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1. Introduction



Continuous time, continuous space MFG

@ Time horizon T' < 400, t € [0, 7]

@ Player’s control (deterministic) «., typically:

» closed-loop Markovian: a; = a(t, X¢)
» open-loop: a: = a(t,w) progressively measurable

@ Player’s dynamics:
dX; = b(t, Xt, o, i) dt + odWs, Xo ~mo

@ Population dynamics: Kolmogorov-Fokker-Planck equation
2
dml(t,z) — %Am(t,x) + div(b(t, z, a(t, 2))m(t, ) =0,  mu—o = mo

@ To stress the dependence on the control, we will sometimes write X* and m*®.
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Continuous time, continuous space MFG

Cost: dependence on the mean field

@ non-local (typically “regularizing” operator)

f(ta Xhahmt)

@ local (if the population distribution has a density, still denoted by m)

f(t7 Xt7 At m(t’ Xt))
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HJB equation

@ Hamiltonian:

H(x’ m7p) = max _L(l‘7 a” m7p)’ L(x7 a? m7p) = f(:l:7 a” m) + b(:l:, a” m) : p

@ Hamilton-Jacobi-Bellman equation, given the mean field flow:

{—@u(t, x) — %ZAu(t,m) + H(z,m(t), Vu(t,z))) =0,
w(T,x) = g(z,m(T))

@ Recovering the optimal control: optimizer of the Hamiltonian

@ Unique action minimizes H under strict convexity assumptions

3/40



HJB equation

@ Hamiltonian:

H(x’ m7p) = max _L(l‘7 a” m7p)’ L(x7 a? m7p) = f(l‘7 a” m) + b(:l:, a” m) : p

@ Hamilton-Jacobi-Bellman equation, given the mean field flow:

{—@u(t, x) — %ZAu(t,m) + H(z,m(t), Vu(t,z))) =0,
w(T,x) = g(z,m(T))

@ Recovering the optimal control: optimizer of the Hamiltonian
@ Unique action minimizes H under strict convexity assumptions

@ Warning: Another convention: H(x, m,p) = min, L(z,a,m,p) = —H in HJB.
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Forward-backward PDE system for MFG

The equilibrium control minimizes the Hamiltonian:

a(t,z) = argmax —L(z, a,m(t), Vu(t, x))

a

where (m,u) solve the forward-backward PDE system:

@ Forward equation for the mean field:

{@m(t, x) — ";Am(t, z) + div(m(t, z) Hp(z, m(t), Vu(t, x))) = 0,

m(0,z) = mo(x)
@ Backward equation for the value function:

{—atu(t, x) — cr;Au(t, z) + H(z,m(t), Vu(t,z))) =0,
u(T,z) = g(z,m(T))

Challenge: We cannot (fully) solve one equation before the other!
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Exercises

For the following drift and running cost functions (d = 1 to simplicity), write the KFP
equation, the Hamiltonian and the HJB equation:

@ Linear-quadratic (LQ):
b(z,a,m) = Azx+Ba+Am?, flz,a,m) = Qw2+Ra2+Qm2,g(m, m) = Qrz’+Qrm?

with 7 = [ £m(€)de
@ Congestion: b(z,a,m) = a, f(x,a,m) = m(z)|a|?
@ Aversion: b(z,a,m) = a, f(x,a,m) = |a|® + m(z)

Derive optimality conditions for the social optimum problem. I
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Social optimum: Mean Field Control

The social optimum problem is referred to as
@ mean field (type) control
@ control of McKean-Vlasov (MKV) dynamics

Definition (Mean field control (MFC) problem)
a is a solution to the MFC problem if it minimizes

T
JMFC(O{) =FE {/ F(XE, o, my)dt + g( X7, m7) | .
0

Main difference with MFG: here not only X but m too is controlled by «.

6/40



Social optimum: Mean Field Control

The social optimum problem is referred to as
@ mean field (type) control
@ control of McKean-Vlasov (MKV) dynamics

Definition (Mean field control (MFC) problem)
o™ is a solution to the MFC problem if it minimizes

T
JMFC(a) =E { / X2, e, m)dt + g(XF,mT)
0

Main difference with MFG: here not only X but m too is controlled by «.

Optimality conditions? Several approaches:
@ Dynamic programming value function depending on m; value function V/
@ Calculus of variations taking m as a state; adjoint state u
@ Pontryagin’s maximum principle for the (MKV process) X ; adjoint state Y

6/40



Forward-backward PDE system for MFC

Approach by calculus of variations, assuming that X has a density in L. The optimal
control minimizes the Hamiltonian:

o (t,z) = argmax —L(t, x, a, Vu(t, z))
where (m,u) solve the forward-backward PDE system:

@ Forward equation for the mean field:
{&m(t, x) — %Am(t, z) + div(m(t, z) Hp(z, m(t), Vu(t, x))) = 0,
m(0,z) = mo(x)
@ Backward equation for the vatue-funetion adjoint state:
—du(t, z) — % Au(t, ) + H(z, m(t), Vu(t, z)))
+ [ mo, Vut. 9)0mir, s =0,
(T, x) = g(a,m(T)) + [ Bmg(€,m(T))(x)m(t, €)dE

where 9,,, H denotes the derivative wrt m, so that for a differentiable ¢ : L*(R?) — R,
d - -
petms o), = [ dustm@m(erie

See e.g. [Bensoussan et al., 2013], Section 4.1.
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2. Linear-Quadratic Setting



Linear-Quadratic (LQ) Setting

In this section, we are going to focus on the following example.
Example (Linear-Quadratic (LQ) Setting)

b(z,a,m) = Az + Am + Ba
e 70) — % [+7Qx + (z — )@z — Sm) + o Ca]
g@,m) = 3 [+ Qra + (@~ 5rm) @r(w — Srm)]
= / em(e

where A, A, ... are constant matrices of suitable dimensions.
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Linear-Quadratic (LQ) Setting

In this section, we are going to focus on the following example.
Example (Linear-Quadratic (LQ) Setting)

b(z,a,m) = Az + Am + Ba
f(z,a,m) = % [¢"Qz+ (z— Sm)  Q(z — Sm) + a' Cad]
g@,m) = 3 [+ Qra + (@~ 5rm) @r(w — Srm)]
= / fmie

where A, A, ... are constant matrices of suitable dimensions.

So:
@ The interactions are only through the mean.
@ The drift is linear in the state, the action and the mean.
@ The costs are quadratic in these variables.

Key point: MFG equilibrium can be computed with ODEs. No need to solve PDEs.
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HJB equation

For simplicity, consider the case d = 1.
Hamiltonian:
H(z,m,p) = max —L(z,a,m,p), L(z,a,m,p)= f(z,a,m)+b(x,a,m) p
Here 1 ) )
L(z,a,m,p) = E(sz + Q(z — Sm)? + Cad®) + (Ax 4+ Am + Ba)p
The optimal « satisfies (first order optimality condition):

Ca-i—Bp—Oéa——gp
So
1 B? , - B?
H(z,m,p) = [5(@1 + Q(z — Sm)* +6P )+(A$+Am—?P)P]
_ _ B2
R amn2] 52
= 2[Qw +Q(z — Sm)”] — [Az + Am]p + Yol

and Hy(z,m,p) = —[Az + Am] + %zp
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HJB equation

For simplicity, consider the case d = 1.
Hamiltonian:
H(z,m,p) = max —L(z,a,m,p), L(z,a,m,p)= f(z,a,m)+b(x,a,m) p
Here 1 ) )
L(z,a,m,p) = E(sz + Q(z — Sm)? + Cad®) + (Ax 4+ Am + Ba)p
The optimal « satisfies (first order optimality condition):

Ca-i—Bp—Oéa——gp
So
1 B? , - B?
H(z,m,p) = [5(@1 + Q(z — Sm)* "‘610 )+(A$+Am—?P)P]
_ _ B2
R amn2] 52
= 2[Qw +Q(z — Sm)”] — [Az + Am]p + Yol

and Hy(z,m,p) = —[Az + Am] + Zp
Hamilton-Jacobi-Bellman equation:
—Owu(t, z) — ";Au(t,m)
—1[Q2* + Q(x — Sm)?] — [Az + Am]Vu(t, z) + 2 |Vu(t, 2)|? = 0,
w(T, z) = Qra* + Qr(z — Sm(T))? 0/40



HJB equation: solution

Hamilton-Jacobi-Bellman equation:
—Owu(t,x) — ";Au(t,x)
—1[Q2* + Q(z — Sm)?] — [Az + Am|Vu(t, z) + 2 |Vu(t, 2)|? = 0,
w(T, z) = Qra® + Qr(xz — Sm(T))?
First remark: The value function has a special form (ansatz):

1
u(t,x) = ipth + rex + S¢,

with p,r, s : [0,7] — R to be determined. We have:
o 8tu(t7 1‘) = %ptI2 + ’f‘t.l‘ + St
@ Vu(t,z) = pix + ¢, and Au(t,xz) = p;

10/40



HJB equation: solution

Hamilton-Jacobi-Bellman equation:
—Owu(t,x) — ";Au(t,x)
—1[Q2* + Q(z — Sm)?] — [Az + Am|Vu(t, z) + 2 |Vu(t, 2)|? = 0,
w(T,z) = Qra® + Qr(z — Sm(T))*
First remark: The value function has a special form (ansatz):

1
u(t,x) = ipth + rex + S¢,

with p,r, s : [0,7] — R to be determined. We have:
@ Owu(t,x) = %pth + e+ S¢
@ Vu(t,z) = pix + ¢, and Au(t,xz) = p;
Second remark: This equation depends on m only through m. We do not need the
full KFP equation
om(t,z) — %QAm(t, x) + div(m(t, ) Hp(z, m(t), Vu(t,z))) =0

but only the ODE for the mean, obtained by integrating the KFP:
dm / m(t, ) Hy(z, m(e), Vult, 2)))dz = 0,

Note: [‘m(t,z)Hy(x, m(t), Vu(t,z)))de = —[Am, + Amy] + %[ptmz + 74
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Forward-backward ODE system for MFG

Consequence: the MFG solution is given by:

Mean: me =z,
R B
Control: a(t,z) = —a(ptx +7),
. 1
Value function: u(t,z) = =pix® + rex + st

2
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Forward-backward ODE system for MFG

Consequence: the MFG solution is given by:

Mean: me =z,
R B
Control: a(t,z) = —a(ptx +7),
. 1
Value function: u(t,z) = =pix® + rex + st

2

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

f; (A+ A— B*C 'pi)z — B2C ', 20 = 1o,
d B _ _
—S =24p — B*CT'p 4+ Q4 Q, pr = Qr+Qr,
dr 9 1 . _
= (A— B*C™'pi)re + (peA — Q5) 2, rr = —QrSrzr,
d - 1 o= 1=
—d—j =Upt — *B Cc~ 7‘,5 + riAze + §SQQZ1527 ST = §QTSTQ"Z%
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Forward-backward ODE system for MFG

Consequence: the MFG solution is given by:

Mean: me =z,
R B
Control: a(t,z) = —a(ptx +7),
. 1
Value function: u(t,z) = =pix® + rex + st

2

where (z, p, r, s) solve the following system of ordinary differential equations (ODEs):

Zj (A+ A— B*C 'pi)z — B2C ', 20 = 1o,
d B _ _
—S =24p — B*CT'p 4+ Q4 Q, pr=Qr +Qr,
dr 9 1 . _
= (A— B*C™'pi)re + (peA — Q5) 2, rr = —QrSrzr,
d - 1 o= 1=
—d—j =Upt — *B Cc~ 7‘,5 + riAze + §SQQ21527 ST = §QTSTQ"Z%

Key points:
@ coupling between z and r

@ forward-backward structure
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LQ MFC

We can apply the same strategy to the MFC PDE system.
Recall:

2
He,m,p) = —31Qa* + Qu — $m)?] - [Az + Amlp + 2-p*
So:

C%H(axm + Hﬁl,p)|9:0 = [Q(z — Sm)Sm] — [Am]p

_ / [Q(x — Sim)S — Ap) e (€)de
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LQ MFC

We can apply the same strategy to the MFC PDE system.
Recall:

2
He,m,p) = —31Qa* + Qu — $m)?] - [Az + Amlp + 2-p*
So:

C%H(axm + Hﬁl,p)|9:0 = [Q(z — Sm)Sm] — [Am]p

— [ [t - smys - As] emicyae
Hence, by definition, d. H (z, m, p)(€) = [O(z — Sm)S — Ap]¢, and thus (swap = and &)
[outttem Tut. O)@mi = [10(e - sm)s — AVute, oy
- [Q(S St A / 0 s>m<£>d£] :

= [Q(S — §*)m — A(priy + 1) x

where we use an ansatz u(t,z) = $p:x® + frx + &
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Forward-backward ODE system for MFC

We obtain that the MFC optimum is given by:

Mean: my = %,
Control: o (t,x) = —g(ﬁtl’ + 7)),
Value: JMFC(Oé*) = %}50(03 -+ mg) + romo + So + (1 — ST)QTSTé%
T
- / [((Br2 + 70) Az — (1 - S)QSZ | dt
0
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Forward-backward ODE system for MFC

We obtain that the MFC optimum is given by:

Mean: my = Z,
Control: o (t,x) = —g(ﬁt:r + 7)),
Value: JIWFC(Oé*) = %}50(0’3 -+ mg) + romo + So + (1 — ST)QTSTé%
T
- / [((Br2 + 70) Az — (1 - S)QSZ | dt
0

where (Z,p, 7, ) solve the following system of ODEs:

dz

5= (A+A—B*C 'pi)% — B*C ™', %) = mo,
Ay .. . _ ) i
—P = 24p, - BCT'p 4+ Q4+ Q, pr = Qr+Qr,
dr . 1 e sl - o
—d—: = (A + A— BQC 1Pt)7‘t + (2ptA — 2QS + QSQ)Zh rT = (_2QTST + QTS%)ZTv
ds . 1 1. Lo 1 o=, . 1= .
g VP §BZC Y Az 4 §SQQ23, 3r = EQTS%Z%

Same system as for MFG, except for a few terms



Linear-Quadratic (LQ) Setting

Remarks:

LQ models are useful because they have (almost) analytical solutions
The above model is inspired by [Bensoussan et al., 2013], Chapter 6

It is possible to have much more general LQ MFG models (see e.g.,
[Huang et al., 2006], [Barreiro-Gomez and Tembine, 2021], [Graber, 2016], .. .)

Extension with common noise, see e.g. [Carmona et al., 2015, Graber, 2016]

In some cases, using a different ansatz, the equations can be decoupled, see
[Malhamé and Graves, 2020] (AMS’20 minicourse lecture notes)

The equation for p can be solved by itself; sometimes it has an analytical
solution, see e.g. [Carmona and Delarue, 2018], p. 110

The equation for s can be solved by itself after computing p, z, r

In the sequel, we focus on computing z and r
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Time Discretization

The experiments that follow are borrowed from [Lauriére, 2021], Section 2.

In practice, the following algorithms are implemented a discrete time system:

@ We focus on the coupled system for (z,r)
@ Uniform grid on [0, T, step At, t, =n X At,n=0,...,Nr

@ Approximate z,r : [0, T] — R by vectors Z, R € RVr !
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Time Discretization

The experiments that follow are borrowed from [Lauriére, 2021], Section 2.

In practice, the following algorithms are implemented a discrete time system:
@ We focus on the coupled system for (z,r)
@ Uniform grid on [0, T, step At, t, =n X At,n=0,...,Nr
@ Approximate z,r : [0, T] — R by vectors Z, R € RVr !

@ Discrete ODE system:

Zn+l _Zn 1 2 1 1 2 1
= (A+ A-pB*c'P")z"*" — B?C™'R",
A —m07

Rn+1 _Rn 5 1 _ _ 1
- = (A—B*C7'P"R"+ (P"A - QS)z"t",

RNT = —QpSpzZNT.
@ To alleviate the notation, most of the algorithms are described using the ODEs
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3. Algorithms
@ Pure Fixed Point lterations (Banach-Picard)



Algorithm 1: Banach-Picard Iterations

Algorithm: Fixed-point iterations

Input: Initial guess (z, 7); number of iterations K
Output: Approximation of (z, 7)

1 Initialize 2 = 2,7 = 7

2 forxk=0,1,2,...,.K—1do

3 Let »®&*1) be the solution to:

d o _

~ = (A=pBC )+ (A= QS)zY, e =—QrSrzf
4 Let 2V be the solution to:

x

=(A+ A-— Bchl)Zt — BQCflrf(kJrl)? 20 = Mo

S

5 return (2, r®)
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Algorithm 1: Banach-Picard lterations — lllustration 1

Test case 1 (for the values of A, 4, ..., see [Lauriére, 2021], Section 2)

1071

1073

10-°

1.0

0.5

0.0

-0.5

\ — |2k D R
\\ e [P i)
0 10 20 30 40 50
iteration k

~~\\\
<o
_—Z SS
~
—_——r N
0.0 0.2 0.4 0.6 0.8 1.0
time
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Algorithm 1: Banach-Picard Iterations — lllustration 2

Test case 2 (for the values of A, A, .. ., see [Lauriére, 2021], Section 2)

102§ —— |zk+ 1) _ z(0)|

e (k) _ R
Ir r|

10t

0 50 100 150 200
iteration k

=50

time
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Algorithm 1: Banach-Picard Iterations — Remarks

@ In fact this algorithm is related to a proof technique for the existence and
uniqueness of a Nash equilibrium (see lecture 1)

@ See e.g. [Huang et al., 2006]

@ Here, the approach converges if z® — r® — 2*+1 s a strict contraction
@ Typically true if T is small enough or the coefficients are small enough

@ Otherwise, it is common to see non-convergence

@ Can we “fix” this algorithm?
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3. Algorithms

@ Damped Fixed Point Iterations



Banach-Picard Iterations with Damping

Algorithm: Fixed-point iterations with damping

Input: Initial guess (z, 7); damping ¢ € [0, 1); number of iterations K
Output: Approximation of (2, 7)

Initialize 2 = 2 = 2,7 =7

2 fork=0,1,2,...,K—1do

3 Let »®*1) be the solution to:
d _ - _
—S = A= BC e+ A= Q9)EY, rr = Qe
4 Let 2tV be the solution to:
E_(ArAi-po B0y =
Ef( +A- )ze — Ty s Zo = Mo

5 Let z0H1) = 5209 4 (1 — §)2(+D

6 return (2, r®)
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Algorithm 1’: Banach-Picard lterations with Damping — lllustration 1

Test case 2
Damping = 0.1
—_— |z(k+1) _z(kil
1071 e (kD )
103
103
0 50 100 150 200
iteration k
2
~_
e
1 S~eo
<
.
0 \\
~
~
-_—z \\\
—1{ ==-r M.
00 02 04 06 08 10
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Algorithm 1’: Banach-Picard lterations with Damping — Illustration 2

Test case 2
Damping = 0.01

23x10°f __ee=mmTTT
2.2 x10° =7
2.1x10°0 | — kD K

2 x 10° J— Ir(k+1)_r(k)|
1.9x10° //
1.8 x10°

0 50 100 150 200
iteration k
_______ . ,
<
2 Sso -—-r )

~

~

~

\\
0 AN 1
\\ \\\
AN \\\
—2 \ 0 \\\\
A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2
time
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3. Algorithms

@ Fictitious Play



Algorithm 2: Fictitious Play

@ Introduced by [Brown, 1951], [Robinson, 1951]

@ Converge proof for several classes of games

@ In the MFG setting, FP has been introduced in
[Cardaliaguet and Hadikhanloo, 2017], with a proof of convergence for potential
MFGs; then extended to MFGs with monotonicity [Hadikhanloo, 2018],
[Hadikhanloo and Silva, 2019]

@ Related to learning in MFGs: [Perrin et al., 2020] for continuous-time FP under
monotonicity condition, [Geist et al., 2022, Lavigne and Pfeiffer, 2022] for
discrete-time FP in some potential MFGs; In linear-quadratic MFGs, a rate of
convergence has been obtained by [Delarue and Vasileiadis, 2021]

@ See Lecture 8 for more details on FP with RL for MFGs
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Algorithm 2: Fictitious Play

Algorithm: Fictitious Play

Input: Initial guess (z,7); number of iterations K
Output: Approximation of (2, 7)

1 Initialize 2 =2 = 3, 7O =7
2 fork=0,1,2,...,K—1do
3 Let »®&+1) be the solution to:
d’l’ (k)
i =(A—p:B°C e + (1A — QS)2
4 Let 2tV be the solution to:
% =(A+A—-B*C ™Yz — B2CT (Y,
5 Let 3+ — L%k) + ok L (kt1)

6 return (2 r®)

= —QrSrzl

20

Il
o§|
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Algorithm 2: Fictitious Play — lllustration

Test case 2

—_— |z(k+1) _z(kil

10-1 —— |r(k+1)_r(k)|

1073
1075 Seaa H
Ao da o, M“‘Ml"
0 50 100 150 200
iteration k
2
Seo
\\\\\
1 \~\\
<
\\\\
0 \\
\\
_— 2 \\\
—1{ === \\_

0.0 0.2 0.4 0.6 0.8 1.0
time
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Algorithms 1, 1’ & 2: Common Framework

Algorithm: General fixed-point iterations
Input: Initial guess (z, 7); damping 4(-); number of iterations K
Output: Approximation of (2, 7)
1 Initialize 2(¥ = 3 = z (©
2 fork=0,1,2,...,K—1do

=7

3 Let »&*1) be the solution to:
d - 1 A I~ ~ ~
—S = A= BC e+ A= Q9)EY,  rr = Qe
4 Let z**Y be the solution to:
(44 A- o B0y =7
Ef( +A- )ze — Ty s 20 = Mo

5 | Let 20D =5(1)2® + (1 - 5(x))z*H)

6 return (2 r®)

Pure fixed point and Fictitious play are special cases

Remark: Could put the damping on r instead of 2.
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3. Algorithms

@ Shooting Method



Algorithm 3: Shooting Method

@ |Intuition: instead of solving a backward equation, choose a starting point and try

to shoot for the right terminal point
@ Concretely: replace the forward-backward system

f; (A+A - B*C 'p))z — B2C™!
dr =
dt (A B C pt)rt + ( A QS)Zt7

by the forward-forward system

dg 2 ~—1
(A+A B Cc~ pt)Ct B°C Pty
Tdat (A= B*C ™ 'p)pi + (peA — QS) e,

and try to ensure: pr = —QrS7(r

zZ0 — mo,
T — _QTSTZT
20 = Mo,

po = chosen
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3. Algorithms

@ Newton Method



Algorithm 4: Newton Method — Intuition

Newton method in dimension 1:

@ Look for z* such that: £(z*) =0
@ Start from initial guess zo
@ Repeat:

£(wx)
£ (k)

Tk+1 = Tk —
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Algorithm 4: Newton Method — Intuition

Newton method in dimension 1:

@ Look for z* such that: £(z*) =0
@ Start from initial guess zo
@ Repeat:

f(xk)
£/ (zx)

Tk+1 = Tk —

@ In high dimension, we avoid computing the inverse of £’(zx)

@ 11 = xk + T, Where Ty solves:
f'(mk):ik = 7f(1’k)

which boils down to solving a linear system

28/40



Algorithm 4: Newton Method — Implementation

@ Recast the problem:

(Z, R) solve forward-forward discrete system < F(Z,R) =0

@ F takes into account the initial and terminal conditions

@ DF = differential of this operator

Express F and D.F. I
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Algorithm 4: Newton Method — Implementation

Algorithm: Newton Iterations

Input: Initial guess (Z, R); number of iterations k
Output: Approximation of (2, 7)

1 Initialize (2, R©) = (Z, R)

2 fork=0,1,2,...,K—1do

3 Let (Z®+1), RE+D) solve

D]:(z(k)7 RU‘))(ZU“H)_ R(k+1)) — _}'(Z(k)7 R(k))

&

Let (Z0+D), REHDY = (Z04D) RHD) 4 (700 Ry
return (Z®, R®)

2
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Algorithm 4: Newton Method — lllustration

Test case 2

1071
1074
1077
10710

10-13

R |z(k+1) _z(k)l

—_— |r(k+1) _r(k)l

iteration

—_— S

—_———r N

0

0 02 04 06 08 10
time
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Algorithm 4: Newton Method — Explanation

@ Reminder: Discrete ODE system:

zmt -z i 2 41 1 2 41
Z" = mo,

R"! — R" 2 41 A 1
-y~ A=BCT PR+ (PTA - QS)z"",

RNT = —QpSp2Z™T.
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Algorithm 4: Newton Method — Explanation

@ Reminder: Discrete ODE system:

Zn+1 7Zn 1 2 1 1 2 1
T:(A+A—B c'ptz"tt — B*CT'R",
A = o,

Rn+1 _Rn 5 1 _ _ "
= (A= B0 P")R" 4+ (P"A - QS)Z"*,

RNT = —_QrSrzZNT.

@ Can be rewritten as a linear system:
Z
M (R) +B=0
@ Newton’s method solves a linear system in a single iteration.

@ In hindsight: we did not need any of the previous methods! We could have
simply used a solver for linear systems of equations.

@ The methods were applied in the LQ setting only for pedagogical purposes.
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Outline

3. Algorithms

@ MFC & Price of Anarchy



Price of Anarchy — lllustration

@ Introduced by [Koutsoupias and Papadimitriou, 1999]

@ Extension to MFGs: assuming there exist a unique MFG equilibrium (&, 72) and
a unique MFC optimum «o*

J]MFG(

_ G 1)
PoA = JMFC(O(*)

@ Ratio of the expected cost for a typical player in the MFG by her expected cost in
the MFC

@ See in particular [Carmona et al., 2019] for explicit computations in the LQ case
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Price of Anarchy — lllustration

1.030 1.0142
1.025 1.0140
1.020 1.0138
< 1.015 < 1.0136
a a
1.010 1.0134
1.0132
1.005
1.0130
1.000
1.0128
0.995 0 5 10 15 20 0 5 10 15 20
A Or
1.06
1.05
< 1.04
o
1.03
1.02
0 5 10 15 20
Qr
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Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1a0TKAnclNg5LQ36ZgBPTToJX600koSkd?usp=sharing
@ ODE system for Linear-quadratic MFG

@ Solved by fixed point, damped fixed point, fictitious play and Newton’s method
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https://colab.research.google.com/drive/1a0TKAnc1Ng5LQ36ZqBPTToJX6oOkoSkd?usp=sharing
https://colab.research.google.com/drive/1a0TKAnc1Ng5LQ36ZqBPTToJX6oOkoSkd?usp=sharing

Exercises
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Outline

4. Preview of numerical schemes for the PDE system



MFG PDE System

Recall the MFG PDE system:

0= —%(t, 2) — vAu(t,z) + H(z,m(t,-), Vu(t, ),
0= %—T(t, x) — vAm(t,z) — div (m(t, )FpH (-, m(t), Vu(t,-))) (x),

U(T7x) :g($7m(T7 ))7 m(O,x) :mo(l‘)
Goals:
@ introduce a discrete version of this system — numerical scheme

@ solve it numerically — algorithm
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Properties

For (1): some desirable properties:
@ Mass and positivity of distribution: [, m(t,z)dz =1, m >0

@ Convergence of discrete solution to continuous solution as mesh step — 0
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Properties

For (1): some desirable properties:
@ Mass and positivity of distribution: [, m(t,z)dz =1, m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation
@ Link with optimality condition of a discrete problem

= Needs a careful discretization
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Properties

For (1): some desirable properties:
@ Mass and positivity of distribution: [, m(t,z)dz =1, m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation
@ Link with optimality condition of a discrete problem

= Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?
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Two Numerical Schemes

Numerical schemes: We are going to illustrate two approaches:
@ Finite difference scheme introduced in [Achdou and Capuzzo-Dolcetta, 2010]

@ Semi-Lagrangian scheme introduced in [Carlini and Silva, 2014]

There are other options such as finite elements, see e.g.
[Benamou and Carlier, 2015, Andreev, 2017].
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Outline

5. Conclusion



Summary

@ Linear-Quadratic MFG and MFC
@ Forward-backward ODE system

© Several algorithms

Remarks:
@ Inthe LQ case, these algorithms are just for pedagogical purposes
@ But analogous algorithms can be useful for finite-state MFGs

© Similarly for continuous-space MFGs up to space-discretization
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu


mathieu.lauriere@nyu.edu
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