Numerical Methods for
Mean Field Games

Lecture 3
Classical Numerical Methods: Part I/
FBPDE and FBSDE systems

Mathieu LAURIERE

New York University Shanghai

UMBG6P Vanguard Center, Université Cadi AYYAD,
University Cote d’Azur, & GE2MI
Open Doctoral Lectures
July 5-7,2023

Outline

1. Introduction

Reminder: FB systems

@ Here we will focus on the continuous time and space setting

@ We have seen two types of forward-backward systems:

» PDE systems: Kolmogorov-Fokker-Planck (KFP) and
Hamilton-Jacobi-Bellman (HJB)

» SDE systems of McKean-Vlasov (MKV) type

@ We will describe methods based on both approaches

@ In each case, there will be two questions to design a numerical method:

» Discretization — numerical scheme

» Computation — algorithm

1/63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= T (t,z) — vAu(t,xz) + H(z,m(t,-), Vu(t,z)),
0= %T (t,z) — vAm(t, z) — div (m(t, -)OpH (-, m(t), Vu(t,-))) (z),

u(Tv m) - g(m7m(T7))7 m(O,I) = mo(m)

2/63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(Tv‘T) —g(x7m(T,-))7 m(O,I) zmo(m)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0

@ Convergence of discrete solution to continuous solution as mesh step — 0

2/63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(T, z) = g(x,m(T, ")), m(0,z) = mo(x)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation

@ Link with optimality condition of a discrete problem

= Needs a careful discretization

2/63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(T, z) = g(x,m(T, ")), m(0,z) = mo(x)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation

@ Link with optimality condition of a discrete problem

= Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

2/63

Outline

2. Methods for the PDE system

Outline

2. Methods for the PDE system
@ A Finite Difference Scheme

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

@ For simplicity we consider the domain T = one-dimensional (unit) torus.
@ Letv =0?%/2.

@ We consider N, and Nr steps respectively in space and time.

@ Leth=1/N, and At =T/Nr. Let T}, = discretized torus.

@ We approximate mo(x:) by pj such thathy", pf = 1.

3/63

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

@ For simplicity we consider the domain T = one-dimensional (unit) torus.
@ Letv =0?%/2.

@ We consider N, and Nr steps respectively in space and time.

@ Leth=1/N, and At =T/Nr. Let T}, = discretized torus.

@ We approximate mo(x:) by pj such thathy", pf = 1.

Then we introduce the following discrete operators : for o € RV¥7+! and ¢ € RM*

n+l _ n
o time derivative : (D)™ = %, 0<n<Nr-1
. 1 .
e Laplacian : (Ap)i = ——= (21/;Z- — iy1 — Yi—1), 0<i<Np
o partial derivative : (D, v); := w”lh w’, 0<i< N

° gradient : [Vm/;}z = ((Dh’l,b)z, (D}ﬂ/})i_1), 0<i< Ny,

3/63

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form
b(z,m,a) = a, f(z,m,) = L(z,a) + £o(z, m), g(xz,m) = go(z,m).
where z € R% o € R4, m € R.. Then

H(z,m,p) = max{—L(z,a) — (o, p)} — fo(z,m) = Ho(z,p) — fo(x,m)
where H is the convex conjugate (also denoted L*) of L with respect to «:

Ho(z,p) = L*(x,p) = sup{{, p) — L(z,)}

4/63

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form
b(m,m,a) =, f(x7m,a)=L(m,a)+fo(m,m), g(m7m):go(x>m)‘
where z € R%, oo € R, m € R,. Then

H(z,m,p) = max{—L(z,a) — (o, p)} — fo(z,m) = Ho(z,p) — fo(x,m)
where H is the convex conjugate (also denoted L*) of L with respect to «:

Ho(z,p) = L*(x,p) = sup{{, p) — L(z,)}

Discrete Hamiltonian: (z,p:, p2) — Ho(z,p1, p2) satisfying:
@ Monotonicity: decreasing w.r.t. p; and increasing w.r.t. ps
@ Consistency with Ho: for every z, p, Ho(z, p,p) = Ho(z, p)
@ Differentiability: for every z, (p1, p2) — Ho(z, p1, p2) is C!
@ Convexity: for every z, (p1,p2) — FIo(ac,pl,pz) is convex
|2

Example: if Hy(z, p) = |p|?, a possible choice is Ho(xz, p1.p2) = (p17)% + (p21)?

4/63

Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U, M € RNTTD>*Nn

5/63

Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U.Me RANTHD XN

The HJB equation

{Btu(t, x) + vAu(t, z) + Ho(z, Vu(t,z)) = fo(x, m(t, x))
u(T,) = go(z, m(T, x))

is discretized as:

—(DtUj)n — I/(Ah(n)i + ﬁo(fbi, [Dh,U"],‘,) = fo(l’i,ﬁfinJrl)
UM = go(i, M)

5/63

Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div <m([, x)0gH (x, m(t), Vu(t, z))) =0, m(0,x) = mo(x)

is discretized as

(DeMi)" = v(AM™™), = (U, M"Y =0, M{ =p}

6/63

Discrete KFP

The KFP equation

dem(t, @) —vAm(t, ©)+div <m(z,,w)e'){,H(I.m(z). Vault, m)) =0, m(0,z)=mo(z)

is discretized as
(D M) —v(ARM™ Y, — T (U™, M™)y =0, M =p)
Here we use the discrete transport operator ~ — div(...)

Ti(U, M) == 1 Miaplﬁo(x¢,~[VhU}i) — Mi_18p1ﬁo(xi—1,~[vhU}i—1)
R " h + Mi+1ap2H0(l'i+1, [VhU]¢+1) — Miaszo(ﬂfi, [VhU]i)

6/63

Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div ((t,2)0q H (z,m(t), V u(t, z))) =0, m(0,x) = mo(x)

is discretized as
(DeMi)" = v(AM™™), = (U, M"Y =0, M{ =p}
Here we use the discrete transport operator ~ — div(...)

1 < M;0p, H()({ci, [VrU]i) — M;—10p, f{o(xi_l, [VaU]i=1))

(U, M) = — S -
7il) h + Mi110p, Ho(wit1, [VaUlit1) — MiOp, Ho(z4, [VaU]:)

Intuition: weak formulation & integration by parts

/di\‘(m(‘,),,][”(. Vu))u /m@ Ho(z,Vu) - Vw
T

is discretized as

—hZT((V%—hZMVqu(xZ,[VhU]) VW]

1

6/63

Discrete System — Properties

Discrete forward-backward system:

—(DeU3)"™ = v(ARU™)i + Ho(zi, [DyU™]:) = £o(zs, M),
(D:M)™ — v(ARLM™), — T (U™, M™Th) =0,

Vn < Np —1
Vn f;]\pr -1

7/63

Discrete System — Properties

Discrete forward-backward system:

—(Dt(/v/)n — V(Ah(}v”’)i + ﬁ0($i7 [D/I(]”'L‘) = fo(ﬂ?i, A{ZL+1), Vn S NT -1
(D:M)™ — v(ARLM™), — T (U™, M™Th) =0, Vn < Ny —1
Y=ol UM =ge(wn M), i=0,. Ny

This scheme enjoys many nice properties, among which:
@ It yields a monotone scheme for the KFP equation: mass and positivity are preserved

@ Convergence to classical solution if monotonicity
[Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]

Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]
The discrete KFP operator is the adjoint of the linearized Bellman operator
Existence and uniqueness result for the discrete system

It corresponds to the optimality condition of a discrete optimization problem (details later)

7/63

Outline

2. Methods for the PDE system

@ Algorithms

Algo 1: Fixed Point lterations

Input: Initial guess (M, U); damping 4(-); number of iterations K
Output: Approximation of (M, U) solving the finite difference system
1 Initialize M@ = M© = M, U =0T
2 fork=0,1,2,...,K—1do
3 Let U**1) be the solution to:

UNT = go(@i, MINT)

i

{7(111;,,)" — v(ARU™)s + Holas, [DRU"]) = £olas, ME ™), n< Np—1

4 Let M ®*D be the solution to:

(DeMi)™ — v(Ap M"Y, — T(UED " M) =0, n< Np—1
MY = p}

5 | Let MOHD = 5)M® + (1 - §(k))MEHD

6 return (M®)

8/63

Algo 1: Fixed Point lterations

The HJB equation is non-linear

@ Idea 1: replace H0($i7 [D)LU’”]l) by Ijlo(mi, [DhU(k)"n]i)

9/63

Algo 1: Fixed Point lterations

The HJB equation is non-linear
@ Idea 1: replace Ho(x;, [DyU™];) by Ho(zs, [DnUY"];)

@ Idea 2: use non linear solver to find a zero of

©: RVeX(NT+1) RN;I,XNT7

with:

n=0,...,Np—1
i=0,...,Np—1

P(U) = (=(DU:)" =v(ARU")i Ho (i, [DnU":) = £0(ws, M)

Example: Newton’s method

9/63

Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1shJWSD2MASFo7_rB625dAvNTdzZSla7bG?usp=sharing
@ Finite difference scheme

@ Solved by (damped) fixed point approach

10/63

https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing
https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, 1) With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)

11/63

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, 1) With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)
@ Orrather: J,(X")Y = —p(X®), then X*+D =y 4 x®)

11/63

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (i, o) " With @ and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)
@ Orrather: J,(X")Y = —p(X®), then X*+D =y 4 x®)

Key step: Solve a linear system of the form

Auu Aum U\ _ ([Gu
Amu Amm) \ M Gm

where Ay m(U, M) =Vuom(U,M), Auu(U,M)=YVueu(U M),

11/63

Newton Method — Implementation

. o Auu Aum U\ _ [Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, @and

D, 0 0
—ldy, D 0
Ay = 0 ’
0
0 0 —Zldy, Dng,

where D,, corresponds to the discrete operator

1

Z = (Zij)ij— (EZM

—v(AnZ)ig + [VaZli - VpHo(ij, [VhU(kz)"'L]uj))

2%

12/63

Newton Method — Implementation

. o Auu Aum U\ _ [Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, @and

D, 0 0
—ldy, D 0
Ay = 0 ’
0
0 0 —Zldy, Dng,

where D,, corresponds to the discrete operator

1

Z = (Zij)ij— (EZZ'J —v(AwZ)i; + [VaZlij - VpHo(wij, [VhU(kz)‘"]z’,j)>

2%
Rem. Initial guess (U®), M) is important for Newton’s method

@ Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])

@ Idea 2: continuation method w.r.t. v (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.

12/63

Example: Exit of a Room — Distribution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

exit exit

Geometry of the room

13/63

Example: Exit of a Room — Distribution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

o kN ow e
S niwinen

Initial density (left) and final cost (right)

13/63

Example: Exit of a Room — Crowd model

@ Crowd motion with ocal interactions; see
e.g. [Lachapelle and Wolfram, 2011, Achdou and Lasry, 2019,
Achdou and Porretta, 2018, Achdou and Lauriére, 2016a] for other models of
this type and [Aurell and Djehiche, 2018, Achdou and Lauriere, 2015] for crowd
motion models with non-local interactions.

@ Here, control = velocity:

dXt = a(t, Xt)dt + O'th

@ Congestion through the cost: higher density = higher price to move

@ Hamiltonian:

8lpl° 1
H o -
(x7 m,p) (l +m)% 3200

What is the cost function leading to this Hamiltonian? I

14/63

Example: Exit of a Room — Crowd model

@ MFG PDE system:
o Mean field games: the MFG PDE system is:

B 8 1
— 005 AU+ —— |V = ——,
ot (1+m)3 3200
Im .05 Am — 16 div [—"V4_) —¢
ot (1+m)1

@ Mean field control: the HJB becomes:
o) 2 1
u0.05Au+(= + 6 7) [Vu]? = —.
ot (1+m)i (1+m)d 3200
@ We choose a small v (e.g. 0.05) so the diffusion is not too strong
@ No terminal cost: g =0

@ Boundary has several parts.

» Doors: Dirichlet condition u = 0 (exit cost), m = 0 (m = 0 outside the domain)
> Walls: for u, Neumann condition: ?TZ = 0 (velocity is tangential to the walls); for m:
v2 4+ mBH (. m,Vu) - n =0, therefore J =0

@ Initial density mo: piecewise constant with two values 0 and 4 people/m?
@ Interpretation: At ¢ = 0, there are 3300 people in the hall. T = 50 minutes

15/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

S NANNG |
[VAR NG
o—MnwsO

o=MNnwhsOoa

(S)b(+)

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

S NANNG |
[VAR NG
o—MnwsO

o=MNnwhsOoa

(S)b(+)

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

S NANNG |
[VAR NG
o—=NnwsO

o=MNnwhsOoa

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

(oI VAN NG
oSN WwhRO
o—=rnwhsG
o=MNwhrO

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

(oI VAN NG

T
oSN WwhRO
o—=rnwhsG

T
o=MNwhrO

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

T
(S A N
o=NwsG

T
o =N wasa

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

T
(S A N
o=NwsG

T
o =N wasa

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

-
o—amfo‘i!
N |

T
il
o =N wasa

[N ARNS)
o=NwsG

o !

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)
o=NwsG

2
1
0

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)

16/63

Example: Exit of a Room — Remaining Mass

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

3000

2500

2000

I}
2
3

number of people

1000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beta

¢ Price of Anarchy
Remaining mass inside the room (B = exponent)

17/63

Outline

2. Methods for the PDE system

@ A Semi-Lagrangian Scheme

MFG Setup

@ Scheme introduced by [Carlini and Silva, 2014]

@ For simplicity: d =1, domain ¥ =R, A =R

@ v = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]
@ Model:

b(z,m,a) =«
F@,m,0) = la* + fole,m), gle,m)

where fo and g depend on m € P;(R) in a potentially non-local way

18/63

MFG Setup

Scheme introduced by [Carlini and Silva, 2014]

For simplicity: d = 1, domain X =R, A =R

v = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]
Model:

b(z,m,a) =«
F@,m,0) = la* + fole,m), gle,m)

where fo and g depend on m € P;(R) in a potentially non-local way
@ MFG PDE system:

ou 1 2 .
— E(t,x) + 5\ Vu(t,z)|” = fo(z,m(t,), in[0,T) xR,
%—T(t, 2) —div (m(t,) Vult,) () =0, in (0,T] x R,

u(T,z) = g(z,m(T, ")), m(0,z) = mo(z), inR.

18/63

Representation of the Value Function

@ Dynamics:

t
X =Xy +/ a(s)ds, t>0.
0

@ Representation formula for the value function given m = (m:).co, 17

T
1
t, _ . f { {47) 2)(:,Lx7 -]
wml(te) = ot [[l + ot ms,)] s

+ g(X;’t’a m(T7))}a

where X*"7 gtarts from x at time ¢ and is controlled by «

19/63

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

(]f = éiﬁt,h[rn](L]n4F17i771)’ (7lvi) € ﬂ]Vj'—— lﬂ X Z
UZNT = g(a:“m(T,))7 ’L € Z,

where

@ Sa¢, is defined as

Saealml(Wyn, i) = inf { (%\042 + folws, m(tn, .))) At + I[W](zs + o At)} ,

20/63

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

U = Saen[m](U™i,n), (n,i) € [Ny — 1] x Z,
U.]VT = g($17m(T7))7 ’L € Z,

k3

where

@ Sa¢, is defined as

Saealml(Wyn, i) = inf { (%\042 + folws, m(tn, .))) At + I[W](zs + o At)} ,

@ with I : B(Z) — C»(R) is the interpolation operator defined as

IW]() =Y WiBi(),

@ where B(Z) is the set of bounded functions from Z to R

@ and g; = [1 — 252 . triangular function with support [z;—1,zi11] and s.t
Bi(z:) = L.

20/63

Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;*)»,;, construct the function
uar,n[m](z,t) : [0,T] x R = R,

uaen[ml(t,z) = I[UR)(2), (t,z)€[0,T] x R.

21/63

Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;*)»,;, construct the function
uar,n[m](z,t) : [0,T] x R = R,

unen[ml(t,z) = I[UR)(z), (t,z) € [0,T] x R.

@ Regularization of HJB solution with a mollifier p.:

Uap[M](t,) = pe * unr,n[m](t,), t € [0,7].

21/63

Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
» evolution characterized by the velocity at (¢,)

@ Lagrangian viewpoint:

» focus on a fluid parcel
> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =

22/63

Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
» evolution characterized by the velocity at (¢,)

@ Lagrangian viewpoint:
» focus on a fluid parcel

> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =

@ Here, in our model:
t
X, = X{ +/ a(s)ds, t>0.
0

@ Time and space discretization?

22/63

Discrete KFP equation: intuition — diagram

1
1
1
1
1
1
n+1 n+1 1 n+1
\//7] \//) J//7|
X el
|

Tj-1 Zj Tjt1 Tjy2
@ + a”A/
n n ". n
M M MY
. R
Li—1 Tit1

Movement of the mass when using control v(t,,, z;) = af'.

Bottom: time ¢,,; top: time ¢,,41.

23/63

Discrete KFP equation: intuition — diagram

Bi+1

+1 +1
M M7
R
o Tj b Tj x
j—1 J - J+1 Jt+2
[
;A af At
M7 M7 M7,
. R
Ti-1 Tit1

Movement of the mass when using control v(t,, z;) = af.

Bottom: time ¢,,; top: time ¢,,+1.

23/63

Discrete KFP equation: intuition — diagram

5;/' ! ﬁ]+1

/
%4/ z]lk Tj1 Tjt2
1 LA
I s ialAt
, :
L
1 7’
”’
M, M I M7,

Ti-1 T Tip1

Movement of the mass when using control v(t,, ;) = af.

Bottom: time t,,; top: time ¢,,+1.

23/63

Discrete KFP equation

@ Control induced by value function:

Aappm](t, ®) = —Vungn[m](t, x),

and its discrete counter part: a;, ; = an, , [m](tn,).

@ Discrete flow:

D5, p1,:[m] = @i + Qay n[m|(tn,) AL

24/63

Discrete KFP equation

@ Control induced by value function:
G n[m](t, @) = =Vua,n[m](t,),

and its discrete counter part: a;, ; = an, , [m](tn,).

@ Discrete flow:
O n1,5m] = T + Gagp[m](tn, x:) At
@ Discrete KFP equation: for M¢[m] = (M;"[m])n,::
M;’n+1[m] = Zj /81 (¢;,n+l,j [m]) M;,n[mL (n7 7’) S [[NT - 1]] X Z7

MO [m] = mo(x)dz, i €Z.
[@i—h/2,i+h/2]

24/63

Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+l)s

. 1 |t —t on
maep[ml(t,z) = 5 %ZM/ (M) L1z; —ns2,2:4n/2)(2)

i€Z

t—t,
g D M Iy ey 2l ()

i€Z

25/63

Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+1)s

€ 1 tn 7t €,n
maep[ml(t,z) = 5 % D ML n 20,2 ()

i€Z

t—t,
g D M Iy ey 2l ()

i€Z

@ Goal: Fixed-point problem: Find N/ = (M), ,, such that:

M = M [mi,[M]].

25/63

Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+1)s

€ 1 tn 7t €,n
maep[ml(t,z) = 5 % D ML n 20,2 ()

i€Z

t—t,
g D M Iy ey 2l ()

i€Z

@ Goal: Fixed-point problem: Find N/ = (M), ,, such that:

M = M [mi,[M]].

@ Solution strategy: Fixed point iterations for example
@ See [Carlini and Silva, 2014] for more details

25/63

Numerical Illustration

Costs: 1
9=0, f(e,m,0) = 5lof + (@ =) + rupV (@, m),
with
V(x,m) = Poy * (pﬁv *TH)(x)v

26/63

Numerical lllustration

Costs: 1
9=0, fl@m,a)=zlaf* + (@ =) + rarV(@,m),
with
V(z,m) = Poy * (pt’v *’ITL)(:L‘),

Experiments: target ¢* = 0, mo = unif. on [-1.25, —0.75] and on [0.75, 1.25]

kvre = 0.5 kvr = 0.9

See [Lauriere, 2021] for more details on these experiments
26/63

Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1ZikgKh-D1IGNJhhgzPQV0_gIuljOP78g?usp=sharing
@ Semi-Lagrangian scheme

@ Solved by damped fixed point approach

27/63

https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing
https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing

Exercise

28/63

Outline

3. Optimization Methods for MFC and Variational MFG

Outline

3. Optimization Methods for MFC and Variational MFG
@ Variational MFGs and Duality

Variational MFGs

Key ideas:

@ Variational MFG

@ Duality

@ Optimization techniques

29/63

Variational MFGs

MFG Variational
Model Problem
PDE
How can we characterize System

the solution?

In some cases, the MFG PDE system can be interpreted as the optimality conditions
for a variational problem

MFG PDE system < optimality condition of two optimization problems in duality

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015],

[Cardaliaguet et al., 2015], [Benamou et al., 2017], ...
30/63

A Variational MFG

@ d=1,domain=T
@ drift and costs:

b(z,m,a) = a, f(z,m,a) = L(z,a) + £o(x,m), g(z,m) = go(x).

where z € R?, oo € R%, m € R,.
@ Then

H(xz,m,p) =sup{—L(z,a) — ap} — fo(z,m) = Ho(z,p) — folx, m)
@ where Hy is the convex conjugate (also denoted L*) of L with respect to «:
Ho(z,p) = L*(z,p) = sup{ ap — L(z,)}
@ Further assume (for simplicity)

1
L(z,0) = =|al?, Ho(x,p) = §|P|2

31/63

A Variational Problem

@ At equilibrium, £(X:) = i+ and

|: Xt, t Xz) (Al(t,Xf))dt+g(XT):|

/OT/ fla,m(t,), a(t,z)) Th(t,a:)dxdt-i-/T (@)i(T, z)dz

=L(z,&(t,x))+fo(z,m(t,x))

subject to:
0= %7: (t,) — vAR(t, 2) + div (m(t, Vb, (b, a(t, -)))(:c), o = mao
—_———

=a(t,)

32/63

A Variational Problem

@ At equilibrium, £(X:) = i+ and

|: Xt, t Xz) (Al(t,Xf))dt+g(XT):|

/OT/ fla,m(t,), a(t,z)) Th(t,a:)dxdt-i-/T (@)i(T, z)dz

=L(z,&(t,x))+fo(z,m(t,x))

subject to:
0= %7: (t,) — vAR(t, 2) + div (m(t, Vb, (b, a(t, -)))(:c), o = mo
—_———

=a(t,)

@ Change of variable:

w(t,x) = m(t, z)a(t, x)
B, i) / / it) —|—fg(m,m(t,z))}m(t,x)dmdt—i—/g(x)m(TJ)dx

’ T
subject to:
am

0= N (t,z) — vAmM(t, x) +d1v((t,)) (), Mo = mo

32/63

Reformulation

@ Reformulation:

B(m,@):/OT/T[L(m, iii”i)))m(t,x)+f0(;c,m(t,m))m(t,x)]dmdt

— - F(a,m(t,z))
L(z,m(t,x),w(t,x))
+ /g(x)ﬁl(T, z)dx
T~
G(z,m(t,x))
T ~ ~ ~
- / / [L(x, mlt, z), d(t,) + Fz, i, :v))} ddt + / Cla, m(t,z))dz
0 T T
subject to:
om N . N
0= E(t’ x) — vAm(t,) + div ('u)(t,)) (z), Mo = mo

33/63

Reformulation

@ Reformulation:

B(m,@):/OT/T[L(m, :;((i”i)))m(t,x)+f0(;c,m(t,m))m(t,x)}dmdt

— - F(a,m(t,z))
L(z,m(t,x),w(t,x))
+ /g(x)m(T, z)dx
T~
G(z,m(t,x))
T ~ ~ ~
- / / [L(x, mlt, z), d(t,) + Fz, i, :r))} ddt + / Cla, m(t,z))dz
0 T T
subject to:
om N . N
0= W(t,x) — vAm(t,z) + div (w(t,)) (z), Mo = mo

@ Convex problem under a linear constraint, provided Z, F, G are convex

33/63

Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m, ma):

Bl w) = /0 ' /T (E(x,m(t,m),w(t,x))+ﬁ(m,m(t,m))) dzdi+ /T Gla, m(T,))de

subject to the constraint:

Oym — vAm + div(w) = 0, m(0,z) = mo(x)

34/63

Primal Optimization Problem

Primal problem: Minimize over (m,w) =

subject to the constraint:

Orm — vAm + div(w) = 0,

(m, ma):

B(m,w) = /OT/T (z(m,m(t,x),w(t,x)) —I—ﬁ(m,m(t,x))) dxdt—l—/ é(x,m(T, z))dz

T

m(0,z) = mo(x)

where
if m >
F(x m) = fo (z,8)ds, ifm _.0,
+00, otherwise,
and
mL (:m %) ,
L(z,m,w) =< 0,
+o0,

where R 5 m — f(x,m) = Om(m £o(x,m))

é(m,m) _ {mgo(x)v

+o0,
if m > 0,
ifm=0and w =0,
otherwise

ifm >0,
otherwise,

is non-decreasing (hence F convex and l.s.c.) provided m — m fo(x, m) is convex.

34/63

Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf A(,m)

with A(¢, m) — / ’ / m(t, @) (aﬁz)(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.

35/63

Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf Ao, m)

with A(¢, m) — / ’ / m(t, @) (&(;S(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.

Duality relation: .A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)

35/63

Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)
A(¢) = inf A(¢,m)

with A(¢p, m / /m (¢, x) 3tq5 (t,z) + vA(t,x) — H(z,m(t,z), Vo(t, x)))dxdt
+/m0(:r)gb(0,x)dx.

Duality relation: .A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A):firéf{]-'(qb)Jrg(A(@))}, (B)= mf){f*(A*(m,w)Hg*(fmﬁw)}

m w

where F*, g* are the convex conjugates of 7, G, and A* is the adjoint operator of A, and
Ae) = (52 +v20,V 0),

, ‘ ‘ 0 if pli=1 = 90
F = h) — m f d. =
(¢) = xT () /Td o(x)#(0, z)dx, xT () { otherwise,

T
Gp1,p2) = — inf / / m(t, z) (p1(t,x) — H(x, m(t, x), p2(t, z))) dedt.
Td

0<meLl((0,T)xT4) J,
35/63

Outline

3. Optimization Methods for MFC and Variational MFG

@ Alternating Direction Method of Multipliers

Augmented Lagrangian

Reformulation of the primal problem:

(A) = —igf{]—"(q&) v g(A(¢))} — —in inf{F(¢) +G(q), subj. to g = A(¢)}.

q

@ The corresponding Lagrangian is

36/63

Augmented Lagrangian

Reformulation of the primal problem:

(A) = —igf{]—"(q&) v Q(A(¢))} — —in mf{f(qs) +G(q), subj. to g = A(¢)}.

q

@ The corresponding Lagrangian is

@ We consider the augmented Lagrangian (with parameter r > 0)
£7(6,4,9) = £(0,0:@) + ZIA@) — gl

@ Goal: find a saddle-point of L".

36/63

Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢,)
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]

Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢,)
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

4 (b) Compute

q(k“)Eargmin{Q(qH(d(k) HA Pty QIIZ}
q

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]

Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢,)
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

4 (b) Compute

s ~f r (p
a*+ e argmin{9(a) + (3%, 0) + FIAG) — q)”}
q

5 (c) Compute

oD = g (A(p*HY) — V)

6 return (¢, ¢®,)

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]
37/63

ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = %|p|2. We take ﬁo(x,pl,pg) = %|(p1_,p;r)|2.

Discrete version of the dual convex problem:

(An) = = inf {Fi(9) +Gn(An(o))},

where A, : RN — R3N is defined by : Vn € {1,..., Nz}, Vi€ {0,..., N, — 1},

(An () = ((Dedi)" +v (Ah¢"71)i V"),

38/63

ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = [p|*. We take Ho(x,p1,p2) = 5|(p7,p3)I>-

Discrete version of the dual convex problem:

(An) = — @iEI%fN {Fn() + Gn(An(e)},

where A, : RN — R*' is defined by : Vn € {1,...,Nr},Vi € {0,..., Ny — 1},

(An(@)i = ((Deo)" +v (Aned") (Vi i),

i

where Fy,, Gy, are the |.s.c. proper functions defined by:

Np—1
FuiRY 2 ¢mxr(e) —h Y plo) € RU{+o0},
1=0
Np Np—1
G : R3N) (a,b, C) — — hAtZ Z ’Ch(xiya?7b?7c?) eRU {+OO},
n=1 =0

with

0 ifo)" =gg(z)

400 otherwise.
38/63

Kn(@, a0, p1,p2) = min {mlao + Ho(z,m,p1,p2)]}, x7(0) = {
meRy

ADMM with Discretization

Discrete Aug. Lag.: £;,(¢,4,4) = F(¢) + Gn(a) — (@, An(9) — a) + 5] A(0) — g

Input: Initial guess (6(*, ¢(», ®); number of iterations K
Output: Approximation of a saddle point (¢, ¢, §)

Initialize (¢©, ¢, §®)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ argnlin(,,{.ﬁ, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢+ ¢ argminq{g;, (q) + (@™, q) + L AR (™) qHZ}

5 (¢) Compute g+ = G — 7 (A, (D) — ¢+D)
6 return (¢, ¢, g®)

39/63

ADMM with Discretization

Discrete Aug. Lag.: £}, (¢,q,q) = Fn(¢) + Gnlq) — (@, An(d) — @) + E[|A(0) — gl

Input: Initial guess (¢”, ¢, §); number of iterations X
Output: Approximation of a saddle point (¢, g, §)

Initialize (¢, ¢, @)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ al'grllirp,,{?;, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢V e argminq{gh (q) + (@™, q) + Ll AR (o™ Dy - (]Hz}

s | () Compute gD = g0 — (A, (01) — g0+D))

6 return (¢, ¢®, g®))

First-order Optimality Conditions:
Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

39/63

ADMM with Discretization

Discrete Aug. Lag.: £}, (¢,q,q) = Fn(¢) + Gnlq) — (@, An(d) — @) + E[|A(0) — gl

Input: Initial guess (6(*, ¢(», ®); number of iterations K
Output: Approximation of a saddle point (¢, g, §)

Initialize (¢, ¢, @)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ al'grllirp,,{]ﬂ, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢V e argminq{gh (q) + (@™, q) + %HA;,,((,J(“ Dy - (]HZ}

s (c) Compute G+ = g0 — r (A, (1)) — g0+

6 return (¢, ¢®, g®))

First-order Optimality Conditions:
Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE
e if v = 0, a direct solver can be used
o if v > 0, PDE with 4t order linear elliptic operator = needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Bricefo Arias et al., 2018]
39/63

Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1]?\[0.4,0.6]* (obstacle at the center)
e Define the Hamiltonian by duality (on 0 the vector speed is towards the interior)

sup {_5p_L($7m7€)}:m_a|p|ﬁ_€(x>m)7 |fiEEQ7
£€R2

sup {—ﬁ-p—L(a:,m,i)}, if x € 09).
£€R2:¢.n<0

H(x,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:

L(z,m, &) = (B—=1)B" " mm1|¢)® +o(z,m), 1<B<20<a<l

40/63

Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1]?\[0.4,0.6]* (obstacle at the center)
e Define the Hamiltonian by duality (on 0 the vector speed is towards the interior)

sup {_5p_L($7m7€)}:m_a‘p|ﬁ_€(x,m)7 |fiEEQ7
£€R2

sup {—§-p—L(a:,m,§)}, if x € 09).
£€R2:¢.n<0

H(z,m,p) =
e The associated Lagrangian (corresponding to the running cost) is:

L(z,m, &) = (B—=1)B" " mm1|¢)® +o(z,m), 1<B<20<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.

40/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Initial distribution (left) and final cost (right)

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t =0

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 7'/8

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = T'/4

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 377/8

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 7/2

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 577/8

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢ = 37'/4

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 77'/8

For more details, see [Achdou and Lauriere, 2016b]

41/63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density attime ¢t =T

For more details, see [Achdou and Lauriere, 2016b]

41/63

Outline

3. Optimization Methods for MFC and Variational MFG

@ A Primal-Dual Method

Optimality Conditions and Proximal Operator

@ Letp,¢: RY — R U {+o0} be convex |.s.c. proper functions.
@ Consider the optimization problem

min o(y) + ¥ (y),

yERN
and its dual
min ¢"(—0) +¢*(0).

ocE€RN

42/63

Optimality Conditions and Proximal Operator

@ Letp,¢: RY — R U {+o0} be convex |.s.c. proper functions.
@ Consider the optimization problem

min ¢(y) + ¥ (y),

yERN

and its dual
min " (—0) + 97 (0).

ocE€RN

@ The 1%-order opt. cond. satisfied by a solution (§, &) are

{(}604,0(NN {71706704%?(3)
(

9
6 6+y) € O™ (6)+ 6

{prOX SO —T16) =17
7 € 0Y*(0)

prox_,« (6 +9) = &,

where v > 0 and 7 > 0 are arbitrary and
@ The proximal operator of a |.s.c. convex proper ¢: RY — RU {40} is:

prox, ,(z) := argmin {¢(y) + %} =T +0(v¢p) '(z), VzeRN.
yERN

42/63

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions

1 Initialize (¢, 4, 5()
2 fork=0,1,2,...,K—1do
3 (a) Compute

o) = PTOX_)« (c® 44 ™),

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions

Initialize (o, 4, 7(©)

2 fork=0,1,2,...,K—1do

3 (a) Compute

O_(k+1) N (

= PIOX_,) 4 J(k>)

4 (b) Compute

y(kAl) — pr()xw(y(k) _ TU(k+1)>~

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

1

3

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions
Initialize (o, 4, 7(©)

2 fork=0,1,2,...,K—1do
(a) Compute
O_(k+1) = Prox, - (+ J[k\)
(b) Compute
y<k‘1) = prox,_y_(y(k> — T(r(k+l)).

(c) Compute

7;(k+1) _ y(k+1) + 0(y(k+1) _ y(k)).

6 return (c®,y® 7®)

43/63

Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[(By) = min {Fp (A} (0) + Gi(-0)},]

(m,w1,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

o Fi(p) = SUPyerN {(M: ¢)e2(RN) - fh(¢)}y VpeRY

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) qg{g)};,{ (0.0) s oy~ 9(a) | hAtZ:l ; Ly(wi,of), Vo R

o with L, (¢, 00) = max,, cgs { — 00 -po+ ICh(:c,qo)}, Yoo € R3.

44/63

Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[(Bn) = min A F @A) + G-}]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV
Np Nj—1

¢ Gl (—0) = max { — <‘7’q>£2(R3N’) —gh(q)} = hAtZ Z f/h(zi,U?), Vo e R3Y

g n=1 i=0
o with L, (¢, 00) = max, g3 { — 00 - po + Kp(z, qo)}, Yoo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.
Finally Ay : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(¢)>g2(R3N’)

44/63

Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[(Bn) = min A F @A) + G-}]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) g;;fv{ (0,0) 2 o)~ Gn0) } hm; ;Lh(zuoz), VoeR

o with L, (¢, 00) = max,, cgs { — 00 - po + Kp(z, qo)}, Voo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.

Finally A} : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(®)>g2(R3N’)

Np—1 . -
Rem.: We have 7+ (A% (m, y, 2)) — h Zi:’lo mZNT go(x;), if (m,v, 2) satisfies (x) below,
.- h h b 9 -

+o00, otherwise,
with Vi € {0,...,Np — 1}, m{ = p?, andVn € {0,..., Ny — 1}:
n+1 n+1 n+1 n+1
Y Y Zi —
(Dem)" —v (Apm™) 4 = R =0, *)

44/63

Reformulation

The discrete dual problem can be recast as:

(inf Bh(mz w) + Fh(m) + LG—1(p9,0) (m7 ’LU) (Pnr)
TNLW) — e’
(m, w) P(m, w)
with the costs
wih,

~ 1 ~ P
Fu(m) =Y Fleomi)+ = > Glanm™), By(m,w) =y bm;
in i in

mL (z,-2), ifm>0wekK =R xRy,
b(m,w) =< 0, if (m,w) = (0,0),
+o00, otherwise,

and G(m,w) := (mo, (Am"T1 + Bw")ogngNT—l) with

(Am)i = (Dem) —v(Apm)7*Y, (Bw)] o= (Dpw)y + (Dpw®)

i

n
Q-

45/63

Reformulation

The discrete dual problem can be recast as:

inf Bp(m,w) +Fr(m) + tg-1(,0 0)(m,w) (Pr)

(m,w

e(m,w) P(m, w)

with the costs 1
Fu(m) =Y Flanmi)+ 1 Glem™), Bu(mw):=) bm?] ™),
i,n i i,n
mL (z,-2), ifm>0wekK =R xRy,
b(m,w) =< 0, if (m,w) = (0,0),

+o00, otherwise,

and G(m,w) := (mo, (Am"T1 + Bw")g<,< N, —1) With

(Am):L+1 = (Dym)} — U(Ahm)?"'l, (Bw)} = (thl)?_1 + (thQ)?.

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply Chambolle-Pock’s method for (P,) with
y= (myw)a (,o(m, ’LU) :]Bh(mv w) +Fh(m)7 ¢(m7 w) = LG*l(pO,O)(mv w)

See [Bricefo Arias et al., 2018] and [Briceno Arias et al., 2019] in stationary and dynamic cases.

45/63

Numerical Example

Setting: g = 0 and R? x R 3 (z,m) ~ f(x,m) := m? — H(x), with
H(z) = sin(27z2) + sin(27rz1) + cos(2mz1)

We solve the corresponding MFG and obtain the following evolution of the density:

a)t=0 b)t=01

05 05 05 05

Evolution of the density

More details in [Bricefio Arias et al., 2019]
46/63

Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

e the mass starts from an initial density;
e it converges to a steady state, influenced only by the running cost;

e ast — T, the mass is influenced by the final cost and converges to a final state.

25 T T T

a4 E—

distance

time t

L? distance between dynamic and stationary solutions

More details in [Bricefo Arias et al., 2019]

47/63

Outline

4. Methods for MKV FBSDE

Outline

4. Methods for MKV FBSDE
@ A Picard Scheme for MKV FBSDE

MKV FBSDE System

@ Recall: generic form:

dXt :B(Xt,E(Xt),YVt,Zt)dt-‘rUth, OStST
dYy = —F (X4, L(Xy), Yy, Zo)dt + ZedWy, 0<t<T
Xo ~ mo, Yr = G(Xr, L(X71))

@ Decouple:

> Given (£(X),Y, Z), solve for X
> Given (X, L(X)) solve for (Y, Z)

@ lterate
@ Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]

48/63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

4 Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,, 0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)

49/63

Picard Scheme for MKV FBSDE System

1

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K

Output: Approximation of (X, Y, Z) solving the MKV FBSDE system

Initialize X = ¢, ¥ =0,z =0,0<t<T

2 fork=0,1,2,...,.K—1do

3

Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,, 0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)

Notation: @, ¢ : (X®, £(X®) y® Zz®) o (X&) £(x &)yt 70d1))

49/63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

4 Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,, 0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)

Notation: @, ¢ : (X®, £(X®) y® Zz®) o (X&) £(x &)yt 70d1))
Contraction? Small T' or small Lipschitz constants for B, F, G

49/63

Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together

50/63

Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th < <Tu-1<Tu =T

@ Subproblem: Given (¢r,,, £(é7,,)) and ¢r,, ., , Solve:

dXt :B(Xt,C(Xt),Y,g,Zt)dt+O'th, Tm St
dY; = —F(Xt,ﬁ(Xt),Yt, Zt)dt + ZydWy, m <t < Tyt

X, = &1, YTm+1 = CTm+1

50/63

Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th < <Tu-1<Tu =T

@ Subproblem: Given (¢r,,, £(é7,,)) and ¢r,, ., , Solve:

dXt :B(Xt,C(Xt),Y,g,Zt)dt+O'th, Tm St
dY; = —F(Xt,ﬁ(Xt),Yt, Zt)dt + ZydWy, m <t < Tyt

X, = &1, YTm+1 = CTm+1

@ How to find é7,,, and (.., ?

— &7, from previous problem’s solution (or initial condition)
— (1,4, from next problem’s solution (or terminal condition)

50/63

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:
solver[m](o, po)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

s | WD =7, v =a(xf

£(XE).)

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](&o, io)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

k+1 k (k)
3 | Wl =T YR = GOXE) L L(XE))
4 Else: compute recursively:

Y = Solver[m + 1](X(k)

(k)
Tm+41 Tm+1’['(XTm+1))

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](&o, io)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

k+1 k (k)
3 | Wl =T YR = GOXE) L L(XE))
4 Else: compute recursively:

YiH) = sotver[m + 1)(X) L L(X5Y)

5 Compute:

(XD, L), v, 20 ey = Picard| T —Tn] (X4, VD)

& return solver[m|(¢, £(¢)) := Yo

51/63

Implementation: Discretizations

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

@ Tree algorithm:

» Time discretization
» Space discretization: binomial tree structure
» Look at trajectories

@ Grid algorithm:

» Time and space discretization on a grid
> Look at time marginals

52/63

Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)

53/63

Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)
@ Time discretization: 0 =tg < t1 < --- <tn, =T, tit1 —t; = At

@ Euler Scheme: 0 <i < Ny —1

X(ikill) X(k+1) +B(X(k+1) ,C(X(k+l)) Y(k) Z(k))At"rUAWtHrl
X(k+1) =¢
YO = B [y S+ P L Y), v 9z A
R YD+ PO L), v, 28 A - 2 Aaw,

Y(k+1) _ G(X(k+1) [,(X(k+1)))

+1 +1)
Zf = LR, [VAW,]
Z$‘+” = 0

53/63

Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)
@ Time discretization: 0 =tg < t1 < --- <tn, =T, tit1 —t; = At

@ Euler Scheme: 0 <i < Ny —1

XD = x M0 4 B(x Y L(x), v 28 AL+ o AW,
X(ngrl) —¢
YO = By, [V V] + PO, LX), v, 209) At
+1 +1 >
A Y 4 P L(x), v,z A — 2 A,
Y(k+1) _ G(X(k+1) L(X(k+1)))

A(kJrl) 1 LE, [Y(7k++11 AWtq“]
Z$‘+” = 0

@ Questions:
> How to represent L:(Xt(f“))?

» How to compute the conditional expectation E;, [Y(k“)}

53/63

Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

NJCO
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Y)fqi”} ~ weighted average of values on the two next branches

54/63

Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

NJCO
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Y)fqi”} ~ weighted average of values on the two next branches

@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |

54/63

Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

Nazg
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Yt(,im} ~ weighted average of values on the two next branches
@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |

@ Save space thanks to recombinations?

54/63

Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

Nazg
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Yt(,im} ~ weighted average of values on the two next branches
@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |

@ Save space thanks to recombinations? Not really but . ..

54/63

Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(thta[’(Xt))ﬂ Zy :’U(t,Xt,E(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1

55/63

Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(tvxtﬂ['(Xt))a Zt :U(taXt7‘C(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1

@ Difficulty: space of £(X,) is infinite dimensional
— Freeze it during each Picard iteration:

Y;(lﬂ’l) _ u(k+1) (t, X§k+1)), Zt(kJrl) — ”U(k+1)(t,Xt<k+1)) (*)

55/63

Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(thtﬂL(Xt))7 Zt :U(taXt7‘C(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1

@ Difficulty: space of £(X,) is infinite dimensional
— Freeze it during each Picard iteration:

)/;(IH»I) _ u(k+1)(t’ AX—t(kjtl))7 Zt(k+1> _ U(k+1)(t7Xt(k+1)) (*)

@ Picard iterations for distribution & decoupling functions:
> Step 1: Given (1@, u® v®)), compute p**") = £(x) 0 <t < T, where

axt =B (Xf”l),) (g, x BT 0 (¢, Xt(k'H)))dt + odW,
> Step 2: Given (X® ;&+1)) compute (u(xt1) &) such that (x) holds, where
ay D) _ _F<Xt(k+1)”u£k+1),)/t(k+1)7 Zt(k+1)>dt + 20 D,

> Return (p(t1) 1) 5 0t1))

55/63

Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az

56/63

Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az
)

@ Use projection IT to stay on T" at every ¢;: E(Xt(~ vector of weights

56/63

Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az
)

@ Use projection IT to stay on T" at every ¢;: E(Xt(~ vector of weights

@ Picard iterations for distribution & decoupling functions:

> Step 1: Given (1, u® +®)), compute p{**) = E(XS‘*”)J =0,..., Ny, where

7

Xt(i(j:ll) -1 [ngl) + B(Xt(:(+1)1lu‘§l:)7uil,:)(Xéf+l))7vi?)(X§§+1)))dt + aAWti+1:|

56/63

Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az

@ Use projection I1 to stay on I at every t;: £(X,*"") ~ vector of weights

@ Picard iterations for distribution & decoupling functions:

> Step 1: Given (u®, u® v®) compute ,utkH) E(XS‘*U)J =0,..., Ny, where

XD = H[X(k“)-i—B(X(k“) 8 ul (), (?)(X§f+1)))dt+aAWti+l}

<k+1) (k+1)

> Infact yu;, can be expressed in terms of y.; and a transition kernel
> Ex: b|nom|al approx. of W — efficient computatlon using quantization

56/63

Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) _E |:uf(ki—11)(X(k+1))
(XD, () of) () v)]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+l>(z) =0

» Ex.: binomial approximation of W — more explicit formulas

57/63

Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) -E |:uf(ki—11)(X(k+1))
(XD, () of) () v)]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+1>(z) =0

» Ex.: binomial approximation of W — more explicit formulas
@ Summary:

» Forward: (), 4®) @) — &) = £(x (&)
> Backward: (u&EtD (0 ¢0)) 1y (1) 41y

57/63

Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) _E |:uf(ki—11)(X(k+1))
(XD, () of) () v)]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+l>(z) =0

» Ex.: binomial approximation of W — more explicit formulas
@ Summary:

> Forward: (p®, 4u® v®) - [+ = £(x &+
> Backward: (u&EtD (0 ¢0)) 1y (1) 41y

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

57/63

Outline

4. Methods for MKV FBSDE

@ Stochastic Methods for some Finite-Dimensional MFC Problems

Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

58/63

Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

58/63

Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

@ Ex. 2:
{b(x, w,) = b(z, I, a) = (cos(z) + cos(n))
f@,p,0) = |(1|2, g(z,p) =0

> Can the optimal control be expressed as a function of X;, E[X] only?
» ODE for iz, ?

58/63

Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

@ Ex. 2:
{b(x, w,) = b(z, I, a) = (cos(z) + cos(n))
f(xvu‘?a) = |(1|2, g(xmu) =0

» Can the optimal control be expressed as a function of X, E[X] only?
» ODE for iz, ?

&y = E(cos(X1) + cos())a(t, X0)

It involves not only E[X;] = 1z, but also E[cos(X¢)]

58/63

Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

@ Ex. 2:
{b(x, w,) = b(z, I, a) = (cos(z) + cos(n))
f@,p,0) = |(1|2, g(z,p) =0

> Can the optimal control be expressed as a function of X;, E[X] only?
» ODE for iz, ?

&y = E(cos(X1) + cos())a(t, X0)

It involves not only E[X;] = 1z, but also E[cos(X¢)]

@ Class of MFC s.t. the problem can be solved with a finite number of moments?

58/63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

T
J(a)=E U F(X,, c0)dt +G(X)
0
subject to:
dX, = B(X,, a;)dt + dW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R})?

59/63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

J(@)=E |:/ F(X,,an)dt+ G(X 1)

subject to:
dX, = B(X,,a)dt + SdW,

where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 = to<t1 < --- < tNt =T, tiv1 — t; = At

59/63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

T
J(@)=E [/ F(X,,an)dt+ G(X 1)
0
subject to:
dX, = B(X,,a)dt + SdW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 = to<t1 < --- < tNt =T, tiv1 —ti = At

@ DPPfor V : [0,T] x (R)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

{ Vas (T7 &) = g(&)

VAt(tnyﬁ) = sup,, {f(@, Oé)At + Efnoe |:VAt(t"+17&tn+1):| }7” =N:—1,...,

where Etn-z>e |:VAt(ntl, Xt i):| =FE |:VAt(tn+1, Xy +1) |X0‘ — 35:|

1,0

59/63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

J(@)=E |:/ F(X,,an)dt+ G(X 1)

subject to:
dX, = B(X,, a;)dt + dW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tig1 —t; = At
@ DPPfor V : [0,T] x (R)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

Va(T,z) = G(z)
Vadltn,2) = sup, { Fa,)M+ B2 [Varltner, X,)] fon= M= 10,10

where Etn-z>e |:VAt(ntl, Xt i):| =FE |:VAt(tn+1, Xy +1) |X“ — 93:|

— Key difficulty: estimation of the conditional expectation

59/63

Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m

@ Projection: y
B [Vailtrn, X5) 1X5 | = 30 0067 (X5)
where m:IM 5
= arggl}\/i{nﬂi Vae(tni1, X5) Z " (X5,) 1

m=1

60/63

Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m

@ Projection:
M
E [VAt(tn+1,X?n+1) K;L} ~ Z ¢m(K;yn)
m=1
where
Iy 2
= argminE VAt(th,X?nH) — Z " (X)) 1
ERM

@ Explicit expression:
= El¢(X7)¢(X7) 17 ElVar(tory, X7,)$(X7))]

60/63

Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m
@ Projection:

M
E [VAt(tm_hK?nH 7%} Z ¢m(K:n)

1
where

= argmin E

2
eRM ‘|
@ Explicit expression:

= B[p(X;)o(X) T EVar(tarr, X7,)o(X])]

@ Estimation with Ny, Monte Carlo samples:

NNI\I(Z¢ X0 G)T

Ny

1 L,
Norc ZVAt n+1, Xt +1)¢(th)

M
Vat(tnt1, X tn+1 Z " (X5,)

m=1

E[p(Xy) p(Xo™) "

and

E[Vai(tnt1, X0% (X)) =

tn+4+1

with training set { (X7, X%)i¢=1,..., Nuc}

“tn41

60/63

Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,...,m Not always easy to choose !
@ Projection:

M
E [VAt(tm_hK?nH 7%} Z o (K:n)

1
where

= argmin E

2
eRM ‘|
@ Explicit expression:

= B[p(X;)o(X) T EVar(tarr, X7,)o(X])]

@ Estimation with Ny, Monte Carlo samples:

NN\/(Z¢ X0 G)T

Ny

1 £,c
Nue ZVM ntl Xt +1)¢(th)

M
VAt('n+17 tn+1 Z ¢m(&;¥n)

m=1

E[p(Xy) p(Xo™) "

and

E[Vai(tnt1, X0% (X)) =

tn+4+1

with training set { (X7, X%)i¢=1,..., Nuc}

“tn41

60/63

Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

SetofcellsCo ={Cj;j=1,...,Jo}

Associated grid points G = {¢;:7 =1....,Jo}

Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
Discrete version: AW € Gg: P(AW = ¢;) = p;

Can be optimized'; particularly helpful when d > 1

L S 2

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
61/63

Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

* SetofcellsCo ={Cj;j=1,...,Jq}

* Associated grid points G = {¢j;7 =1,....Jo}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Gg: P(AW = ¢;) = p;

* Can be optimized'; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R
Jo
E [VAt(tn+17 Xo DIXE = &} ~ ijvm (tn-‘rl: IIr (B(L o,) At + EC_}))
Jj=1
forallz e T

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
61/63

Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

* SetofcellsCo ={Cj;j=1,...,Jq}

* Associated grid points G = {¢j;7 =1,....Jo}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Gg: P(AW = ¢;) = p;

* Can be optimized'; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R
Jo
E [VAt(tn+17 Xo DIXE = &} ~ ijVAt (tn+17 IIr (B(L o,) At + EC_}))
Jj=1
forallz e T

@ Other interpolations are possible

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
61/63

Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

* SetofcellsCo ={Cj;j=1,...,Jq}

* Associated grid points G = {¢j;7 =1,....Jo}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Gg: P(AW = ¢;) = p;

* Can be optimized'; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R
Jo
E [VAt(tn+17 Xo DIXE = &} ~ ijVAt (tn+17 IIr (B(L o,) At + EC_}))
Jj=1
forallz e T

@ Other interpolations are possible
For more details and numerical examples, see [Balata et al., 2019]

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
61/63

Outline

5. Conclusion

Summary

@ Two schemes for FB PDEs of MFG

@ Optimization methods for MFC and variational MFGs

@ Two methods based on the probabilistic approach

62/63

Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Lauriere and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]

Monotone operators [Almulla et al., 2017], [Gomes and Saude, 2018],
[Gomes and Yang, 2020]

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriére et al., 2023]

Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]

Gaussian processes [Mou et al., 2022]

Kernel-based representation [Liu et al., 2021]

Fourier approximation [Nurbekyan et al., 2019]

63/63

Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Lauriere and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]

Monotone operators [Almulla et al., 2017], [Gomes and Saude, 2018],
[Gomes and Yang, 2020]

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriére et al., 2023]

Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]

Gaussian processes [Mou et al., 2022]

Kernel-based representation [Liu et al., 2021]

Fourier approximation [Nurbekyan et al., 2019]

However efficient, these methods are usually limited to problems with:

(relatively) small dimension
(relatively) simple structure

= motivations to develop machine learning methods (see next lectures)

63/63

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References |

[Achdou, 2013] Achdou, Y. (2013).
Finite difference methods for mean field games.
In Hamilton-Jacobi equations: approximations, numerical analysis and applications, volume
2074 of Lecture Notes in Math., pages 1—47. Springer, Heidelberg.

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77—109.

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136—1162.

[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmé&ki, P., Periaux, J., and
Pironneau, O., editors, Contributions to Partial Differential Equations and Applications,
chapter 4, pages 17—42. Springer International Publishing.

[Achdou and Lauriére, 2015] Achdou, Y. and Lauriére, M. (2015).
On the system of partial differential equations arising in mean field type control.
Discrete Contin. Dyn. Syst., 35(9):3879-3900.

1/9

References Il

[Achdou and Lauriére, 2016a] Achdou, Y. and Lauriére, M. (2016a).
Mean Field Type Control with Congestion.
Appl. Math. Optim., 73(3):393—-418.

[Achdou and Lauriére, 2016b] Achdou, Y. and Lauriére, M. (2016b).
Mean Field Type Control with Congestion (Il): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535-578.

[Achdou and Lauriére, 2020] Achdou, Y. and Lauriére, M. (2020).
Mean field games and applications: Numerical aspects.
Mean Field Games: Cetraro, Italy 2019, 2281:249-307.

[Achdou et al., 2021] Achdou, Y., Lauriere, M., and Lions, P-L. (2021).
Optimal control of conditioned processes with feedback controls.
Journal de Mathématiques Pures et Appliquées, 148:308-341.

[Achdou and Perez, 2012] Achdou, Y. and Perez, V. (2012).
Iterative strategies for solving linearized discrete mean field games systems.
Netw. Heterog. Media, 7(2):197-217.

[Achdou and Porretta, 2016] Achdou, Y. and Porretta, A. (2016).
Convergence of a finite difference scheme to weak solutions of the system of partial
differential equations arising in mean field games.
SIAM J. Numer. Anal., 54(1):161-186.

2/9

References Il

[Achdou and Porretta, 2018] Achdou, Y. and Porretta, A. (2018).
Mean field games with congestion.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 35(2):443-480.

[Aimulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657-682.

[Andreev, 2017] Andreev, R. (2017).
Preconditioning the augmented lagrangian method for instationary mean field games with
diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763-A2783.

[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F.,, Delarue, F., and
Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84-113.

[Aurell and Djehiche, 2018] Aurell, A. and Djehiche, B. (2018).
Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics.
SIAM Journal on Control and Optimization, 56(1):434—455.

[Balata et al., 2019] Balata, A., Huré, C., Lauriére, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114—144.

3/9

References IV

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Lauriere, M., Machtalay, A., and Zhu, Y. (2023).
Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.

[Benamou and Carlier, 2015a] Benamou, J.-D. and Carlier, G. (2015a).
Augmented Lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
J. Optim. Theory Appl., 167(1):1-26.

[Benamou and Carlier, 2015b] Benamou, J.-D. and Carlier, G. (2015b).
Augmented lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1-26.

[Benamou et al., 2017] Benamou, J.-D., Carlier, G., and Santambrogio, F. (2017).
Variational mean field games.
In Active Particles, Volume 1, pages 141-171. Springer.

[Bricefo Arias et al., 2019] Bricefio Arias, L. M., Kalise, D., Kobeissi, Z., Lauriere, M.,
Mateos Gonzalez, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field
games with local couplings.
ESAIM: ProcS, 65:330-348.

4/9

References V

[Bricefio Arias et al., 2018] Bricefio Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801-836.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.

[Cardaliaguet, 2015] Cardaliaguet, P. (2015).
Weak solutions for first order mean field games with local coupling.

In Analysis and geometry in control theory and its applications, pages 111-158. Springer.

[Cardaliaguet and Graber, 2015] Cardaliaguet, P. and Graber, P. J. (2015).
Mean field games systems of first order.
ESAIM Control Optim. Calc. Var., 21(3):690-722.

[Cardaliaguet et al., 2015] Cardaliaguet, P., Graber, P. J., Porretta, A., and Tonon, D. (2015).

Second order mean field games with degenerate diffusion and local coupling.
NoDEA Nonlinear Differential Equations Appl., 22(5):1287-1317.

5/9

References VI

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45-67.

[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269—4292.

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011).
A first-order primal-dual algorithm for convex problems with applications to imaging.
J. Math. Imaging Vision, 40(1):120-145.

[Chassagneux et al., 2019] Chassagneux, J.-F,, Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640—-1684.

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Atrtificial Intelligence and Statistics, pages 1909-1917. PMLR.

6/9

References VI

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).
A cubature based algorithm to solve decoupled mckean—vlasov forward—backward stochastic
differential equations.
Stochastic Processes and their Applications, 125(6):2206—2255.

[Fortin and Glowinski, 1983] Fortin, M. and Glowinski, R. (1983).
Augmented Lagrangian methods: applications to the numerical solution of boundary-value
problems.
North-Holland.

[Gomes and Saude, 2018] Gomes, D. A. and Salde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition.
Applied Mathematics & Optimization.

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton’s method for effective hamiltonians and mather
measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883-1915.

[Lachapelle and Wolfram, 2011] Lachapelle, A. and Wolfram, M.-T. (2011).
On a mean field game approach modeling congestion and aversion in pedestrian crowds.
Transportation research part B: methodological, 45(10):1572—1589.

7/9

References VIII

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P.-L. (2007).
Mean field games.
Jpn. J. Math., 2(1):229-260.

[Lauriere, 2021] Lauriere, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.

[Lauriére and Pironneau, 2016] Lauriére, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902—-924.

[Lauriere et al., 2023] Lauriere, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable
hamiltonians.
Applied Mathematics & Optimization, 87(2):17.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.

[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639-2668.

8/9

References IX

[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.

[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367—-396.

[Pages, 2018] Pageés, G. (2018).
Numerical probability.
In Universitext. Springer.

[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629—-655.

[Porretta and Zuazua, 2013] Porretta, A. and Zuazua, E. (2013).
Long time versus steady state optimal control.
SIAM J. Control Optim., 51(6):4242—-4273.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

9/9

	Introduction
	Methods for the PDE system
	A Finite Difference Scheme
	Algorithms
	A Semi-Lagrangian Scheme

	Optimization Methods for MFC and Variational MFG
	Variational MFGs and Duality
	Alternating Direction Method of Multipliers
	A Primal-Dual Method

	Methods for MKV FBSDE
	A Picard Scheme for MKV FBSDE
	Stochastic Methods for some Finite-Dimensional MFC Problems

	Conclusion
	Appendix

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

