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Reminder: FB systems

Here we will focus on the continuous time and space setting

We have seen two types of forward-backward systems:

▶ PDE systems: Kolmogorov-Fokker-Planck (KFP) and
Hamilton-Jacobi-Bellman (HJB)

▶ SDE systems of McKean-Vlasov (MKV) type

We will describe methods based on both approaches

In each case, there will be two questions to design a numerical method:

▶ Discretization → numerical scheme

▶ Computation → algorithm
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Desirable properties for (1):

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?
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Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

For simplicity we consider the domain T = one-dimensional (unit) torus.

Let ν = σ2/2.

We consider Nh and NT steps respectively in space and time.

Let h = 1/Nh and ∆t = T/NT . Let Th = discretized torus.

We approximate m0(xi) by ρ0
i such that h

∑
i
ρ0
i = 1.

Then we introduce the following discrete operators : for φ ∈ RNT +1 and ψ ∈ RNh

• time derivative : (Dtφ)n := φn+1 − φn

∆t , 0 ≤ n ≤ NT − 1

• Laplacian : (∆hψ)i := − 1
h2 (2ψi − ψi+1 − ψi−1) , 0 ≤ i ≤ Nh

• partial derivative : (Dhψ)i := ψi+1 − ψi
h

, 0 ≤ i ≤ Nh

• gradient : [∇hψ]i := ((Dhψ)i, (Dhψ)i−1) , 0 ≤ i ≤ Nh
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Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

b(x,m, α) = α, f(x,m, α) = L(x, α) + f0(x,m), g(x,m) = g0(x,m).

where x ∈ Rd, α ∈ Rd,m ∈ R+. Then

H(x,m, p) = max
α

{−L(x, α) − ⟨α, p⟩} − f0(x,m) = H0(x, p) − f0(x,m)

where H0 is the convex conjugate (also denoted L∗) of L with respect to α:

H0(x, p) = L∗(x, p) = sup
α

{⟨α, p⟩ − L(x, α)}

Discrete Hamiltonian: (x, p1, p2) 7→ H̃0(x, p1, p2) satisfying:
Monotonicity: decreasing w.r.t. p1 and increasing w.r.t. p2

Consistency with H0: for every x, p, H̃0(x, p, p) = H0(x, p)
Differentiability: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is C1

Convexity: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is convex

Example: if H0(x, p) = |p|2, a possible choice is H̃0(x, p1, p2) = (p1
−)2 + (p2

+)2
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Discrete HJB

Discrete solution: We replace u,m : [0, T ] × T → R by vectors

U,M ∈ R(NT +1)×Nh

The HJB equation{
∂tu(t, x) + ν∆u(t, x) +H0(x,∇u(t, x)) = f0(x,m(t, x))
u(T, x) = g0(x,m(T, x))

is discretized as:{
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i )

UNT
i = g0(xi,MNT

i )
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Discrete KFP

The KFP equation

∂tm(t, x)−ν∆m(t, x)+div
(
m(t, x)∂qH(x,m(t),∇u(t, x))

)
= 0, m(0, x) = m0(x)

is discretized as

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, M0

i = ρ0
i

Here we use the discrete transport operator ≈ − div(. . . )

Ti(U,M) := 1
h

(
Mi∂p1H̃0(xi, [∇hU ]i) −Mi−1∂p1H̃0(xi−1, [∇hU ]i−1)
+Mi+1∂p2H̃0(xi+1, [∇hU ]i+1) −Mi∂p2H̃0(xi, [∇hU ]i)

)
Intuition: weak formulation & integration by parts∫

T
div (m∂pH0(x,∇u))w = −

∫
T
m∂pH0(x,∇u) · ∇w

is discretized as

−h
∑
i

Ti(U,M)Wi = h
∑
i

Mi∇qH̃0(xi, [∇hU ]i) · [∇hW ]i
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Discrete System – Properties

Discrete forward-backward system:
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i ), ∀n ≤ NT − 1

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, ∀n ≤ NT − 1

M0
i = ρ0

i , UNT
i = g0(xi,MNT

i ), i = 0, . . . , Nh

This scheme enjoys many nice properties, among which:
It yields a monotone scheme for the KFP equation: mass and positivity are preserved

Convergence to classical solution if monotonicity
[Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]

Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]

The discrete KFP operator is the adjoint of the linearized Bellman operator

Existence and uniqueness result for the discrete system

It corresponds to the optimality condition of a discrete optimization problem (details later)
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Algo 1: Fixed Point Iterations

Input: Initial guess (M̃, Ũ); damping δ(·); number of iterations K
Output: Approximation of (M̂, Û) solving the finite difference system

1 Initialize M (0) = M̃ (0) = M̃, U (0) = Ũ
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let U (k+1) be the solution to:{

−(DtUi)n − ν(∆hU
n)i + H̃0(xi, [DhUn]i) = f0(xi, M̃ (k),n+1

i ), n ≤ NT − 1
UNT
i = g0(xi, M̃ (k),NT

i )

4 Let M (k+1) be the solution to:{
(DtMi)n − ν(∆hM

n+1)i − Ti(U (k+1),n,Mn+1) = 0, n ≤ NT − 1
M0
i = ρ0

i

5 Let M̃ (k+1) = δ(k)M̃ (k) + (1 − δ(k))M (k+1)

6 return (M (K), U (K))

8 / 63



Algo 1: Fixed Point Iterations

The HJB equation is non-linear

Idea 1: replace H̃0(xi, [DhUn]i) by H̃0(xi, [DhU (k),n]i)

Idea 2: use non linear solver to find a zero of

φ : RNh×(NT +1) → RNh×NT ,

with:

φ(U) =
(
−(DtUi)n−ν(∆hU

n)i+H̃0(xi, [DhUn]i)−f0(xi, M̃ (k),n+1
i )

)n=0,...,NT −1
i=0,...,Nh−1

Example: Newton’s method
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

Finite difference scheme

Solved by (damped) fixed point approach
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Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of φ = (φU , φM)⊤ with φU and φM s.t.{
φU (U,M) = 0 ⇔ (U,M) solves discrete HJB equation
φM(U,M) = 0 ⇔ (U,M) solves discrete KFP equation

Let X(k) = (U (k),M (k))⊤

Iterate: X(k+1) = X(k) − Jφ(X(k))−1φ(X(k))

Or rather: Jφ(X(k))Y = −φ(X(k)), then X(k+1) = Y +X(k)

Key step: Solve a linear system of the form(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
where AU,M(U,M) = ∇UφM(U,M), AU,U (U,M) = ∇UφU (U,M), . . .
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Newton Method – Implementation

Linear system to be solved:
(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
Structure: AU,M, AM,U are block-diagonal, AU,U = A⊤

M,M, and

AU,U =


D1 0 . . . . . . 0

− 1
∆t

IdNh
D2

. . . 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . . 0 − 1

∆t
IdNh

DNT


where Dn corresponds to the discrete operator

Z = (Zi,j)i,j 7→
( 1

∆tZi,j − ν(∆hZ)i,j + [∇hZ]i,j · ∇pH̃0(xi,j , [∇hU
(k),n]i,j)

)
i,j

Rem. Initial guess (U (0),M (0)) is important for Newton’s method
Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])

Idea 2: continuation method w.r.t. ν (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.
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Example: Exit of a Room – Distribution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]

Geometry of the room
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Example: Exit of a Room – Crowd model

Crowd motion with ocal interactions; see
e.g. [Lachapelle and Wolfram, 2011, Achdou and Lasry, 2019,
Achdou and Porretta, 2018, Achdou and Laurière, 2016a] for other models of
this type and [Aurell and Djehiche, 2018, Achdou and Laurière, 2015] for crowd
motion models with non-local interactions.

Here, control = velocity:

dXt = α(t,Xt)dt+ σdWt

Congestion through the cost: higher density ⇒ higher price to move

Hamiltonian:

H(x,m, p) = 8|p|2

(1 +m) 3
4

− 1
3200 .

Exercise
What is the cost function leading to this Hamiltonian?
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Example: Exit of a Room – Crowd model

MFG PDE system:
1 Mean field games: the MFG PDE system is:

−
∂u

∂t
− 0.05 ∆u+

8

(1 +m)
3
4

|∇u|2 =
1

3200
,

∂m

∂t
− 0.05 ∆m− 16 div

(
m∇u

(1 +m)
3
4

)
= 0 .

2 Mean field control: the HJB becomes:

−
∂u

∂t
− 0.05 ∆u+

(
2

(1 +m)
3
4

+
6

(1 +m)
7
4

)
|∇u|2 =

1
3200

.

We choose a small ν (e.g. 0.05) so the diffusion is not too strong

No terminal cost: g ≡ 0
Boundary has several parts.

▶ Doors: Dirichlet condition u = 0 (exit cost), m = 0 (m = 0 outside the domain)
▶ Walls: for u, Neumann condition: ∂u

∂n
= 0 (velocity is tangential to the walls); for m:

ν ∂m
∂n

+m ∂H
∂p

(·,m,∇u) · n = 0, therefore ∂m
∂n

= 0

Initial density m0: piecewise constant with two values 0 and 4 people/m2

Interpretation: At t = 0, there are 3300 people in the hall. T = 50 minutes
15 / 63



Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room – Remaining Mass

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]
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Algorithms
A Semi-Lagrangian Scheme
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MFG Setup

Scheme introduced by [Carlini and Silva, 2014]

For simplicity: d = 1, domain X = R, A = R
ν = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]

Model:

b(x,m, α) = α

f(x,m, α) = 1
2 |α|2 + f0(x,m), g(x,m)

where f0 and g depend on m ∈ P1(R) in a potentially non-local way

MFG PDE system:
− ∂u

∂t
(t, x) + 1

2 | ∇u(t, x)|2 = f0(x,m(t, ·)), in [0, T ) × R,

∂m

∂t
(t, x) − div (m(t, ·) ∇u(t, ·)) (x) = 0, in (0, T ] × R,

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x), in R.
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Representation of the Value Function

Dynamics:

Xα
t = Xα

0 +
∫ t

0
α(s)ds, t ≥ 0.

Representation formula for the value function given m = (mt)t∈[0,T ]:

u[m](t, x) = inf
α∈L2([t,T ];R)

{ ∫ T

t

[1
2 |α(s)|2 + f0(Xα,t,x

s ,m(s, ·))
]
ds

+ g(Xα,t,x
T ,m(T, ·))

}
,

where Xα,t,x starts from x at time t and is controlled by α
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Discrete HJB equation

Discrete HJB: Given a flow of densities m,{
Uni = S∆t,h[m](Un+1, i, n), (n, i) ∈ JNT − 1K × Z,
UNT
i = g(xi,m(T, ·)), i ∈ Z,

where

S∆t,h is defined as

S∆t,h[m](W,n, i) = inf
α∈R

{(1
2 |α|2 + f0(xi,m(tn, ·))

)
∆t+ I[W ](xi + α∆t)

}
,

with I : B(Z) → Cb(R) is the interpolation operator defined as

I[W ](·) =
∑
i∈Z

Wiβi(·),

where B(Z) is the set of bounded functions from Z to R

and βi =
[
1 − |x−xi|

h

]
+

: triangular function with support [xi−1, xi+1] and s.t.
βi(xi) = 1.
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Discrete HJB equation – cont.

Before moving to the KFP equation:

Interpolation: from U = (Uni )n,i, construct the function
u∆t,h[m](x, t) : [0, T ] × R → R,

u∆t,h[m](t, x) = I[U [ t
∆t

]](x), (t, x) ∈ [0, T ] × R.

Regularization of HJB solution with a mollifier ρϵ:

uϵ∆t,h[m](t, ·) = ρϵ ∗ u∆t,h[m](t, ·), t ∈ [0, T ].
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Discrete KFP equation: intuition

Eulerian viewpoint:
▶ focus on a location
▶ look at the flow passing through it
▶ evolution characterized by the velocity at (t, x)

Lagrangian viewpoint:
▶ focus on a fluid parcel
▶ look at how it flows
▶ evolution characterized by the position at time t of a particle starting at x

Here, in our model:

Xα
t = Xα

0 +
∫ t

0
α(s)ds, t ≥ 0.

Time and space discretization?
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Discrete KFP equation: intuition – diagram

R

R

Mn
i−1

xi−1 xi xi+1

xi + αn
i ∆t

... ...

Mn+1
j−1

... ...

xj xj+1 xj+2xj−1

Mn
i Mn

i+1

Mn+1
j Mn+1

j+1

Movement of the mass when using control v(tn, xi) = αni .

Bottom: time tn; top: time tn+1.
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Discrete KFP equation

Control induced by value function:

α̂ϵ∆t,h[m](t, x) = −∇uϵ∆t,h[m](t, x),

and its discrete counter part: α̂ϵn,i = α̂ϵ∆t,h[m](tn, xi).

Discrete flow:

Φϵn,n+1,i[m] = xi + α̂ϵ∆t,h[m](tn, xi)∆t .

Discrete KFP equation: for M ϵ[m] = (M ϵ,n
i [m])n,i:

M ϵ,n+1
i [m] =

∑
j
βi

(
Φϵn,n+1,j [m]

)
M ϵ,n
j [m], (n, i) ∈ JNT − 1K × Z,

M ϵ,0
i [m] =

∫
[xi−h/2,xi+h/2]

m0(x)dx, i ∈ Z.
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Fixed Point Formulation

Function mϵ
∆t,h[m] : [0, T ] × R → R defined as: for n ∈ JNT − 1K, for

t ∈ [tn, tn+1),

mϵ
∆t,h[m](t, x) = 1

h

[
tn+1 − t

∆t
∑
i∈Z

M ϵ,n
i [m]1[xi−h/2,xi+h/2](x)

+ t− tn
∆t

∑
i∈Z

M ϵ,n+1
i [m]1[xi−h/2,xi+h/2](x)

]
.

Goal: Fixed-point problem: Find M̂ = (M̂n
i )i,n such that:

M̂n
i = Mn

i

[
mϵ

∆t,h[M̂ ]
]
.

Solution strategy: Fixed point iterations for example

See [Carlini and Silva, 2014] for more details
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Numerical Illustration

Costs:
g ≡ 0, f(x,m, α) = 1

2 |α|2 + (x− c∗)2 + κMFV (x,m),

with
V (x,m) = ρσV ∗

(
ρσV ∗m

)
(x),

Experiments: target c∗ = 0, m0 = unif. on [−1.25,−0.75] and on [0.75, 1.25]
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κMF = 0.9

See [Laurière, 2021] for more details on these experiments
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing

Semi-Lagrangian scheme

Solved by damped fixed point approach

27 / 63
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Exercise

Exercise
Implement the previous finite difference scheme on the same MFG model.

If the algorithm fails to converge with ν = 0, try with ν > 0 but small.
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Variational MFGs

Key ideas:

Variational MFG

Duality

Optimization techniques
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Variational MFGs

In some cases, the MFG PDE system can be interpreted as the optimality conditions
for a variational problem

MFG PDE system ⇔ optimality condition of two optimization problems in duality

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015],
[Cardaliaguet et al., 2015], [Benamou et al., 2017], . . .
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A Variational MFG

d = 1, domain = T
drift and costs:

b(x,m, α) = α, f(x,m, α) = L(x, α) + f0(x,m), g(x,m) = g0(x).

where x ∈ Rd, α ∈ Rd,m ∈ R+.

Then

H(x,m, p) = sup
α

{−L(x, α) − αp} − f0(x,m) = H0(x, p) − f0(x,m)

where H0 is the convex conjugate (also denoted L∗) of L with respect to α:

H0(x, p) = L∗(x, p) = sup
α

{ αp− L(x, α)}

Further assume (for simplicity)

L(x, α) = 1
2 |α|2, H0(x, p) = 1

2 |p|2
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A Variational Problem

At equilibrium, L(Xt) = µ̂t and

J(α̂; m̂) = E
[∫ T

0
f(Xt, m̂(t,Xt), α̂(t,Xt))dt+ g(XT )

]
=

∫ T

0

∫
T
f(x, m̂(t, x), α̂(t, x))︸ ︷︷ ︸

=L(x,α̂(t,x))+f0(x,m̂(t,x))

m̂(t, x)dxdt+
∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
m̂(t, ·) b(·, m̂(t), α̂(t, ·)︸ ︷︷ ︸

=α̂(t,·)

)
)

(x), m̂0 = m0

Change of variable:
ŵ(t, x) = m̂(t, x)α̂(t, x)

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
+ f0(x, m̂(t, x))

]
m̂(t, x)dxdt+

∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
ŵ(t, ·)

)
(x), m̂0 = m0
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(x), m̂0 = m0
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Reformulation

Reformulation:

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
m̂(t, x)︸ ︷︷ ︸

L̃(x,m̂(t,x),ŵ(t,x))

+f0(x, m̂(t, x))m̂(t, x)︸ ︷︷ ︸
F̃ (x,m̂(t,x))

]
dxdt

+
∫
T
g(x)m̂(T, x)︸ ︷︷ ︸
G̃(x,m̂(t,x))

dx
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∫ T
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T
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Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m,mα):

B(m,w) =
∫ T

0

∫
T

(
L̃(x,m(t, x), w(t, x)) + F̃ (x,m(t, x))

)
dxdt+

∫
T
G̃(x,m(T, x))dx

subject to the constraint:

∂tm− ν∆m+ div(w) = 0, m(0, x) = m0(x)

where

F̃ (x,m) =
{∫ m

0 f̃(x, s)ds, if m ≥ 0,
+∞, otherwise,

G̃(x,m) =
{
mg0(x), if m ≥ 0,
+∞, otherwise,

and

L̃(x,m,w) =


mL

(
x, w

m

)
, if m > 0,

0, if m = 0 and w = 0,
+∞, otherwise

where R ∋ m 7→ f̃(x,m) = ∂m(mf0(x,m))
is non-decreasing (hence F̃ convex and l.s.c.) provided m 7→ mf0(x,m) is convex.
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Duality

Dual problem: Maximize over ϕ such that ϕ(T, x) = g0(x)

A(ϕ) = inf
m

A(ϕ,m)

with A(ϕ,m) =
∫ T

0

∫
T
m(t, x)

(
∂tϕ(t, x) + ν∆ϕ(t, x) −H(x,m(t, x),∇ϕ(t, x))

)
dxdt

+
∫
T
m0(x)ϕ(0, x)dx.

Duality relation: A and B satisfy: (A) = supϕ A(ϕ) = inf(m,w) B(m,w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A) = − inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
, (B) = inf

(m,w)

{
F∗(Λ∗(m,w)) + G∗(−m,−w)

}
where F∗,G∗ are the convex conjugates of F ,G, and Λ∗ is the adjoint operator of Λ, and
Λ(ϕ) =

(
∂ϕ
∂t

+ ν∆ϕ,∇ϕ
)

,

F(ϕ) = χT (ϕ) −
∫
Td

m0(x)ϕ(0, x)dx, χT (ϕ) =
{

0 if ϕ|t=T = g0
+∞ otherwise,

G(φ1, φ2) = − inf
0≤m∈L1((0,T )×Td)

∫ T

0

∫
Td

m(t, x) (φ1(t, x) −H(x,m(t, x), φ2(t, x))) dxdt.
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Augmented Lagrangian

Reformulation of the primal problem:

(A) = −inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
= −inf

ϕ
inf
q

{
F(ϕ) + G(q), subj. to q = Λ(ϕ)

}
.

The corresponding Lagrangian is

L(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩.

We consider the augmented Lagrangian (with parameter r > 0)

Lr(ϕ, q, q̃) = L(ϕ, q, q̃) + r

2∥Λ(ϕ) − q∥2

Goal: find a saddle-point of Lr.
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Alternating Direction Method of Multipliers (ADMM)

Reminder: Lr(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃) solving the finite difference

system
1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do
3 (a) Compute

ϕ(k+1) ∈ argmin
ϕ

{
F(ϕ) − ⟨q̃(k),Λ(ϕ)⟩ + r

2∥Λ(ϕ) − q(k)∥2
}

4 (b) Compute

q(k+1) ∈ argmin
q

{
G(q) + ⟨q̃(k), q⟩ + r

2∥Λ(ϕ(k+1)) − q∥2
}

5 (c) Compute
q̃(k+1) = q̃(k) − r

(
Λ(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

References: ALG2 in the book of [Fortin and Glowinski, 1983]
→ in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
→ in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]
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ADMM: Discrete Primal Problem

Notation: Nh, NT steps resp. in space and time, N = (NT + 1)Nh, N ′ = NTNh.

Recall: H0(x, p) = 1
2 |p|2. We take H̃0(x, p1, p2) = 1

2 |(p−
1 , p

+
2 )|2.

Discrete version of the dual convex problem:

(Ah) = − inf
ϕ∈RN

{
Fh(ϕ) + Gh(Λh(ϕ))

}
,

where Λh : RN → R3N′
is defined by : ∀n ∈ {1, . . . , NT }, ∀ i ∈ {0, . . . , Nh − 1},

(Λh(ϕ))ni =
(
(Dtϕi)n + ν

(
∆hϕ

n−1)
i
, [∇h ϕ

n−1]i
)
,

where Fh,Gh are the l.s.c. proper functions defined by:

Fh : RN ∋ ϕ 7→χT (ϕ) − h

Nh−1∑
i=0

ρ0
iϕ

0
i ∈ R ∪ {+∞},

Gh : R3N′
∋ (a, b, c) 7→ − h∆t

NT∑
n=1

Nh−1∑
i=0

Kh(xi, ani , bni , cni ) ∈ R ∪ {+∞},

with

Kh(x, a0, p1, p2) = min
m∈R+

{
m[a0 + H̃0(x,m, p1, p2)]

}
, χT (ϕ) =

{
0 if ϕNT

i ≡ g0(xi)
+∞ otherwise.

.
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ADMM with Discretization

Discrete Aug. Lag.: Lrh(ϕ, q, q̃) = Fh(ϕ) + Gh(q) − ⟨q̃,Λh(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃)

1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute ϕ(k+1) ∈ argminϕ
{

Fh(ϕ) − ⟨q̃(k),Λh(ϕ)⟩ + r
2 ∥Λh(ϕ) − q(k)∥2

}
4 (b) Compute q(k+1) ∈ argminq

{
Gh(q) + ⟨q̃(k), q⟩ + r

2 ∥Λh(ϕ(k+1)) − q∥2
}

5 (c) Compute q̃(k+1) = q̃(k) − r
(
Λh(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

First-order Optimality Conditions:

Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE

• if ν = 0, a direct solver can be used

• if ν > 0, PDE with 4th order linear elliptic operator ⇒ needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]
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Numerical Example: Congestion Without Viscosity

• Domain Ω = [0, 1]2\[0.4, 0.6]2 (obstacle at the center)

• Define the Hamiltonian by duality (on ∂Ω the vector speed is towards the interior)

H(x,m, p) =


sup
ξ∈R2

{
− ξ · p− L(x,m, ξ)

}
= m−α|p|β − ℓ(x,m), if x ∈ Ω,

sup
ξ∈R2 : ξ·n≤0

{
− ξ · p− L(x,m, ξ)

}
, if x ∈ ∂Ω.

• The associated Lagrangian (corresponding to the running cost) is:

L(x,m, ξ) = (β − 1)β−β∗
m

α
β−1 |ξ|β

∗
+ ℓ(x,m), 1 < β ≤ 2, 0 ≤ α < 1

• Ex.: m0 : & uT : opposite corners; α = 0.01, β = 2, ℓ(x,m) = 0.01m.
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0
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Initial distribution (left) and final cost (right)

For more details, see [Achdou and Laurière, 2016b]
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Results for the mean field control (MFC) problem, with ν = 0
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Optimality Conditions and Proximal Operator

Let φ,ψ : RN → R ∪ {+∞} be convex l.s.c. proper functions.

Consider the optimization problem

min
y∈RN

φ(y) + ψ(y),

and its dual
min
σ∈RN

φ∗(−σ) + ψ∗(σ).

The 1st-order opt. cond. satisfied by a solution (ŷ, σ̂) are

{
−σ̂ ∈ ∂φ(ŷ)
ŷ ∈ ∂ψ∗(σ̂)

⇔
{
ŷ − τ σ̂ ∈ τ∂φ(ŷ) + ŷ

σ̂ + γŷ ∈ γ∂ψ∗(σ̂) + σ̂
⇔

{
proxτφ(ŷ − τ σ̂) = ŷ

proxγψ∗ (σ̂ + γŷ) = σ̂,

where γ > 0 and τ > 0 are arbitrary and

The proximal operator of a l.s.c. convex proper ϕ : RN → R ∪ {+∞} is:

proxγϕ(x) := argmin
y∈RN

{
ϕ(y) + |y−x|2

2γ

}
= (I + ∂(γϕ))−1(x), ∀ x ∈ RN .
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proxγψ∗ (σ̂ + γŷ) = σ̂,
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Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when τγ < 1.

Input: Initial guess (σ(0), y(0), ȳ(0)); θ ∈ [0, 1]; γ > 0, τ > 0; number of iterations K
Output: Approximation of (σ̂, ŷ) solving the optimality conditions

1 Initialize (σ(0), y(0), ȳ(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute
σ(k+1) = proxγψ∗ (σ(k) + γȳ(k)),

4 (b) Compute
y(k+1) = proxτφ(y(k) − τσ(k+1)),

5 (c) Compute
ȳ(k+1) = y(k+1) + θ(y(k+1) − y(k)).

6 return (σ(K), y(K), ȳ(K))
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2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute
σ(k+1) = proxγψ∗ (σ(k) + γȳ(k)),
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Dual of Discrete Problem (Ah)

By Fenchel-Rockafellar theorem, the dual problem of (Ah) is:

(Bh) = min
(m,w1,w2)=σ∈R3N′

{
F∗
h(Λ∗

h(σ)) + G∗
h(−σ)

}
,

where G∗
h and F∗

h are respectively the Legendre-Fenchel conjugates of Gh and Fh, defined by:

• F∗
h(µ) = supϕ∈RN

{
⟨µ, ϕ⟩ℓ2(RN ) − Fh(ϕ)

}
, ∀µ ∈ RN

• G∗
h(−σ) = max

q∈R3N′

{
− ⟨σ, q⟩

ℓ2(R3N′ ) − Gh(q)
}

= h∆t
NT∑
n=1

Nh−1∑
i=0

L̃h(xi, σni ), ∀σ ∈ R3N′

• with L̃h(x, σ0) = maxp0∈R3
{

− σ0 · p0 + Kh(x, q0)
}
, ∀σ0 ∈ R3.

Rem.: The max can be costly to compute but in some cases L̃h has a closed-form expression.

Finally Λ∗
h : R3N′ → RN denotes the adjoint of Λh: for all (m, y, z) ∈ R3N′

, ϕ ∈ RN :

⟨Λ∗
h(m, y, z), ϕ⟩ℓ2(RN ) = ⟨(m, y, z),Λh(ϕ)⟩

ℓ2(R3N′ )

Rem.: We have F∗
h(Λ∗

h(m, y, z)) =
{
h

∑Nh−1
i=0 m

NT
i g0(xi), if (m, y, z) satisfies (⋆) below,

+∞, otherwise,
with ∀ i ∈ {0, . . . , Nh − 1}, m0

i = ρ0
i , and ∀n ∈ {0, . . . , NT − 1}:

(Dtmi)n − ν
(

∆hm
n+1

)
i

+
yn+1
i − yn+1

i−1
h

+
zn+1
i+1 − zn+1

i

h
= 0. (⋆)
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Reformulation

The discrete dual problem can be recast as:

inf
(m,w)

Bh(m,w) + Fh(m)︸ ︷︷ ︸
φ(m,w)

+ ιG−1(ρ0,0)(m,w)︸ ︷︷ ︸
ψ(m,w)

(Ph)

with the costs
Fh(m) :=

∑
i,n

F̃ (xi,mni ) +
1

∆t

∑
i

G̃(xi,mNT
i ), Bh(m,w) :=

∑
i,n

b̂(mni , w
n−1
i ),

b̂(m,w) :=

mL
(
x,− w

m

)
, if m > 0, w ∈ K = R− × R+,

0, if (m,w) = (0, 0),
+∞, otherwise,

and G(m,w) := (m0, (Amn+1 +Bwn)0≤n≤NT −1) with

(Am)n+1
i := (Dtm)ni − ν(∆hm)n+1

i , (Bw)ni := (Dhw1)ni−1 + (Dhw2)ni .

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply Chambolle-Pock’s method for (Ph) with
y = (m,w), φ(m,w) = Bh(m,w) + Fh(m), ψ(m,w) = ιG−1(ρ0,0)(m,w)

See [Briceño Arias et al., 2018] and [Briceño Arias et al., 2019] in stationary and dynamic cases.
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Numerical Example

Setting: g ≡ 0 and R2 × R ∋ (x,m) 7→ f(x,m) := m2 −H(x), with

H(x) = sin(2πx2) + sin(2πx1) + cos(2πx1)

We solve the corresponding MFG and obtain the following evolution of the density:

Evolution of the density

More details in [Briceño Arias et al., 2019]
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Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

• the mass starts from an initial density;

• it converges to a steady state, influenced only by the running cost;

• as t → T , the mass is influenced by the final cost and converges to a final state.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time t

0

0.5

1

1.5

2

2.5

d
is

ta
n
c
e

L2 distance between dynamic and stationary solutions

More details in [Briceño Arias et al., 2019]
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MKV FBSDE System

Recall: generic form:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, 0 ≤ t ≤ T

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, 0 ≤ t ≤ T

X0 ∼ m0, YT = G(XT ,L(XT ))

Decouple:
▶ Given (L(X), Y, Z), solve for X
▶ Given (X,L(X)) solve for (Y, Z)

Iterate

Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]
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Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE
Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T ;

number of iterations K
Output: Approximation of (X,Y, Z) solving the MKV FBSDE system

1 Initialize X(0)
t = ξ, Y

(0)
t = 0, Z(0)

t = 0, 0 ≤ t ≤ T
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let X(k+1) be the solution to:{

dXt = B(X(k)
t ,L(X(k)

t ), Y (k)
t , Z

(k)
t )dt+ σdWt, 0 ≤ t ≤ T

X0 = ξ

4 Let (Y (k+1), Z(k+1)) be the solution to:{
dYt = −F (X(k+1)

t ,L(X(k+1)
t ), Y (k)

t , Z
(k)
t )dt+ Z

(k)
t dWt, 0 ≤ t ≤ T

YT = ζ

5 return Picard[T ](ξ, ζ) = (X(K), Y (K), Z(K))

Notation: Φξ,ζ : (X(k),L(X(k)), Y (k), Z(k)) 7→ (X(k+1),L(X(k+1)), Y (k+1), Z(k+1))

Contraction? Small T or small Lipschitz constants for B,F,G
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Continuation Method

If T is big: Solve FBSDE on small intervals & “patch” the solutions together

Grid: 0 = T0 < T1 < · · · < TM−1 < TM = T

Subproblem: Given (ξTm ,L(ξTm )) and ζTm+1 , solve:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, Tm ≤ t ≤ Tm+1

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, Tm ≤ t ≤ Tm+1

XTm = ξTm , YTm+1 = ζTm+1

How to find ξTm and ζTm+1 ?

→ ξTm from previous problem’s solution (or initial condition)

→ ζTm+1 from next problem’s solution (or terminal condition)
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Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](ξ0, µ0)

with ξ0 a random variable with distribution µ0

Input: Initial guess (ξ,L(ξ)); time step index m; number of iterations K
Output: Approximation of YTm where (X,Y, Z) solves the MKV FBSDE system on

[Tm, T ] starting with (ξ,L(ξ)) at time Tm
1 Initialize X(0)

t = ξ,L(X(0)
t ) = L(ξ) for all Tm ≤ t ≤ Tm+1

2 for k = 0, 1, 2, . . . , K − 1 do
3 If Tm+1 = T , Y (k+1)

Tm+1
= G(X(k)

Tm+1
,L(X(k)

Tm+1
))

4 Else: compute recursively:

Y
(k+1)
Tm+1

= Solver[m+ 1](X(k)
Tm+1

,L(X(k)
Tm+1

))

5 Compute:

(X(k+1)
t ,L(X(k+1)

t ), Y (k+1)
t , Z

(k+1)
t )Tm≤t≤Tm+1 = Picard[Tm+1−Tm](X(k)

Tm
, Y

(k+1)
Tm+1

)

6 return Solver[m](ξ,L(ξ)) := Y
(K)
Tm
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Implementation: Discretizations

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

Tree algorithm:
▶ Time discretization
▶ Space discretization: binomial tree structure
▶ Look at trajectories

Grid algorithm:
▶ Time and space discretization on a grid
▶ Look at time marginals
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Tree-Based Algorithm: Time Discretization

Focus on an interval [0, T ] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Euler Scheme: 0 ≤ i ≤ Nt − 1

X
(k+1)
ti+1

= X
(k+1)
ti

+B(X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t+ σ∆Wti+1

X
(k+1)
0 = ξ

Y
(k+1)
ti

= Eti [Y (k+1)
ti+1

] + F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t
≈ Y

(k+1)
ti+1

+ F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t− Z
(k+1)
ti

∆Wti+1

Y
(k+1)
T = G(X(k+1)

T ,L(X(k+1)
T ))

Z
(k+1)
ti

= 1
∆tEti [Y (k+1)

ti+1
∆Wti+1 ]

Z
(k+1)
T = 0

Questions:
▶ How to represent L(X(k+1)

ti
)?

▶ How to compute the conditional expectation Eti [Y (k+1)
ti+1

]?
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Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63



Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63



Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations?

Not really but . . .

54 / 63



Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63



Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

Yt = u(t,Xt,L(Xt)), Zt = v(t,Xt,L(Xt))

→ Approximate u(·, ·, ·), v(·, ·, ·) instead of (Yt, Zt)t∈[0,T ]

Difficulty: space of L(Xt) is infinite dimensional
→ Freeze it during each Picard iteration:

Y
(k+1)
t = u(k+1)(t,X(k+1)

t ), Z
(k+1)
t = v(k+1)(t,X(k+1)

t ) (⋆)

Picard iterations for distribution & decoupling functions:
▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)

t = L(X(k+1)
t ), 0 ≤ t ≤ T , where

dX
(k+1)
t = B

(
X

(k+1)
t , µ

(k)
t , u(k)(t,X(k+1)

t ), v(k)(t,X(k+1)
t )

)
dt+ σdWt

▶ Step 2: Given (X(k), µ(k+1)), compute (u(k+1), v(k+1)) such that (⋆) holds, where

dY
(k+1)
t = −F

(
X

(k+1)
t , µ

(k+1)
t , Y

(k+1)
t , Z

(k+1)
t

)
dt+ Z

(k+1)
t dWt

▶ Return (µ(k+1), u(k+1), v(k+1))
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Grid-Based Algorithm: Forward Equation

Focus on an interval [0, T ] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Space discretization (d = 1): Grid Γ: x0 < x1 < · · · < xNx , xj+1 − xj = ∆x

Use projection Π to stay on Γ at every ti: L(X(k+1)
ti

) ≈ vector of weights

Picard iterations for distribution & decoupling functions:

▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)
ti

= L(X(k+1)
ti

), i = 0, . . . , Nt, where

X
(k+1)
ti+1

= Π
[
X

(k+1)
ti

+B

(
X

(k+1)
ti

, µ
(k)
ti
, u

(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)
dt+ σ∆Wti+1

]
▶ In fact µ(k+1)

ti+1
can be expressed in terms of µ(k+1)

ti
and a transition kernel

▶ Ex: binomial approx. of W → efficient computation using quantization
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Grid-Based Algorithm: Backward Equation

Picard iterations for distribution & decoupling functions (continued):
▶ Step 2: Update u, v: for all 0 ≤ i ≤ Nt, x ∈ Γ,

u
(k+1)
ti

(x) = E
[
u

(k+1)
ti+1

(X(k+1)
ti

)

+F
(
X

(k+1)
ti

, µ
(k+1)
ti

, u
(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)

∆t
∣∣∣X(k+1)

ti
= x

]
u

(k+1)
T (x) = G(x, µ(k+1)

ti
)

v
(k+1)
ti

(x) = E
[

1
∆tu

(k+1)
ti+1

(X(k+1)
ti

)
∣∣∣X(k+1)

ti
= x

]
v

(k+1)
T (x) = 0

▶ Ex.: binomial approximation of W → more explicit formulas

Summary:
▶ Forward: (µ(k), u(k), v(k)) 7→ µ(k+1) = L(X(k+1))
▶ Backward: (µ(k+1), u(k), v(k)) 7→ (u(k+1), v(k+1))

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]
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, u
(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)

∆t
∣∣∣X(k+1)

ti
= x

]
u

(k+1)
T (x) = G(x, µ(k+1)

ti
)

v
(k+1)
ti

(x) = E
[

1
∆tu

(k+1)
ti+1

(X(k+1)
ti

)
∣∣∣X(k+1)

ti
= x

]
v

(k+1)
T (x) = 0

▶ Ex.: binomial approximation of W → more explicit formulas

Summary:
▶ Forward: (µ(k), u(k), v(k)) 7→ µ(k+1) = L(X(k+1))
▶ Backward: (µ(k+1), u(k), v(k)) 7→ (u(k+1), v(k+1))

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]
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Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?
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Finite-Dimensional Reformulation

Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

J(α) = E
[∫ T

0
F(Xt, αt)dt+ G(XT )

]
subject to:

dXt = B(Xt, αt)dt+ ΣdWt

where the state is: Xt = (E[Xt],E[|Xt|2], . . . ,E[|Xt|p]) ∈ (Rd)p

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t
DPP for V : [0, T ] × (Rd)p → R or rather V∆t : {t0, . . . , tNt } × (Rd)p → R:{

V∆t(T, x) = G(x)
V∆t(tn, x) = supα

{
F(x, α)∆t+ Etn,x,α

[
V∆t(tn+1, Xtn+1

)
] }

, n = Nt − 1, . . . , 1, 0

where Etn,x,α
[
V∆t(tn+1, Xtn+1

)
]

= E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

→ Key difficulty: estimation of the conditional expectation
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Estimation Method 1: Regression Monte Carlo

Family of basis functions ϕ = (ϕm)m=1,...,M

Not always easy to choose !

Projection:

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

]
≈

M∑
m=1

βmtnϕ
m(Xα

tn
)

where

βmtn = argmin
β∈RM

E

[∣∣∣∣∣V∆t(tn+1, X
α
tn+1

) −
M∑
m=1

βmϕm(Xα
tn

)

∣∣∣∣∣
2]

Explicit expression:

βmtn = E[ϕ(Xα
tn

)ϕ(Xα
tn

)⊤]−1 E[V∆t(tn+1, X
α
tn+1

)ϕ(Xα
tn

)]

Estimation with NMC Monte Carlo samples:

E[ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤] ≈ 1
NMC

NMC∑
ℓ=1

ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤

and

E[V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)] ≈ 1
NMC

NMC∑
ℓ=1

V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)

with training set {
(
Xℓ,α
tn
, Xℓ,α

tn+1

)
; ℓ = 1, . . . , NMC}
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Estimation Method 2: Quantization

Two space discretizations:

▶ Set of points Γ on which we want to approximate V∆t; projection ΠΓ

▶ Quantization of noise (see e.g. [Pagès, 2018]):
⋆ Set of cells CQ = {Cj ; j = 1, . . . , JQ}
⋆ Associated grid points GQ = {ζj ; j = 1, . . . , JQ}
⋆ Weights for Gaussian r.v. ∆W ∼ N (0,∆t): pj = P(∆W ∈ Cj)
⋆ Discrete version: ∆Ŵ ∈ GQ: P(∆Ŵ = ζj) = pj
⋆ Can be optimized1; particularly helpful when d > 1

Estimation with piecewise constant interpolation: V̄∆t : {t0, . . . , tNt } × Γ → R

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

≈
JQ∑
j=1

pj V̄∆t

(
tn+1,ΠΓ

(
B(x, αtn )∆t+ Σζj

))
for all x ∈ Γ
Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

1
Optimal grids/weights available here: http://www.quantize.maths-fi.com
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Summary

Two schemes for FB PDEs of MFG

Optimization methods for MFC and variational MFGs

Two methods based on the probabilistic approach
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Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Laurière and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018],
[Gomes and Yang, 2020]
Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]
Gaussian processes [Mou et al., 2022]
Kernel-based representation [Liu et al., 2021]
Fourier approximation [Nurbekyan et al., 2019]
. . .

However efficient, these methods are usually limited to problems with:

(relatively) small dimension
(relatively) simple structure

⇒ motivations to develop machine learning methods (see next lectures)
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu
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