloo, 2017], with a proof of convergence for potential
MFGs; then extended to MFGs with monotonicity [Hadikhanloo, 2018],
[Hadikhanloo and Silva, 2019]

Related to learning in MFGs: [Perrin et al., 2020] for continuous-time FP under
monotonicity condition, [Geist et al., 2022, Lavigne and Pfeiffer, 2022] for
discrete-time FP in some potential MFGs; In linear-quadratic MFGs, a rate of
convergence has been obtained by [Delarue and Vasileiadis, 2021]

See Lecture 8 for more details on FP with RL for MFGs
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Algorithm 2: Fictitious Play

Algorithm: Fictitious Play
Input: Initial guess (z̃, r̃); number of iterations K
Output: Approximation of (ẑ, r̂)

1 Initialize z(0) = z̃(0) = z̃, r(0) = r̃
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let r(k+1) be the solution to:

−dr

dt
= (A − ptB

2C−1)rt + (ptĀ − Q̄S)z̃(k)
t , rT = −Q̄T ST z̃

(k)
T

4 Let z(k+1) be the solution to:

dz

dt
= (A + Ā − B2C−1)zt − B2C−1r

(k+1)
t , z0 = m̄0

5 Let z̃(k+1) = k
k+1 z̃(k) + 1

k+1 z(k+1)

6 return (z(K), r(K))
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Algorithm 2: Fictitious Play – Illustration

Test case 2

0 50 100 150 200
iteration k

10 5

10 3

10 1
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0.0 0.2 0.4 0.6 0.8 1.0
time

1

0

1

2

z
r

25 / 40



Algorithms 1, 1’ & 2: Common Framework

Algorithm: General fixed-point iterations
Input: Initial guess (z̃, r̃); damping δ(·); number of iterations K
Output: Approximation of (ẑ, r̂)

1 Initialize z(0) = z̃(0) = z̃, r(0) = r̃
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let r(k+1) be the solution to:

−dr

dt
= (A − ptB

2C−1)rt + (ptĀ − Q̄S)z̃(k)
t , rT = −Q̄T ST z̃

(k)
T

4 Let z(k+1) be the solution to:

dz

dt
= (A + Ā − B2C−1)zt − B2C−1r

(k+1)
t , z0 = m̄0

5 Let z̃(k+1) = δ(k)z̃(k) + (1 − δ(k))z(k+1)

6 return (z(K), r(K))

Pure fixed point and Fictitious play are special cases

Remark: Could put the damping on r instead of z.
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Algorithm 3: Shooting Method

Intuition: instead of solving a backward equation, choose a starting point and try
to shoot for the right terminal point

Concretely: replace the forward-backward system
dz

dt
= (A + Ā − B2C−1pt)zt − B2C−1rt, z0 = m̄0,

−dr

dt
= (A − B2C−1pt)rt + (ptĀ − Q̄S)zt, rT = −Q̄T ST zT

by the forward-forward system
dζ

dt
= (A + Ā − B2C−1pt)ζt − B2C−1ρt, z0 = m̄0,

−dρ

dt
= (A − B2C−1pt)ρt + (ptĀ − Q̄S)ζt, ρ0 = chosen

and try to ensure: ρT = −Q̄T ST ζT
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Algorithm 4: Newton Method – Intuition

Newton method in dimension 1:

Look for x∗ such that: f(x∗) = 0

Start from initial guess x0

Repeat:

xk+1 = xk − f(xk)
f′(xk)

In high dimension, we avoid computing the inverse of f′(xk)

xk+1 = xk + x̃k, where x̃k solves:

f′(xk) x̃k = −f(xk)

which boils down to solving a linear system
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Algorithm 4: Newton Method – Implementation

Recast the problem:

(Z, R) solve forward-forward discrete system ⇔ F(Z, R) = 0

F takes into account the initial and terminal conditions

DF = differential of this operator

Exercise
Express F and DF .
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Algorithm 4: Newton Method – Implementation

Algorithm: Newton Iterations
Input: Initial guess (Z̃, R̃); number of iterations K
Output: Approximation of (ẑ, r̂)

1 Initialize (Z(0), R(0)) = (Z̃, R̃)
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let (Z̃(k+1), R̃(k+1)) solve

DF(Z(k), R(k))(Z̃(k+1), R̃(k+1)) = −F(Z(k), R(k))

4 Let (Z(k+1), R(k+1)) = (Z̃(k+1), R̃(k+1)) + (Z(k), R(k))
5 return (Z(K), R(K))

30 / 40



Algorithm 4: Newton Method – Illustration

Test case 2

1 2
iteration
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Algorithm 4: Newton Method – Explanation

Reminder: Discrete ODE system:

Zn+1 − Zn

∆t
= (A + Ā − B2C−1P n)Zn+1 − B2C−1Rn,

Z0 = m̄0,

− Rn+1 − Rn

∆t
= (A − B2C−1P n)Rn + (P nĀ − Q̄S)Zn+1,

RNT = −Q̄T ST ZNT .

Can be rewritten as a linear system:

M
(

Z
R

)
+ B = 0

Newton’s method solves a linear system in a single iteration.

In hindsight: we did not need any of the previous methods! We could have
simply used a solver for linear systems of equations.

The methods were applied in the LQ setting only for pedagogical purposes.
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Price of Anarchy – Illustration

Introduced by [Koutsoupias and Papadimitriou, 1999]

Extension to MFGs: assuming there exist a unique MFG equilibrium (α̂, m̂) and
a unique MFC optimum α∗

P oA = JMF G(α̂; m̂)
JMF C(α∗)

Ratio of the expected cost for a typical player in the MFG by her expected cost in
the MFC

See in particular [Carmona et al., 2019] for explicit computations in the LQ case
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Price of Anarchy – Illustration
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1a0TKAnc1Ng5LQ36ZqBPTToJX6oOkoSkd?usp=sharing

ODE system for Linear-quadratic MFG

Solved by fixed point, damped fixed point, fictitious play and Newton’s method

35 / 40
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Exercises

Exercise
Modify the previous code to solve the ODE system for MFC.

Compute the price of anarchy.
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MFG PDE System

Recall the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) + H(x, m(t, ·), ∇ u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·, m(t), ∇ u(t, ·))) (x),

u(T, x) = g(x, m(T, ·)), m(0, x) = m0(x)

Goals:

1 introduce a discrete version of this system → numerical scheme

2 solve it numerically → algorithm
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Properties

For (1): some desirable properties:

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?
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Two Numerical Schemes

Numerical schemes: We are going to illustrate two approaches:

1 Finite difference scheme introduced in [Achdou and Capuzzo-Dolcetta, 2010]

2 Semi-Lagrangian scheme introduced in [Carlini and Silva, 2014]

There are other options such as finite elements, see e.g.
[Benamou and Carlier, 2015, Andreev, 2017].
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Summary

1 Linear-Quadratic MFG and MFC

2 Forward-backward ODE system

3 Several algorithms

Remarks:

1 In the LQ case, these algorithms are just for pedagogical purposes

2 But analogous algorithms can be useful for finite-state MFGs

3 Similarly for continuous-space MFGs up to space-discretization
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu




References I

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136–1162.

[Andreev, 2017] Andreev, R. (2017).
Preconditioning the augmented lagrangian method for instationary mean field games with
diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763–A2783.

[Barreiro-Gomez and Tembine, 2021] Barreiro-Gomez, J. and Tembine, H. (2021).
Mean-field-type Games for Engineers.
CRC Press.

[Benamou and Carlier, 2015] Benamou, J.-D. and Carlier, G. (2015).
Augmented lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1–26.

[Bensoussan et al., 2013] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2013).
Mean field games and mean field type control theory.
Springer Briefs in Mathematics. Springer, New York.

[Brown, 1951] Brown, G. W. (1951).
Iterative solution of games by fictitious play.
Activity analysis of production and allocation, 13(1):374–376.

1 / 5



References II

[Cardaliaguet and Hadikhanloo, 2017] Cardaliaguet, P. and Hadikhanloo, S. (2017).
Learning in mean field games: the fictitious play.
ESAIM Control Optim. Calc. Var., 23(2):569–591.

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45–67.

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Carmona et al., 2015] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk.
Commun. Math. Sci., 13(4):911–933.

[Carmona et al., 2019] Carmona, R., Graves, C. V., and Tan, Z. (2019).
Price of anarchy for mean field games.
In CEMRACS 2017—numerical methods for stochastic models: control, uncertainty
quantification, mean-field, volume 65 of ESAIM Proc. Surveys, pages 349–383. EDP Sci., Les
Ulis.

2 / 5



References III

[Delarue and Vasileiadis, 2021] Delarue, F. and Vasileiadis, A. (2021).
Exploration noise for learning linear-quadratic mean field games.
arXiv preprint arXiv:2107.00839.

[Geist et al., 2022] Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos,
R., and Pietquin, O. (2022).
Concave utility reinforcement learning: The mean-field game viewpoint.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 489–497.

[Graber, 2016] Graber, P. J. (2016).
Linear quadratic mean field type control and mean field games with common noise, with
application to production of an exhaustible resource.
Applied Mathematics & Optimization, 74:459–486.

[Hadikhanloo, 2018] Hadikhanloo, S. (2018).
Learning in mean field games.
PhD thesis, PSL Research University.

[Hadikhanloo and Silva, 2019] Hadikhanloo, S. and Silva, F. J. (2019).
Finite mean field games: fictitious play and convergence to a first order continuous mean field
game.
Journal de Mathématiques Pures et Appliquées, 132:369–397.

3 / 5



References IV

[Huang et al., 2006] Huang, M., Malhamé, R. P., Caines, P. E., et al. (2006).
Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the
nash certainty equivalence principle.
Communications in Information & Systems, 6(3):221–252.

[Koutsoupias and Papadimitriou, 1999] Koutsoupias, E. and Papadimitriou, C. (1999).
Worst-case equilibria.
In Annual symposium on theoretical aspects of computer science, pages 404–413. Springer.

[Laurière, 2021] Laurière, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.

[Malhamé and Graves, 2020] Malhamé, R. P. and Graves, C. (2020).
Mean field games: A paradigm for individual-mass interactions.
In Proceedings of Symposia in Applied Mathematics, volume 78, pages 3–32.

[Perrin et al., 2020] Perrin, S., Pérolat, J., Laurière, M., Geist, M., Elie, R., and Pietquin, O.
(2020).
Fictitious play for mean field games: Continuous time analysis and applications.
Advances in Neural Information Processing Systems.

4 / 5



References V

[Robinson, 1951] Robinson, J. (1951).
An iterative method of solving a game.
Annals of mathematics, pages 296–301.

5 / 5




	Introduction
	Linear-Quadratic Setting
	Algorithms
	Pure Fixed Point Iterations (Banach-Picard)
	Damped Fixed Point Iterations
	Fictitious Play
	Shooting Method
	Newton Method
	MFC & Price of Anarchy

	Preview of numerical schemes for the PDE system
	Conclusion
	Appendix

