
Numerical Methods for
Mean Field Games

Lecture 3
Classical Numerical Methods: Part II

FBPDE and FBSDE systems

Mathieu LAURIÈRE

New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD,
University Côte d’Azur, & GE2MI

Open Doctoral Lectures
July 5 – 7, 2023

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

Reminder: FB systems

Here we will focus on the continuous time and space setting

We have seen two types of forward-backward systems:

▶ PDE systems: Kolmogorov-Fokker-Planck (KFP) and
Hamilton-Jacobi-Bellman (HJB)

▶ SDE systems of McKean-Vlasov (MKV) type

We will describe methods based on both approaches

In each case, there will be two questions to design a numerical method:

▶ Discretization → numerical scheme

▶ Computation → algorithm

1 / 63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Desirable properties for (1):

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

2 / 63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Desirable properties for (1):

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

2 / 63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Desirable properties for (1):

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

2 / 63

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:
0 = −∂u

∂t
(t, x) − ν∆u(t, x) +H(x,m(t, ·),∇u(t, x)),

0 = ∂m

∂t
(t, x) − ν∆m(t, x) − div (m(t, ·)∂pH(·,m(t),∇u(t, ·))) (x),

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x)

Desirable properties for (1):

Mass and positivity of distribution:
∫

X m(t, x)dx = 1, m ≥ 0

Convergence of discrete solution to continuous solution as mesh step → 0

The KFP equation is the adjoint of the linearized HJB equation

Link with optimality condition of a discrete problem

⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

2 / 63

Outline

1. Introduction

2. Methods for the PDE system
A Finite Difference Scheme
Algorithms
A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

Outline

1. Introduction

2. Methods for the PDE system
A Finite Difference Scheme
Algorithms
A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

For simplicity we consider the domain T = one-dimensional (unit) torus.

Let ν = σ2/2.

We consider Nh and NT steps respectively in space and time.

Let h = 1/Nh and ∆t = T/NT . Let Th = discretized torus.

We approximate m0(xi) by ρ0
i such that h

∑
i
ρ0
i = 1.

Then we introduce the following discrete operators : for φ ∈ RNT +1 and ψ ∈ RNh

• time derivative : (Dtφ)n := φn+1 − φn

∆t , 0 ≤ n ≤ NT − 1

• Laplacian : (∆hψ)i := − 1
h2 (2ψi − ψi+1 − ψi−1) , 0 ≤ i ≤ Nh

• partial derivative : (Dhψ)i := ψi+1 − ψi
h

, 0 ≤ i ≤ Nh

• gradient : [∇hψ]i := ((Dhψ)i, (Dhψ)i−1) , 0 ≤ i ≤ Nh

3 / 63

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

For simplicity we consider the domain T = one-dimensional (unit) torus.

Let ν = σ2/2.

We consider Nh and NT steps respectively in space and time.

Let h = 1/Nh and ∆t = T/NT . Let Th = discretized torus.

We approximate m0(xi) by ρ0
i such that h

∑
i
ρ0
i = 1.

Then we introduce the following discrete operators : for φ ∈ RNT +1 and ψ ∈ RNh

• time derivative : (Dtφ)n := φn+1 − φn

∆t , 0 ≤ n ≤ NT − 1

• Laplacian : (∆hψ)i := − 1
h2 (2ψi − ψi+1 − ψi−1) , 0 ≤ i ≤ Nh

• partial derivative : (Dhψ)i := ψi+1 − ψi
h

, 0 ≤ i ≤ Nh

• gradient : [∇hψ]i := ((Dhψ)i, (Dhψ)i−1) , 0 ≤ i ≤ Nh

3 / 63

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

b(x,m, α) = α, f(x,m, α) = L(x, α) + f0(x,m), g(x,m) = g0(x,m).

where x ∈ Rd, α ∈ Rd,m ∈ R+. Then

H(x,m, p) = max
α

{−L(x, α) − ⟨α, p⟩} − f0(x,m) = H0(x, p) − f0(x,m)

where H0 is the convex conjugate (also denoted L∗) of L with respect to α:

H0(x, p) = L∗(x, p) = sup
α

{⟨α, p⟩ − L(x, α)}

Discrete Hamiltonian: (x, p1, p2) 7→ H̃0(x, p1, p2) satisfying:
Monotonicity: decreasing w.r.t. p1 and increasing w.r.t. p2

Consistency with H0: for every x, p, H̃0(x, p, p) = H0(x, p)
Differentiability: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is C1

Convexity: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is convex

Example: if H0(x, p) = |p|2, a possible choice is H̃0(x, p1, p2) = (p1
−)2 + (p2

+)2

4 / 63

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

b(x,m, α) = α, f(x,m, α) = L(x, α) + f0(x,m), g(x,m) = g0(x,m).

where x ∈ Rd, α ∈ Rd,m ∈ R+. Then

H(x,m, p) = max
α

{−L(x, α) − ⟨α, p⟩} − f0(x,m) = H0(x, p) − f0(x,m)

where H0 is the convex conjugate (also denoted L∗) of L with respect to α:

H0(x, p) = L∗(x, p) = sup
α

{⟨α, p⟩ − L(x, α)}

Discrete Hamiltonian: (x, p1, p2) 7→ H̃0(x, p1, p2) satisfying:
Monotonicity: decreasing w.r.t. p1 and increasing w.r.t. p2

Consistency with H0: for every x, p, H̃0(x, p, p) = H0(x, p)
Differentiability: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is C1

Convexity: for every x, (p1, p2) 7→ H̃0(x, p1, p2) is convex

Example: if H0(x, p) = |p|2, a possible choice is H̃0(x, p1, p2) = (p1
−)2 + (p2

+)2

4 / 63

Discrete HJB

Discrete solution: We replace u,m : [0, T] × T → R by vectors

U,M ∈ R(NT +1)×Nh

The HJB equation{
∂tu(t, x) + ν∆u(t, x) +H0(x,∇u(t, x)) = f0(x,m(t, x))
u(T, x) = g0(x,m(T, x))

is discretized as:{
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i)

UNT
i = g0(xi,MNT

i)

5 / 63

Discrete HJB

Discrete solution: We replace u,m : [0, T] × T → R by vectors

U,M ∈ R(NT +1)×Nh

The HJB equation{
∂tu(t, x) + ν∆u(t, x) +H0(x,∇u(t, x)) = f0(x,m(t, x))
u(T, x) = g0(x,m(T, x))

is discretized as:{
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i)

UNT
i = g0(xi,MNT

i)

5 / 63

Discrete KFP

The KFP equation

∂tm(t, x)−ν∆m(t, x)+div
(
m(t, x)∂qH(x,m(t),∇u(t, x))

)
= 0, m(0, x) = m0(x)

is discretized as

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, M0

i = ρ0
i

Here we use the discrete transport operator ≈ − div(. . .)

Ti(U,M) := 1
h

(
Mi∂p1H̃0(xi, [∇hU]i) −Mi−1∂p1H̃0(xi−1, [∇hU]i−1)
+Mi+1∂p2H̃0(xi+1, [∇hU]i+1) −Mi∂p2H̃0(xi, [∇hU]i)

)
Intuition: weak formulation & integration by parts∫

T
div (m∂pH0(x,∇u))w = −

∫
T
m∂pH0(x,∇u) · ∇w

is discretized as

−h
∑
i

Ti(U,M)Wi = h
∑
i

Mi∇qH̃0(xi, [∇hU]i) · [∇hW]i

6 / 63

Discrete KFP

The KFP equation

∂tm(t, x)−ν∆m(t, x)+div
(
m(t, x)∂qH(x,m(t),∇u(t, x))

)
= 0, m(0, x) = m0(x)

is discretized as

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, M0

i = ρ0
i

Here we use the discrete transport operator ≈ − div(. . .)

Ti(U,M) := 1
h

(
Mi∂p1H̃0(xi, [∇hU]i) −Mi−1∂p1H̃0(xi−1, [∇hU]i−1)
+Mi+1∂p2H̃0(xi+1, [∇hU]i+1) −Mi∂p2H̃0(xi, [∇hU]i)

)

Intuition: weak formulation & integration by parts∫
T

div (m∂pH0(x,∇u))w = −
∫
T
m∂pH0(x,∇u) · ∇w

is discretized as

−h
∑
i

Ti(U,M)Wi = h
∑
i

Mi∇qH̃0(xi, [∇hU]i) · [∇hW]i

6 / 63

Discrete KFP

The KFP equation

∂tm(t, x)−ν∆m(t, x)+div
(
m(t, x)∂qH(x,m(t),∇u(t, x))

)
= 0, m(0, x) = m0(x)

is discretized as

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, M0

i = ρ0
i

Here we use the discrete transport operator ≈ − div(. . .)

Ti(U,M) := 1
h

(
Mi∂p1H̃0(xi, [∇hU]i) −Mi−1∂p1H̃0(xi−1, [∇hU]i−1)
+Mi+1∂p2H̃0(xi+1, [∇hU]i+1) −Mi∂p2H̃0(xi, [∇hU]i)

)
Intuition: weak formulation & integration by parts∫

T
div (m∂pH0(x,∇u))w = −

∫
T
m∂pH0(x,∇u) · ∇w

is discretized as

−h
∑
i

Ti(U,M)Wi = h
∑
i

Mi∇qH̃0(xi, [∇hU]i) · [∇hW]i

6 / 63

Discrete System – Properties

Discrete forward-backward system:
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i), ∀n ≤ NT − 1

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, ∀n ≤ NT − 1

M0
i = ρ0

i , UNT
i = g0(xi,MNT

i), i = 0, . . . , Nh

This scheme enjoys many nice properties, among which:
It yields a monotone scheme for the KFP equation: mass and positivity are preserved

Convergence to classical solution if monotonicity
[Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]

Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]

The discrete KFP operator is the adjoint of the linearized Bellman operator

Existence and uniqueness result for the discrete system

It corresponds to the optimality condition of a discrete optimization problem (details later)

7 / 63

Discrete System – Properties

Discrete forward-backward system:
−(DtUi)n − ν(∆hU

n)i + H̃0(xi, [DhUn]i) = f0(xi,Mn+1
i), ∀n ≤ NT − 1

(DtMi)n − ν(∆hM
n+1)i − Ti(Un,Mn+1) = 0, ∀n ≤ NT − 1

M0
i = ρ0

i , UNT
i = g0(xi,MNT

i), i = 0, . . . , Nh

This scheme enjoys many nice properties, among which:
It yields a monotone scheme for the KFP equation: mass and positivity are preserved

Convergence to classical solution if monotonicity
[Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]

Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]

The discrete KFP operator is the adjoint of the linearized Bellman operator

Existence and uniqueness result for the discrete system

It corresponds to the optimality condition of a discrete optimization problem (details later)

7 / 63

Outline

1. Introduction

2. Methods for the PDE system
A Finite Difference Scheme
Algorithms
A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

Algo 1: Fixed Point Iterations

Input: Initial guess (M̃, Ũ); damping δ(·); number of iterations K
Output: Approximation of (M̂, Û) solving the finite difference system

1 Initialize M (0) = M̃ (0) = M̃, U (0) = Ũ
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let U (k+1) be the solution to:{

−(DtUi)n − ν(∆hU
n)i + H̃0(xi, [DhUn]i) = f0(xi, M̃ (k),n+1

i), n ≤ NT − 1
UNT
i = g0(xi, M̃ (k),NT

i)

4 Let M (k+1) be the solution to:{
(DtMi)n − ν(∆hM

n+1)i − Ti(U (k+1),n,Mn+1) = 0, n ≤ NT − 1
M0
i = ρ0

i

5 Let M̃ (k+1) = δ(k)M̃ (k) + (1 − δ(k))M (k+1)

6 return (M (K), U (K))

8 / 63

Algo 1: Fixed Point Iterations

The HJB equation is non-linear

Idea 1: replace H̃0(xi, [DhUn]i) by H̃0(xi, [DhU (k),n]i)

Idea 2: use non linear solver to find a zero of

φ : RNh×(NT +1) → RNh×NT ,

with:

φ(U) =
(
−(DtUi)n−ν(∆hU

n)i+H̃0(xi, [DhUn]i)−f0(xi, M̃ (k),n+1
i)

)n=0,...,NT −1
i=0,...,Nh−1

Example: Newton’s method

9 / 63

Algo 1: Fixed Point Iterations

The HJB equation is non-linear

Idea 1: replace H̃0(xi, [DhUn]i) by H̃0(xi, [DhU (k),n]i)

Idea 2: use non linear solver to find a zero of

φ : RNh×(NT +1) → RNh×NT ,

with:

φ(U) =
(
−(DtUi)n−ν(∆hU

n)i+H̃0(xi, [DhUn]i)−f0(xi, M̃ (k),n+1
i)

)n=0,...,NT −1
i=0,...,Nh−1

Example: Newton’s method

9 / 63

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

Finite difference scheme

Solved by (damped) fixed point approach

10 / 63

https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing
https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of φ = (φU , φM)⊤ with φU and φM s.t.{
φU (U,M) = 0 ⇔ (U,M) solves discrete HJB equation
φM(U,M) = 0 ⇔ (U,M) solves discrete KFP equation

Let X(k) = (U (k),M (k))⊤

Iterate: X(k+1) = X(k) − Jφ(X(k))−1φ(X(k))

Or rather: Jφ(X(k))Y = −φ(X(k)), then X(k+1) = Y +X(k)

Key step: Solve a linear system of the form(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
where AU,M(U,M) = ∇UφM(U,M), AU,U (U,M) = ∇UφU (U,M), . . .

11 / 63

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of φ = (φU , φM)⊤ with φU and φM s.t.{
φU (U,M) = 0 ⇔ (U,M) solves discrete HJB equation
φM(U,M) = 0 ⇔ (U,M) solves discrete KFP equation

Let X(k) = (U (k),M (k))⊤

Iterate: X(k+1) = X(k) − Jφ(X(k))−1φ(X(k))
Or rather: Jφ(X(k))Y = −φ(X(k)), then X(k+1) = Y +X(k)

Key step: Solve a linear system of the form(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
where AU,M(U,M) = ∇UφM(U,M), AU,U (U,M) = ∇UφU (U,M), . . .

11 / 63

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of φ = (φU , φM)⊤ with φU and φM s.t.{
φU (U,M) = 0 ⇔ (U,M) solves discrete HJB equation
φM(U,M) = 0 ⇔ (U,M) solves discrete KFP equation

Let X(k) = (U (k),M (k))⊤

Iterate: X(k+1) = X(k) − Jφ(X(k))−1φ(X(k))
Or rather: Jφ(X(k))Y = −φ(X(k)), then X(k+1) = Y +X(k)

Key step: Solve a linear system of the form(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
where AU,M(U,M) = ∇UφM(U,M), AU,U (U,M) = ∇UφU (U,M), . . .

11 / 63

Newton Method – Implementation

Linear system to be solved:
(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
Structure: AU,M, AM,U are block-diagonal, AU,U = A⊤

M,M, and

AU,U =


D1 0 0

− 1
∆t

IdNh
D2

. . . 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . . 0 − 1

∆t
IdNh

DNT


where Dn corresponds to the discrete operator

Z = (Zi,j)i,j 7→
(1

∆tZi,j − ν(∆hZ)i,j + [∇hZ]i,j · ∇pH̃0(xi,j , [∇hU
(k),n]i,j)

)
i,j

Rem. Initial guess (U (0),M (0)) is important for Newton’s method
Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])

Idea 2: continuation method w.r.t. ν (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.

12 / 63

Newton Method – Implementation

Linear system to be solved:
(
AU,U AU,M
AM,U AM,M

) (
U
M

)
=

(
GU
GM

)
Structure: AU,M, AM,U are block-diagonal, AU,U = A⊤

M,M, and

AU,U =


D1 0 0

− 1
∆t

IdNh
D2

. . . 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . . 0 − 1

∆t
IdNh

DNT


where Dn corresponds to the discrete operator

Z = (Zi,j)i,j 7→
(1

∆tZi,j − ν(∆hZ)i,j + [∇hZ]i,j · ∇pH̃0(xi,j , [∇hU
(k),n]i,j)

)
i,j

Rem. Initial guess (U (0),M (0)) is important for Newton’s method
Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])

Idea 2: continuation method w.r.t. ν (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.

12 / 63

Example: Exit of a Room – Distribution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]

Geometry of the room

13 / 63

Example: Exit of a Room – Distribution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Initial density (left) and final cost (right)

13 / 63

Example: Exit of a Room – Crowd model

Crowd motion with ocal interactions; see
e.g. [Lachapelle and Wolfram, 2011, Achdou and Lasry, 2019,
Achdou and Porretta, 2018, Achdou and Laurière, 2016a] for other models of
this type and [Aurell and Djehiche, 2018, Achdou and Laurière, 2015] for crowd
motion models with non-local interactions.

Here, control = velocity:

dXt = α(t,Xt)dt+ σdWt

Congestion through the cost: higher density ⇒ higher price to move

Hamiltonian:

H(x,m, p) = 8|p|2

(1 +m) 3
4

− 1
3200 .

Exercise
What is the cost function leading to this Hamiltonian?

14 / 63

Example: Exit of a Room – Crowd model

MFG PDE system:
1 Mean field games: the MFG PDE system is:

−
∂u

∂t
− 0.05 ∆u+

8

(1 +m)
3
4

|∇u|2 =
1

3200
,

∂m

∂t
− 0.05 ∆m− 16 div

(
m∇u

(1 +m)
3
4

)
= 0 .

2 Mean field control: the HJB becomes:

−
∂u

∂t
− 0.05 ∆u+

(
2

(1 +m)
3
4

+
6

(1 +m)
7
4

)
|∇u|2 =

1
3200

.

We choose a small ν (e.g. 0.05) so the diffusion is not too strong

No terminal cost: g ≡ 0
Boundary has several parts.

▶ Doors: Dirichlet condition u = 0 (exit cost), m = 0 (m = 0 outside the domain)
▶ Walls: for u, Neumann condition: ∂u

∂n
= 0 (velocity is tangential to the walls); for m:

ν ∂m
∂n

+m ∂H
∂p

(·,m,∇u) · n = 0, therefore ∂m
∂n

= 0

Initial density m0: piecewise constant with two values 0 and 4 people/m2

Interpretation: At t = 0, there are 3300 people in the hall. T = 50 minutes
15 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Evolution

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

16 / 63

Example: Exit of a Room – Remaining Mass

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]

0 10 20 30 40 50
t

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f p
eo

pl
e

MFG
MFTC

Remaining mass inside the room

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beta

nu=0.25

nu=0.125

nu=0.0625

Price of Anarchy
(β = exponent)

17 / 63

Outline

1. Introduction

2. Methods for the PDE system
A Finite Difference Scheme
Algorithms
A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

MFG Setup

Scheme introduced by [Carlini and Silva, 2014]

For simplicity: d = 1, domain X = R, A = R
ν = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]

Model:

b(x,m, α) = α

f(x,m, α) = 1
2 |α|2 + f0(x,m), g(x,m)

where f0 and g depend on m ∈ P1(R) in a potentially non-local way

MFG PDE system:
− ∂u

∂t
(t, x) + 1

2 | ∇u(t, x)|2 = f0(x,m(t, ·)), in [0, T) × R,

∂m

∂t
(t, x) − div (m(t, ·) ∇u(t, ·)) (x) = 0, in (0, T] × R,

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x), in R.

18 / 63

MFG Setup

Scheme introduced by [Carlini and Silva, 2014]

For simplicity: d = 1, domain X = R, A = R
ν = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]

Model:

b(x,m, α) = α

f(x,m, α) = 1
2 |α|2 + f0(x,m), g(x,m)

where f0 and g depend on m ∈ P1(R) in a potentially non-local way

MFG PDE system:
− ∂u

∂t
(t, x) + 1

2 | ∇u(t, x)|2 = f0(x,m(t, ·)), in [0, T) × R,

∂m

∂t
(t, x) − div (m(t, ·) ∇u(t, ·)) (x) = 0, in (0, T] × R,

u(T, x) = g(x,m(T, ·)), m(0, x) = m0(x), in R.

18 / 63

Representation of the Value Function

Dynamics:

Xα
t = Xα

0 +
∫ t

0
α(s)ds, t ≥ 0.

Representation formula for the value function given m = (mt)t∈[0,T]:

u[m](t, x) = inf
α∈L2([t,T];R)

{ ∫ T

t

[1
2 |α(s)|2 + f0(Xα,t,x

s ,m(s, ·))
]
ds

+ g(Xα,t,x
T ,m(T, ·))

}
,

where Xα,t,x starts from x at time t and is controlled by α

19 / 63

Discrete HJB equation

Discrete HJB: Given a flow of densities m,{
Uni = S∆t,h[m](Un+1, i, n), (n, i) ∈ JNT − 1K × Z,
UNT
i = g(xi,m(T, ·)), i ∈ Z,

where

S∆t,h is defined as

S∆t,h[m](W,n, i) = inf
α∈R

{(1
2 |α|2 + f0(xi,m(tn, ·))

)
∆t+ I[W](xi + α∆t)

}
,

with I : B(Z) → Cb(R) is the interpolation operator defined as

I[W](·) =
∑
i∈Z

Wiβi(·),

where B(Z) is the set of bounded functions from Z to R

and βi =
[
1 − |x−xi|

h

]
+

: triangular function with support [xi−1, xi+1] and s.t.
βi(xi) = 1.

20 / 63

Discrete HJB equation

Discrete HJB: Given a flow of densities m,{
Uni = S∆t,h[m](Un+1, i, n), (n, i) ∈ JNT − 1K × Z,
UNT
i = g(xi,m(T, ·)), i ∈ Z,

where

S∆t,h is defined as

S∆t,h[m](W,n, i) = inf
α∈R

{(1
2 |α|2 + f0(xi,m(tn, ·))

)
∆t+ I[W](xi + α∆t)

}
,

with I : B(Z) → Cb(R) is the interpolation operator defined as

I[W](·) =
∑
i∈Z

Wiβi(·),

where B(Z) is the set of bounded functions from Z to R

and βi =
[
1 − |x−xi|

h

]
+

: triangular function with support [xi−1, xi+1] and s.t.
βi(xi) = 1.

20 / 63

Discrete HJB equation – cont.

Before moving to the KFP equation:

Interpolation: from U = (Uni)n,i, construct the function
u∆t,h[m](x, t) : [0, T] × R → R,

u∆t,h[m](t, x) = I[U [t
∆t

]](x), (t, x) ∈ [0, T] × R.

Regularization of HJB solution with a mollifier ρϵ:

uϵ∆t,h[m](t, ·) = ρϵ ∗ u∆t,h[m](t, ·), t ∈ [0, T].

21 / 63

Discrete HJB equation – cont.

Before moving to the KFP equation:

Interpolation: from U = (Uni)n,i, construct the function
u∆t,h[m](x, t) : [0, T] × R → R,

u∆t,h[m](t, x) = I[U [t
∆t

]](x), (t, x) ∈ [0, T] × R.

Regularization of HJB solution with a mollifier ρϵ:

uϵ∆t,h[m](t, ·) = ρϵ ∗ u∆t,h[m](t, ·), t ∈ [0, T].

21 / 63

Discrete KFP equation: intuition

Eulerian viewpoint:
▶ focus on a location
▶ look at the flow passing through it
▶ evolution characterized by the velocity at (t, x)

Lagrangian viewpoint:
▶ focus on a fluid parcel
▶ look at how it flows
▶ evolution characterized by the position at time t of a particle starting at x

Here, in our model:

Xα
t = Xα

0 +
∫ t

0
α(s)ds, t ≥ 0.

Time and space discretization?

22 / 63

Discrete KFP equation: intuition

Eulerian viewpoint:
▶ focus on a location
▶ look at the flow passing through it
▶ evolution characterized by the velocity at (t, x)

Lagrangian viewpoint:
▶ focus on a fluid parcel
▶ look at how it flows
▶ evolution characterized by the position at time t of a particle starting at x

Here, in our model:

Xα
t = Xα

0 +
∫ t

0
α(s)ds, t ≥ 0.

Time and space discretization?

22 / 63

Discrete KFP equation: intuition – diagram

R

R

Mn
i−1

xi−1 xi xi+1

xi + αn
i ∆t

... ...

Mn+1
j−1

... ...

xj xj+1 xj+2xj−1

Mn
i Mn

i+1

Mn+1
j Mn+1

j+1

Movement of the mass when using control v(tn, xi) = αni .

Bottom: time tn; top: time tn+1.

23 / 63

Discrete KFP equation: intuition – diagram

R

R

Mn
i−1

βj βj+1

xi−1 xi xi+1

xi + αn
i ∆t

... ...

Mn+1
j−1

... ...

xj xj+1 xj+2xj−1

Mn
i Mn

i+1

Mn+1
j Mn+1

j+1

Movement of the mass when using control v(tn, xi) = αni .

Bottom: time tn; top: time tn+1.

23 / 63

Discrete KFP equation: intuition – diagram

R

R

Mn
i−1

βj βj+1

xi−1 xi xi+1

xi + αn
i ∆t

... ...

Mn+1
j−1

... ...

xj xj+1 xj+2xj−1

Mn
i Mn

i+1

Mn+1
j Mn+1

j+1

Movement of the mass when using control v(tn, xi) = αni .

Bottom: time tn; top: time tn+1.

23 / 63

Discrete KFP equation

Control induced by value function:

α̂ϵ∆t,h[m](t, x) = −∇uϵ∆t,h[m](t, x),

and its discrete counter part: α̂ϵn,i = α̂ϵ∆t,h[m](tn, xi).

Discrete flow:

Φϵn,n+1,i[m] = xi + α̂ϵ∆t,h[m](tn, xi)∆t .

Discrete KFP equation: for M ϵ[m] = (M ϵ,n
i [m])n,i:

M ϵ,n+1
i [m] =

∑
j
βi

(
Φϵn,n+1,j [m]

)
M ϵ,n
j [m], (n, i) ∈ JNT − 1K × Z,

M ϵ,0
i [m] =

∫
[xi−h/2,xi+h/2]

m0(x)dx, i ∈ Z.

24 / 63

Discrete KFP equation

Control induced by value function:

α̂ϵ∆t,h[m](t, x) = −∇uϵ∆t,h[m](t, x),

and its discrete counter part: α̂ϵn,i = α̂ϵ∆t,h[m](tn, xi).

Discrete flow:

Φϵn,n+1,i[m] = xi + α̂ϵ∆t,h[m](tn, xi)∆t .

Discrete KFP equation: for M ϵ[m] = (M ϵ,n
i [m])n,i:

M ϵ,n+1
i [m] =

∑
j
βi

(
Φϵn,n+1,j [m]

)
M ϵ,n
j [m], (n, i) ∈ JNT − 1K × Z,

M ϵ,0
i [m] =

∫
[xi−h/2,xi+h/2]

m0(x)dx, i ∈ Z.

24 / 63

Fixed Point Formulation

Function mϵ
∆t,h[m] : [0, T] × R → R defined as: for n ∈ JNT − 1K, for

t ∈ [tn, tn+1),

mϵ
∆t,h[m](t, x) = 1

h

[
tn+1 − t

∆t
∑
i∈Z

M ϵ,n
i [m]1[xi−h/2,xi+h/2](x)

+ t− tn
∆t

∑
i∈Z

M ϵ,n+1
i [m]1[xi−h/2,xi+h/2](x)

]
.

Goal: Fixed-point problem: Find M̂ = (M̂n
i)i,n such that:

M̂n
i = Mn

i

[
mϵ

∆t,h[M̂]
]
.

Solution strategy: Fixed point iterations for example

See [Carlini and Silva, 2014] for more details

25 / 63

Fixed Point Formulation

Function mϵ
∆t,h[m] : [0, T] × R → R defined as: for n ∈ JNT − 1K, for

t ∈ [tn, tn+1),

mϵ
∆t,h[m](t, x) = 1

h

[
tn+1 − t

∆t
∑
i∈Z

M ϵ,n
i [m]1[xi−h/2,xi+h/2](x)

+ t− tn
∆t

∑
i∈Z

M ϵ,n+1
i [m]1[xi−h/2,xi+h/2](x)

]
.

Goal: Fixed-point problem: Find M̂ = (M̂n
i)i,n such that:

M̂n
i = Mn

i

[
mϵ

∆t,h[M̂]
]
.

Solution strategy: Fixed point iterations for example

See [Carlini and Silva, 2014] for more details

25 / 63

Fixed Point Formulation

Function mϵ
∆t,h[m] : [0, T] × R → R defined as: for n ∈ JNT − 1K, for

t ∈ [tn, tn+1),

mϵ
∆t,h[m](t, x) = 1

h

[
tn+1 − t

∆t
∑
i∈Z

M ϵ,n
i [m]1[xi−h/2,xi+h/2](x)

+ t− tn
∆t

∑
i∈Z

M ϵ,n+1
i [m]1[xi−h/2,xi+h/2](x)

]
.

Goal: Fixed-point problem: Find M̂ = (M̂n
i)i,n such that:

M̂n
i = Mn

i

[
mϵ

∆t,h[M̂]
]
.

Solution strategy: Fixed point iterations for example

See [Carlini and Silva, 2014] for more details

25 / 63

Numerical Illustration

Costs:
g ≡ 0, f(x,m, α) = 1

2 |α|2 + (x− c∗)2 + κMFV (x,m),

with
V (x,m) = ρσV ∗

(
ρσV ∗m

)
(x),

Experiments: target c∗ = 0, m0 = unif. on [−1.25,−0.75] and on [0.75, 1.25]

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

2

4

6

8

10

12

14

16

18

de
ns

ity

Mn, n = 0
Mn, n = 40
Mn, n = 80
Mn, n = 120
Mn, n = 160
Mn, n = 200
Mn, n = 240
Mn, n = 280
Mn, n = 320
Mn, n = 360
Mn, n = 400

κMF = 0.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

2

4

6

8

10

12

14

16

18

de
ns

ity

Mn, n = 0
Mn, n = 40
Mn, n = 80
Mn, n = 120
Mn, n = 160
Mn, n = 200
Mn, n = 240
Mn, n = 280
Mn, n = 320
Mn, n = 360
Mn, n = 400

κMF = 0.9

See [Laurière, 2021] for more details on these experiments

26 / 63

Numerical Illustration

Costs:
g ≡ 0, f(x,m, α) = 1

2 |α|2 + (x− c∗)2 + κMFV (x,m),

with
V (x,m) = ρσV ∗

(
ρσV ∗m

)
(x),

Experiments: target c∗ = 0, m0 = unif. on [−1.25,−0.75] and on [0.75, 1.25]

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

2

4

6

8

10

12

14

16

18

de
ns

ity

Mn, n = 0
Mn, n = 40
Mn, n = 80
Mn, n = 120
Mn, n = 160
Mn, n = 200
Mn, n = 240
Mn, n = 280
Mn, n = 320
Mn, n = 360
Mn, n = 400

κMF = 0.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0

2

4

6

8

10

12

14

16

18

de
ns

ity

Mn, n = 0
Mn, n = 40
Mn, n = 80
Mn, n = 120
Mn, n = 160
Mn, n = 200
Mn, n = 240
Mn, n = 280
Mn, n = 320
Mn, n = 360
Mn, n = 400

κMF = 0.9

See [Laurière, 2021] for more details on these experiments
26 / 63

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing

Semi-Lagrangian scheme

Solved by damped fixed point approach

27 / 63

https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing
https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing

Exercise

Exercise
Implement the previous finite difference scheme on the same MFG model.

If the algorithm fails to converge with ν = 0, try with ν > 0 but small.

28 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG
Variational MFGs and Duality
Alternating Direction Method of Multipliers
A Primal-Dual Method

4. Methods for MKV FBSDE

5. Conclusion

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG
Variational MFGs and Duality
Alternating Direction Method of Multipliers
A Primal-Dual Method

4. Methods for MKV FBSDE

5. Conclusion

Variational MFGs

Key ideas:

Variational MFG

Duality

Optimization techniques

29 / 63

Variational MFGs

In some cases, the MFG PDE system can be interpreted as the optimality conditions
for a variational problem

MFG PDE system ⇔ optimality condition of two optimization problems in duality

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015],
[Cardaliaguet et al., 2015], [Benamou et al., 2017], . . .

30 / 63

A Variational MFG

d = 1, domain = T
drift and costs:

b(x,m, α) = α, f(x,m, α) = L(x, α) + f0(x,m), g(x,m) = g0(x).

where x ∈ Rd, α ∈ Rd,m ∈ R+.

Then

H(x,m, p) = sup
α

{−L(x, α) − αp} − f0(x,m) = H0(x, p) − f0(x,m)

where H0 is the convex conjugate (also denoted L∗) of L with respect to α:

H0(x, p) = L∗(x, p) = sup
α

{ αp− L(x, α)}

Further assume (for simplicity)

L(x, α) = 1
2 |α|2, H0(x, p) = 1

2 |p|2

31 / 63

A Variational Problem

At equilibrium, L(Xt) = µ̂t and

J(α̂; m̂) = E
[∫ T

0
f(Xt, m̂(t,Xt), α̂(t,Xt))dt+ g(XT)

]
=

∫ T

0

∫
T
f(x, m̂(t, x), α̂(t, x))︸ ︷︷ ︸

=L(x,α̂(t,x))+f0(x,m̂(t,x))

m̂(t, x)dxdt+
∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
m̂(t, ·) b(·, m̂(t), α̂(t, ·)︸ ︷︷ ︸

=α̂(t,·)

)
)

(x), m̂0 = m0

Change of variable:
ŵ(t, x) = m̂(t, x)α̂(t, x)

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
+ f0(x, m̂(t, x))

]
m̂(t, x)dxdt+

∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
ŵ(t, ·)

)
(x), m̂0 = m0

32 / 63

A Variational Problem

At equilibrium, L(Xt) = µ̂t and

J(α̂; m̂) = E
[∫ T

0
f(Xt, m̂(t,Xt), α̂(t,Xt))dt+ g(XT)

]
=

∫ T

0

∫
T
f(x, m̂(t, x), α̂(t, x))︸ ︷︷ ︸

=L(x,α̂(t,x))+f0(x,m̂(t,x))

m̂(t, x)dxdt+
∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
m̂(t, ·) b(·, m̂(t), α̂(t, ·)︸ ︷︷ ︸

=α̂(t,·)

)
)

(x), m̂0 = m0

Change of variable:
ŵ(t, x) = m̂(t, x)α̂(t, x)

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
+ f0(x, m̂(t, x))

]
m̂(t, x)dxdt+

∫
T
g(x)m̂(T, x)dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
ŵ(t, ·)

)
(x), m̂0 = m0

32 / 63

Reformulation

Reformulation:

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
m̂(t, x)︸ ︷︷ ︸

L̃(x,m̂(t,x),ŵ(t,x))

+f0(x, m̂(t, x))m̂(t, x)︸ ︷︷ ︸
F̃ (x,m̂(t,x))

]
dxdt

+
∫
T
g(x)m̂(T, x)︸ ︷︷ ︸
G̃(x,m̂(t,x))

dx

=
∫ T

0

∫
T

[
L̃(x, m̂(t, x), ŵ(t, x)) + F̃ (x, m̂(t, x))

]
dxdt+

∫
T
G̃(x, m̂(t, x))dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
ŵ(t, ·)

)
(x), m̂0 = m0

Convex problem under a linear constraint, provided L̃, F̃ , G̃ are convex

33 / 63

Reformulation

Reformulation:

B(m̂, ŵ) =
∫ T

0

∫
T

[
L

(
x,
ŵ(t, x)
m̂(t, x)

)
m̂(t, x)︸ ︷︷ ︸

L̃(x,m̂(t,x),ŵ(t,x))

+f0(x, m̂(t, x))m̂(t, x)︸ ︷︷ ︸
F̃ (x,m̂(t,x))

]
dxdt

+
∫
T
g(x)m̂(T, x)︸ ︷︷ ︸
G̃(x,m̂(t,x))

dx

=
∫ T

0

∫
T

[
L̃(x, m̂(t, x), ŵ(t, x)) + F̃ (x, m̂(t, x))

]
dxdt+

∫
T
G̃(x, m̂(t, x))dx

subject to:

0 = ∂m̂

∂t
(t, x) − ν∆m̂(t, x) + div

(
ŵ(t, ·)

)
(x), m̂0 = m0

Convex problem under a linear constraint, provided L̃, F̃ , G̃ are convex

33 / 63

Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m,mα):

B(m,w) =
∫ T

0

∫
T

(
L̃(x,m(t, x), w(t, x)) + F̃ (x,m(t, x))

)
dxdt+

∫
T
G̃(x,m(T, x))dx

subject to the constraint:

∂tm− ν∆m+ div(w) = 0, m(0, x) = m0(x)

where

F̃ (x,m) =
{∫ m

0 f̃(x, s)ds, if m ≥ 0,
+∞, otherwise,

G̃(x,m) =
{
mg0(x), if m ≥ 0,
+∞, otherwise,

and

L̃(x,m,w) =


mL

(
x, w

m

)
, if m > 0,

0, if m = 0 and w = 0,
+∞, otherwise

where R ∋ m 7→ f̃(x,m) = ∂m(mf0(x,m))
is non-decreasing (hence F̃ convex and l.s.c.) provided m 7→ mf0(x,m) is convex.

34 / 63

Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m,mα):

B(m,w) =
∫ T

0

∫
T

(
L̃(x,m(t, x), w(t, x)) + F̃ (x,m(t, x))

)
dxdt+

∫
T
G̃(x,m(T, x))dx

subject to the constraint:

∂tm− ν∆m+ div(w) = 0, m(0, x) = m0(x)

where

F̃ (x,m) =
{∫ m

0 f̃(x, s)ds, if m ≥ 0,
+∞, otherwise,

G̃(x,m) =
{
mg0(x), if m ≥ 0,
+∞, otherwise,

and

L̃(x,m,w) =


mL

(
x, w

m

)
, if m > 0,

0, if m = 0 and w = 0,
+∞, otherwise

where R ∋ m 7→ f̃(x,m) = ∂m(mf0(x,m))
is non-decreasing (hence F̃ convex and l.s.c.) provided m 7→ mf0(x,m) is convex.

34 / 63

Duality

Dual problem: Maximize over ϕ such that ϕ(T, x) = g0(x)

A(ϕ) = inf
m

A(ϕ,m)

with A(ϕ,m) =
∫ T

0

∫
T
m(t, x)

(
∂tϕ(t, x) + ν∆ϕ(t, x) −H(x,m(t, x),∇ϕ(t, x))

)
dxdt

+
∫
T
m0(x)ϕ(0, x)dx.

Duality relation: A and B satisfy: (A) = supϕ A(ϕ) = inf(m,w) B(m,w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A) = − inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
, (B) = inf

(m,w)

{
F∗(Λ∗(m,w)) + G∗(−m,−w)

}
where F∗,G∗ are the convex conjugates of F ,G, and Λ∗ is the adjoint operator of Λ, and
Λ(ϕ) =

(
∂ϕ
∂t

+ ν∆ϕ,∇ϕ
)

,

F(ϕ) = χT (ϕ) −
∫
Td

m0(x)ϕ(0, x)dx, χT (ϕ) =
{

0 if ϕ|t=T = g0
+∞ otherwise,

G(φ1, φ2) = − inf
0≤m∈L1((0,T)×Td)

∫ T

0

∫
Td

m(t, x) (φ1(t, x) −H(x,m(t, x), φ2(t, x))) dxdt.

35 / 63

Duality

Dual problem: Maximize over ϕ such that ϕ(T, x) = g0(x)

A(ϕ) = inf
m

A(ϕ,m)

with A(ϕ,m) =
∫ T

0

∫
T
m(t, x)

(
∂tϕ(t, x) + ν∆ϕ(t, x) −H(x,m(t, x),∇ϕ(t, x))

)
dxdt

+
∫
T
m0(x)ϕ(0, x)dx.

Duality relation: A and B satisfy: (A) = supϕ A(ϕ) = inf(m,w) B(m,w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A) = − inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
, (B) = inf

(m,w)

{
F∗(Λ∗(m,w)) + G∗(−m,−w)

}
where F∗,G∗ are the convex conjugates of F ,G, and Λ∗ is the adjoint operator of Λ, and
Λ(ϕ) =

(
∂ϕ
∂t

+ ν∆ϕ,∇ϕ
)

,

F(ϕ) = χT (ϕ) −
∫
Td

m0(x)ϕ(0, x)dx, χT (ϕ) =
{

0 if ϕ|t=T = g0
+∞ otherwise,

G(φ1, φ2) = − inf
0≤m∈L1((0,T)×Td)

∫ T

0

∫
Td

m(t, x) (φ1(t, x) −H(x,m(t, x), φ2(t, x))) dxdt.

35 / 63

Duality

Dual problem: Maximize over ϕ such that ϕ(T, x) = g0(x)

A(ϕ) = inf
m

A(ϕ,m)

with A(ϕ,m) =
∫ T

0

∫
T
m(t, x)

(
∂tϕ(t, x) + ν∆ϕ(t, x) −H(x,m(t, x),∇ϕ(t, x))

)
dxdt

+
∫
T
m0(x)ϕ(0, x)dx.

Duality relation: A and B satisfy: (A) = supϕ A(ϕ) = inf(m,w) B(m,w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A) = − inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
, (B) = inf

(m,w)

{
F∗(Λ∗(m,w)) + G∗(−m,−w)

}
where F∗,G∗ are the convex conjugates of F ,G, and Λ∗ is the adjoint operator of Λ, and
Λ(ϕ) =

(
∂ϕ
∂t

+ ν∆ϕ,∇ϕ
)

,

F(ϕ) = χT (ϕ) −
∫
Td

m0(x)ϕ(0, x)dx, χT (ϕ) =
{

0 if ϕ|t=T = g0
+∞ otherwise,

G(φ1, φ2) = − inf
0≤m∈L1((0,T)×Td)

∫ T

0

∫
Td

m(t, x) (φ1(t, x) −H(x,m(t, x), φ2(t, x))) dxdt.

35 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG
Variational MFGs and Duality
Alternating Direction Method of Multipliers
A Primal-Dual Method

4. Methods for MKV FBSDE

5. Conclusion

Augmented Lagrangian

Reformulation of the primal problem:

(A) = −inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
= −inf

ϕ
inf
q

{
F(ϕ) + G(q), subj. to q = Λ(ϕ)

}
.

The corresponding Lagrangian is

L(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩.

We consider the augmented Lagrangian (with parameter r > 0)

Lr(ϕ, q, q̃) = L(ϕ, q, q̃) + r

2∥Λ(ϕ) − q∥2

Goal: find a saddle-point of Lr.

36 / 63

Augmented Lagrangian

Reformulation of the primal problem:

(A) = −inf
ϕ

{
F(ϕ) + G(Λ(ϕ))

}
= −inf

ϕ
inf
q

{
F(ϕ) + G(q), subj. to q = Λ(ϕ)

}
.

The corresponding Lagrangian is

L(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩.

We consider the augmented Lagrangian (with parameter r > 0)

Lr(ϕ, q, q̃) = L(ϕ, q, q̃) + r

2∥Λ(ϕ) − q∥2

Goal: find a saddle-point of Lr.

36 / 63

Alternating Direction Method of Multipliers (ADMM)

Reminder: Lr(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃) solving the finite difference

system
1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do
3 (a) Compute

ϕ(k+1) ∈ argmin
ϕ

{
F(ϕ) − ⟨q̃(k),Λ(ϕ)⟩ + r

2∥Λ(ϕ) − q(k)∥2
}

4 (b) Compute

q(k+1) ∈ argmin
q

{
G(q) + ⟨q̃(k), q⟩ + r

2∥Λ(ϕ(k+1)) − q∥2
}

5 (c) Compute
q̃(k+1) = q̃(k) − r

(
Λ(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

References: ALG2 in the book of [Fortin and Glowinski, 1983]
→ in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
→ in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

37 / 63

Alternating Direction Method of Multipliers (ADMM)

Reminder: Lr(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃) solving the finite difference

system
1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do
3 (a) Compute

ϕ(k+1) ∈ argmin
ϕ

{
F(ϕ) − ⟨q̃(k),Λ(ϕ)⟩ + r

2∥Λ(ϕ) − q(k)∥2
}

4 (b) Compute

q(k+1) ∈ argmin
q

{
G(q) + ⟨q̃(k), q⟩ + r

2∥Λ(ϕ(k+1)) − q∥2
}

5 (c) Compute
q̃(k+1) = q̃(k) − r

(
Λ(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

References: ALG2 in the book of [Fortin and Glowinski, 1983]
→ in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
→ in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

37 / 63

Alternating Direction Method of Multipliers (ADMM)

Reminder: Lr(ϕ, q, q̃) = F(ϕ) + G(q) − ⟨q̃,Λ(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃) solving the finite difference

system
1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do
3 (a) Compute

ϕ(k+1) ∈ argmin
ϕ

{
F(ϕ) − ⟨q̃(k),Λ(ϕ)⟩ + r

2∥Λ(ϕ) − q(k)∥2
}

4 (b) Compute

q(k+1) ∈ argmin
q

{
G(q) + ⟨q̃(k), q⟩ + r

2∥Λ(ϕ(k+1)) − q∥2
}

5 (c) Compute
q̃(k+1) = q̃(k) − r

(
Λ(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

References: ALG2 in the book of [Fortin and Glowinski, 1983]
→ in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
→ in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

37 / 63

ADMM: Discrete Primal Problem

Notation: Nh, NT steps resp. in space and time, N = (NT + 1)Nh, N ′ = NTNh.

Recall: H0(x, p) = 1
2 |p|2. We take H̃0(x, p1, p2) = 1

2 |(p−
1 , p

+
2)|2.

Discrete version of the dual convex problem:

(Ah) = − inf
ϕ∈RN

{
Fh(ϕ) + Gh(Λh(ϕ))

}
,

where Λh : RN → R3N′
is defined by : ∀n ∈ {1, . . . , NT }, ∀ i ∈ {0, . . . , Nh − 1},

(Λh(ϕ))ni =
(
(Dtϕi)n + ν

(
∆hϕ

n−1)
i
, [∇h ϕ

n−1]i
)
,

where Fh,Gh are the l.s.c. proper functions defined by:

Fh : RN ∋ ϕ 7→χT (ϕ) − h

Nh−1∑
i=0

ρ0
iϕ

0
i ∈ R ∪ {+∞},

Gh : R3N′
∋ (a, b, c) 7→ − h∆t

NT∑
n=1

Nh−1∑
i=0

Kh(xi, ani , bni , cni) ∈ R ∪ {+∞},

with

Kh(x, a0, p1, p2) = min
m∈R+

{
m[a0 + H̃0(x,m, p1, p2)]

}
, χT (ϕ) =

{
0 if ϕNT

i ≡ g0(xi)
+∞ otherwise.

.

38 / 63

ADMM: Discrete Primal Problem

Notation: Nh, NT steps resp. in space and time, N = (NT + 1)Nh, N ′ = NTNh.

Recall: H0(x, p) = 1
2 |p|2. We take H̃0(x, p1, p2) = 1

2 |(p−
1 , p

+
2)|2.

Discrete version of the dual convex problem:

(Ah) = − inf
ϕ∈RN

{
Fh(ϕ) + Gh(Λh(ϕ))

}
,

where Λh : RN → R3N′
is defined by : ∀n ∈ {1, . . . , NT }, ∀ i ∈ {0, . . . , Nh − 1},

(Λh(ϕ))ni =
(
(Dtϕi)n + ν

(
∆hϕ

n−1)
i
, [∇h ϕ

n−1]i
)
,

where Fh,Gh are the l.s.c. proper functions defined by:

Fh : RN ∋ ϕ 7→χT (ϕ) − h

Nh−1∑
i=0

ρ0
iϕ

0
i ∈ R ∪ {+∞},

Gh : R3N′
∋ (a, b, c) 7→ − h∆t

NT∑
n=1

Nh−1∑
i=0

Kh(xi, ani , bni , cni) ∈ R ∪ {+∞},

with

Kh(x, a0, p1, p2) = min
m∈R+

{
m[a0 + H̃0(x,m, p1, p2)]

}
, χT (ϕ) =

{
0 if ϕNT

i ≡ g0(xi)
+∞ otherwise.

.

38 / 63

ADMM with Discretization

Discrete Aug. Lag.: Lrh(ϕ, q, q̃) = Fh(ϕ) + Gh(q) − ⟨q̃,Λh(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃)

1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute ϕ(k+1) ∈ argminϕ
{

Fh(ϕ) − ⟨q̃(k),Λh(ϕ)⟩ + r
2 ∥Λh(ϕ) − q(k)∥2

}
4 (b) Compute q(k+1) ∈ argminq

{
Gh(q) + ⟨q̃(k), q⟩ + r

2 ∥Λh(ϕ(k+1)) − q∥2
}

5 (c) Compute q̃(k+1) = q̃(k) − r
(
Λh(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

First-order Optimality Conditions:

Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE

• if ν = 0, a direct solver can be used

• if ν > 0, PDE with 4th order linear elliptic operator ⇒ needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]

39 / 63

ADMM with Discretization

Discrete Aug. Lag.: Lrh(ϕ, q, q̃) = Fh(ϕ) + Gh(q) − ⟨q̃,Λh(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃)

1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute ϕ(k+1) ∈ argminϕ
{

Fh(ϕ) − ⟨q̃(k),Λh(ϕ)⟩ + r
2 ∥Λh(ϕ) − q(k)∥2

}
4 (b) Compute q(k+1) ∈ argminq

{
Gh(q) + ⟨q̃(k), q⟩ + r

2 ∥Λh(ϕ(k+1)) − q∥2
}

5 (c) Compute q̃(k+1) = q̃(k) − r
(
Λh(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

First-order Optimality Conditions:

Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE

• if ν = 0, a direct solver can be used

• if ν > 0, PDE with 4th order linear elliptic operator ⇒ needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]

39 / 63

ADMM with Discretization

Discrete Aug. Lag.: Lrh(ϕ, q, q̃) = Fh(ϕ) + Gh(q) − ⟨q̃,Λh(ϕ) − q⟩ + r
2 ∥Λ(ϕ) − q∥2

Input: Initial guess (ϕ(0), q(0), q̃(0)); number of iterations K
Output: Approximation of a saddle point (ϕ, q, q̃)

1 Initialize (ϕ(0), q(0), q̃(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute ϕ(k+1) ∈ argminϕ
{

Fh(ϕ) − ⟨q̃(k),Λh(ϕ)⟩ + r
2 ∥Λh(ϕ) − q(k)∥2

}
4 (b) Compute q(k+1) ∈ argminq

{
Gh(q) + ⟨q̃(k), q⟩ + r

2 ∥Λh(ϕ(k+1)) − q∥2
}

5 (c) Compute q̃(k+1) = q̃(k) − r
(
Λh(ϕ(k+1)) − q(k+1))

6 return (ϕ(K), q(K), q̃(K))

First-order Optimality Conditions:

Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE

• if ν = 0, a direct solver can be used

• if ν > 0, PDE with 4th order linear elliptic operator ⇒ needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]
39 / 63

Numerical Example: Congestion Without Viscosity

• Domain Ω = [0, 1]2\[0.4, 0.6]2 (obstacle at the center)

• Define the Hamiltonian by duality (on ∂Ω the vector speed is towards the interior)

H(x,m, p) =


sup
ξ∈R2

{
− ξ · p− L(x,m, ξ)

}
= m−α|p|β − ℓ(x,m), if x ∈ Ω,

sup
ξ∈R2 : ξ·n≤0

{
− ξ · p− L(x,m, ξ)

}
, if x ∈ ∂Ω.

• The associated Lagrangian (corresponding to the running cost) is:

L(x,m, ξ) = (β − 1)β−β∗
m

α
β−1 |ξ|β

∗
+ ℓ(x,m), 1 < β ≤ 2, 0 ≤ α < 1

• Ex.: m0 : & uT : opposite corners; α = 0.01, β = 2, ℓ(x,m) = 0.01m.

40 / 63

Numerical Example: Congestion Without Viscosity

• Domain Ω = [0, 1]2\[0.4, 0.6]2 (obstacle at the center)

• Define the Hamiltonian by duality (on ∂Ω the vector speed is towards the interior)

H(x,m, p) =


sup
ξ∈R2

{
− ξ · p− L(x,m, ξ)

}
= m−α|p|β − ℓ(x,m), if x ∈ Ω,

sup
ξ∈R2 : ξ·n≤0

{
− ξ · p− L(x,m, ξ)

}
, if x ∈ ∂Ω.

• The associated Lagrangian (corresponding to the running cost) is:

L(x,m, ξ) = (β − 1)β−β∗
m

α
β−1 |ξ|β

∗
+ ℓ(x,m), 1 < β ≤ 2, 0 ≤ α < 1

• Ex.: m0 : & uT : opposite corners; α = 0.01, β = 2, ℓ(x,m) = 0.01m.

40 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Initial distribution (left) and final cost (right)

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = 0

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = T/8

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = T/4

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = 3T/8

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = T/2

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = 5T/8

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = 3T/4

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

Density at time t = 7T/8

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with ν = 0

 0 0.2 0.4 0.6 0.8 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Density at time t = T

For more details, see [Achdou and Laurière, 2016b]

41 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG
Variational MFGs and Duality
Alternating Direction Method of Multipliers
A Primal-Dual Method

4. Methods for MKV FBSDE

5. Conclusion

Optimality Conditions and Proximal Operator

Let φ,ψ : RN → R ∪ {+∞} be convex l.s.c. proper functions.

Consider the optimization problem

min
y∈RN

φ(y) + ψ(y),

and its dual
min
σ∈RN

φ∗(−σ) + ψ∗(σ).

The 1st-order opt. cond. satisfied by a solution (ŷ, σ̂) are

{
−σ̂ ∈ ∂φ(ŷ)
ŷ ∈ ∂ψ∗(σ̂)

⇔
{
ŷ − τ σ̂ ∈ τ∂φ(ŷ) + ŷ

σ̂ + γŷ ∈ γ∂ψ∗(σ̂) + σ̂
⇔

{
proxτφ(ŷ − τ σ̂) = ŷ

proxγψ∗ (σ̂ + γŷ) = σ̂,

where γ > 0 and τ > 0 are arbitrary and

The proximal operator of a l.s.c. convex proper ϕ : RN → R ∪ {+∞} is:

proxγϕ(x) := argmin
y∈RN

{
ϕ(y) + |y−x|2

2γ

}
= (I + ∂(γϕ))−1(x), ∀ x ∈ RN .

42 / 63

Optimality Conditions and Proximal Operator

Let φ,ψ : RN → R ∪ {+∞} be convex l.s.c. proper functions.

Consider the optimization problem

min
y∈RN

φ(y) + ψ(y),

and its dual
min
σ∈RN

φ∗(−σ) + ψ∗(σ).

The 1st-order opt. cond. satisfied by a solution (ŷ, σ̂) are

{
−σ̂ ∈ ∂φ(ŷ)
ŷ ∈ ∂ψ∗(σ̂)

⇔
{
ŷ − τ σ̂ ∈ τ∂φ(ŷ) + ŷ

σ̂ + γŷ ∈ γ∂ψ∗(σ̂) + σ̂
⇔

{
proxτφ(ŷ − τ σ̂) = ŷ

proxγψ∗ (σ̂ + γŷ) = σ̂,

where γ > 0 and τ > 0 are arbitrary and

The proximal operator of a l.s.c. convex proper ϕ : RN → R ∪ {+∞} is:

proxγϕ(x) := argmin
y∈RN

{
ϕ(y) + |y−x|2

2γ

}
= (I + ∂(γϕ))−1(x), ∀ x ∈ RN .

42 / 63

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when τγ < 1.

Input: Initial guess (σ(0), y(0), ȳ(0)); θ ∈ [0, 1]; γ > 0, τ > 0; number of iterations K
Output: Approximation of (σ̂, ŷ) solving the optimality conditions

1 Initialize (σ(0), y(0), ȳ(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute
σ(k+1) = proxγψ∗ (σ(k) + γȳ(k)),

4 (b) Compute
y(k+1) = proxτφ(y(k) − τσ(k+1)),

5 (c) Compute
ȳ(k+1) = y(k+1) + θ(y(k+1) − y(k)).

6 return (σ(K), y(K), ȳ(K))

43 / 63

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when τγ < 1.

Input: Initial guess (σ(0), y(0), ȳ(0)); θ ∈ [0, 1]; γ > 0, τ > 0; number of iterations K
Output: Approximation of (σ̂, ŷ) solving the optimality conditions

1 Initialize (σ(0), y(0), ȳ(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute
σ(k+1) = proxγψ∗ (σ(k) + γȳ(k)),

4 (b) Compute
y(k+1) = proxτφ(y(k) − τσ(k+1)),

5 (c) Compute
ȳ(k+1) = y(k+1) + θ(y(k+1) − y(k)).

6 return (σ(K), y(K), ȳ(K))

43 / 63

Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when τγ < 1.

Input: Initial guess (σ(0), y(0), ȳ(0)); θ ∈ [0, 1]; γ > 0, τ > 0; number of iterations K
Output: Approximation of (σ̂, ŷ) solving the optimality conditions

1 Initialize (σ(0), y(0), ȳ(0))
2 for k = 0, 1, 2, . . . , K − 1 do

3 (a) Compute
σ(k+1) = proxγψ∗ (σ(k) + γȳ(k)),

4 (b) Compute
y(k+1) = proxτφ(y(k) − τσ(k+1)),

5 (c) Compute
ȳ(k+1) = y(k+1) + θ(y(k+1) − y(k)).

6 return (σ(K), y(K), ȳ(K))

43 / 63

Dual of Discrete Problem (Ah)

By Fenchel-Rockafellar theorem, the dual problem of (Ah) is:

(Bh) = min
(m,w1,w2)=σ∈R3N′

{
F∗
h(Λ∗

h(σ)) + G∗
h(−σ)

}
,

where G∗
h and F∗

h are respectively the Legendre-Fenchel conjugates of Gh and Fh, defined by:

• F∗
h(µ) = supϕ∈RN

{
⟨µ, ϕ⟩ℓ2(RN) − Fh(ϕ)

}
, ∀µ ∈ RN

• G∗
h(−σ) = max

q∈R3N′

{
− ⟨σ, q⟩

ℓ2(R3N′) − Gh(q)
}

= h∆t
NT∑
n=1

Nh−1∑
i=0

L̃h(xi, σni), ∀σ ∈ R3N′

• with L̃h(x, σ0) = maxp0∈R3
{

− σ0 · p0 + Kh(x, q0)
}
, ∀σ0 ∈ R3.

Rem.: The max can be costly to compute but in some cases L̃h has a closed-form expression.

Finally Λ∗
h : R3N′ → RN denotes the adjoint of Λh: for all (m, y, z) ∈ R3N′

, ϕ ∈ RN :

⟨Λ∗
h(m, y, z), ϕ⟩ℓ2(RN) = ⟨(m, y, z),Λh(ϕ)⟩

ℓ2(R3N′)

Rem.: We have F∗
h(Λ∗

h(m, y, z)) =
{
h

∑Nh−1
i=0 m

NT
i g0(xi), if (m, y, z) satisfies (⋆) below,

+∞, otherwise,
with ∀ i ∈ {0, . . . , Nh − 1}, m0

i = ρ0
i , and ∀n ∈ {0, . . . , NT − 1}:

(Dtmi)n − ν
(

∆hm
n+1

)
i

+
yn+1
i − yn+1

i−1
h

+
zn+1
i+1 − zn+1

i

h
= 0. (⋆)

44 / 63

Dual of Discrete Problem (Ah)

By Fenchel-Rockafellar theorem, the dual problem of (Ah) is:

(Bh) = min
(m,w1,w2)=σ∈R3N′

{
F∗
h(Λ∗

h(σ)) + G∗
h(−σ)

}
,

where G∗
h and F∗

h are respectively the Legendre-Fenchel conjugates of Gh and Fh, defined by:

• F∗
h(µ) = supϕ∈RN

{
⟨µ, ϕ⟩ℓ2(RN) − Fh(ϕ)

}
, ∀µ ∈ RN

• G∗
h(−σ) = max

q∈R3N′

{
− ⟨σ, q⟩

ℓ2(R3N′) − Gh(q)
}

= h∆t
NT∑
n=1

Nh−1∑
i=0

L̃h(xi, σni), ∀σ ∈ R3N′

• with L̃h(x, σ0) = maxp0∈R3
{

− σ0 · p0 + Kh(x, q0)
}
, ∀σ0 ∈ R3.

Rem.: The max can be costly to compute but in some cases L̃h has a closed-form expression.

Finally Λ∗
h : R3N′ → RN denotes the adjoint of Λh: for all (m, y, z) ∈ R3N′

, ϕ ∈ RN :

⟨Λ∗
h(m, y, z), ϕ⟩ℓ2(RN) = ⟨(m, y, z),Λh(ϕ)⟩

ℓ2(R3N′)

Rem.: We have F∗
h(Λ∗

h(m, y, z)) =
{
h

∑Nh−1
i=0 m

NT
i g0(xi), if (m, y, z) satisfies (⋆) below,

+∞, otherwise,
with ∀ i ∈ {0, . . . , Nh − 1}, m0

i = ρ0
i , and ∀n ∈ {0, . . . , NT − 1}:

(Dtmi)n − ν
(

∆hm
n+1

)
i

+
yn+1
i − yn+1

i−1
h

+
zn+1
i+1 − zn+1

i

h
= 0. (⋆)

44 / 63

Dual of Discrete Problem (Ah)

By Fenchel-Rockafellar theorem, the dual problem of (Ah) is:

(Bh) = min
(m,w1,w2)=σ∈R3N′

{
F∗
h(Λ∗

h(σ)) + G∗
h(−σ)

}
,

where G∗
h and F∗

h are respectively the Legendre-Fenchel conjugates of Gh and Fh, defined by:

• F∗
h(µ) = supϕ∈RN

{
⟨µ, ϕ⟩ℓ2(RN) − Fh(ϕ)

}
, ∀µ ∈ RN

• G∗
h(−σ) = max

q∈R3N′

{
− ⟨σ, q⟩

ℓ2(R3N′) − Gh(q)
}

= h∆t
NT∑
n=1

Nh−1∑
i=0

L̃h(xi, σni), ∀σ ∈ R3N′

• with L̃h(x, σ0) = maxp0∈R3
{

− σ0 · p0 + Kh(x, q0)
}
, ∀σ0 ∈ R3.

Rem.: The max can be costly to compute but in some cases L̃h has a closed-form expression.

Finally Λ∗
h : R3N′ → RN denotes the adjoint of Λh: for all (m, y, z) ∈ R3N′

, ϕ ∈ RN :

⟨Λ∗
h(m, y, z), ϕ⟩ℓ2(RN) = ⟨(m, y, z),Λh(ϕ)⟩

ℓ2(R3N′)

Rem.: We have F∗
h(Λ∗

h(m, y, z)) =
{
h

∑Nh−1
i=0 m

NT
i g0(xi), if (m, y, z) satisfies (⋆) below,

+∞, otherwise,
with ∀ i ∈ {0, . . . , Nh − 1}, m0

i = ρ0
i , and ∀n ∈ {0, . . . , NT − 1}:

(Dtmi)n − ν
(

∆hm
n+1

)
i

+
yn+1
i − yn+1

i−1
h

+
zn+1
i+1 − zn+1

i

h
= 0. (⋆)

44 / 63

Reformulation

The discrete dual problem can be recast as:

inf
(m,w)

Bh(m,w) + Fh(m)︸ ︷︷ ︸
φ(m,w)

+ ιG−1(ρ0,0)(m,w)︸ ︷︷ ︸
ψ(m,w)

(Ph)

with the costs
Fh(m) :=

∑
i,n

F̃ (xi,mni) +
1

∆t

∑
i

G̃(xi,mNT
i), Bh(m,w) :=

∑
i,n

b̂(mni , w
n−1
i),

b̂(m,w) :=

mL
(
x,− w

m

)
, if m > 0, w ∈ K = R− × R+,

0, if (m,w) = (0, 0),
+∞, otherwise,

and G(m,w) := (m0, (Amn+1 +Bwn)0≤n≤NT −1) with

(Am)n+1
i := (Dtm)ni − ν(∆hm)n+1

i , (Bw)ni := (Dhw1)ni−1 + (Dhw2)ni .

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply Chambolle-Pock’s method for (Ph) with
y = (m,w), φ(m,w) = Bh(m,w) + Fh(m), ψ(m,w) = ιG−1(ρ0,0)(m,w)

See [Briceño Arias et al., 2018] and [Briceño Arias et al., 2019] in stationary and dynamic cases.

45 / 63

Reformulation

The discrete dual problem can be recast as:

inf
(m,w)

Bh(m,w) + Fh(m)︸ ︷︷ ︸
φ(m,w)

+ ιG−1(ρ0,0)(m,w)︸ ︷︷ ︸
ψ(m,w)

(Ph)

with the costs
Fh(m) :=

∑
i,n

F̃ (xi,mni) +
1

∆t

∑
i

G̃(xi,mNT
i), Bh(m,w) :=

∑
i,n

b̂(mni , w
n−1
i),

b̂(m,w) :=

mL
(
x,− w

m

)
, if m > 0, w ∈ K = R− × R+,

0, if (m,w) = (0, 0),
+∞, otherwise,

and G(m,w) := (m0, (Amn+1 +Bwn)0≤n≤NT −1) with

(Am)n+1
i := (Dtm)ni − ν(∆hm)n+1

i , (Bw)ni := (Dhw1)ni−1 + (Dhw2)ni .

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply Chambolle-Pock’s method for (Ph) with
y = (m,w), φ(m,w) = Bh(m,w) + Fh(m), ψ(m,w) = ιG−1(ρ0,0)(m,w)

See [Briceño Arias et al., 2018] and [Briceño Arias et al., 2019] in stationary and dynamic cases.

45 / 63

Numerical Example

Setting: g ≡ 0 and R2 × R ∋ (x,m) 7→ f(x,m) := m2 −H(x), with

H(x) = sin(2πx2) + sin(2πx1) + cos(2πx1)

We solve the corresponding MFG and obtain the following evolution of the density:

Evolution of the density

More details in [Briceño Arias et al., 2019]
46 / 63

Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

• the mass starts from an initial density;

• it converges to a steady state, influenced only by the running cost;

• as t → T , the mass is influenced by the final cost and converges to a final state.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time t

0

0.5

1

1.5

2

2.5

d
is

ta
n
c
e

L2 distance between dynamic and stationary solutions

More details in [Briceño Arias et al., 2019]

47 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE
A Picard Scheme for MKV FBSDE
Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE
A Picard Scheme for MKV FBSDE
Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

MKV FBSDE System

Recall: generic form:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, 0 ≤ t ≤ T

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, 0 ≤ t ≤ T

X0 ∼ m0, YT = G(XT ,L(XT))

Decouple:
▶ Given (L(X), Y, Z), solve for X
▶ Given (X,L(X)) solve for (Y, Z)

Iterate

Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]

48 / 63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE
Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T ;

number of iterations K
Output: Approximation of (X,Y, Z) solving the MKV FBSDE system

1 Initialize X(0)
t = ξ, Y

(0)
t = 0, Z(0)

t = 0, 0 ≤ t ≤ T
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let X(k+1) be the solution to:{

dXt = B(X(k)
t ,L(X(k)

t), Y (k)
t , Z

(k)
t)dt+ σdWt, 0 ≤ t ≤ T

X0 = ξ

4 Let (Y (k+1), Z(k+1)) be the solution to:{
dYt = −F (X(k+1)

t ,L(X(k+1)
t), Y (k)

t , Z
(k)
t)dt+ Z

(k)
t dWt, 0 ≤ t ≤ T

YT = ζ

5 return Picard[T](ξ, ζ) = (X(K), Y (K), Z(K))

Notation: Φξ,ζ : (X(k),L(X(k)), Y (k), Z(k)) 7→ (X(k+1),L(X(k+1)), Y (k+1), Z(k+1))

Contraction? Small T or small Lipschitz constants for B,F,G

49 / 63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE
Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T ;

number of iterations K
Output: Approximation of (X,Y, Z) solving the MKV FBSDE system

1 Initialize X(0)
t = ξ, Y

(0)
t = 0, Z(0)

t = 0, 0 ≤ t ≤ T
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let X(k+1) be the solution to:{

dXt = B(X(k)
t ,L(X(k)

t), Y (k)
t , Z

(k)
t)dt+ σdWt, 0 ≤ t ≤ T

X0 = ξ

4 Let (Y (k+1), Z(k+1)) be the solution to:{
dYt = −F (X(k+1)

t ,L(X(k+1)
t), Y (k)

t , Z
(k)
t)dt+ Z

(k)
t dWt, 0 ≤ t ≤ T

YT = ζ

5 return Picard[T](ξ, ζ) = (X(K), Y (K), Z(K))

Notation: Φξ,ζ : (X(k),L(X(k)), Y (k), Z(k)) 7→ (X(k+1),L(X(k+1)), Y (k+1), Z(k+1))

Contraction? Small T or small Lipschitz constants for B,F,G

49 / 63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE
Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T ;

number of iterations K
Output: Approximation of (X,Y, Z) solving the MKV FBSDE system

1 Initialize X(0)
t = ξ, Y

(0)
t = 0, Z(0)

t = 0, 0 ≤ t ≤ T
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let X(k+1) be the solution to:{

dXt = B(X(k)
t ,L(X(k)

t), Y (k)
t , Z

(k)
t)dt+ σdWt, 0 ≤ t ≤ T

X0 = ξ

4 Let (Y (k+1), Z(k+1)) be the solution to:{
dYt = −F (X(k+1)

t ,L(X(k+1)
t), Y (k)

t , Z
(k)
t)dt+ Z

(k)
t dWt, 0 ≤ t ≤ T

YT = ζ

5 return Picard[T](ξ, ζ) = (X(K), Y (K), Z(K))

Notation: Φξ,ζ : (X(k),L(X(k)), Y (k), Z(k)) 7→ (X(k+1),L(X(k+1)), Y (k+1), Z(k+1))

Contraction? Small T or small Lipschitz constants for B,F,G

49 / 63

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE
Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T ;

number of iterations K
Output: Approximation of (X,Y, Z) solving the MKV FBSDE system

1 Initialize X(0)
t = ξ, Y

(0)
t = 0, Z(0)

t = 0, 0 ≤ t ≤ T
2 for k = 0, 1, 2, . . . , K − 1 do
3 Let X(k+1) be the solution to:{

dXt = B(X(k)
t ,L(X(k)

t), Y (k)
t , Z

(k)
t)dt+ σdWt, 0 ≤ t ≤ T

X0 = ξ

4 Let (Y (k+1), Z(k+1)) be the solution to:{
dYt = −F (X(k+1)

t ,L(X(k+1)
t), Y (k)

t , Z
(k)
t)dt+ Z

(k)
t dWt, 0 ≤ t ≤ T

YT = ζ

5 return Picard[T](ξ, ζ) = (X(K), Y (K), Z(K))

Notation: Φξ,ζ : (X(k),L(X(k)), Y (k), Z(k)) 7→ (X(k+1),L(X(k+1)), Y (k+1), Z(k+1))

Contraction? Small T or small Lipschitz constants for B,F,G

49 / 63

Continuation Method

If T is big: Solve FBSDE on small intervals & “patch” the solutions together

Grid: 0 = T0 < T1 < · · · < TM−1 < TM = T

Subproblem: Given (ξTm ,L(ξTm)) and ζTm+1 , solve:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, Tm ≤ t ≤ Tm+1

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, Tm ≤ t ≤ Tm+1

XTm = ξTm , YTm+1 = ζTm+1

How to find ξTm and ζTm+1 ?

→ ξTm from previous problem’s solution (or initial condition)

→ ζTm+1 from next problem’s solution (or terminal condition)

50 / 63

Continuation Method

If T is big: Solve FBSDE on small intervals & “patch” the solutions together

Grid: 0 = T0 < T1 < · · · < TM−1 < TM = T

Subproblem: Given (ξTm ,L(ξTm)) and ζTm+1 , solve:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, Tm ≤ t ≤ Tm+1

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, Tm ≤ t ≤ Tm+1

XTm = ξTm , YTm+1 = ζTm+1

How to find ξTm and ζTm+1 ?

→ ξTm from previous problem’s solution (or initial condition)

→ ζTm+1 from next problem’s solution (or terminal condition)

50 / 63

Continuation Method

If T is big: Solve FBSDE on small intervals & “patch” the solutions together

Grid: 0 = T0 < T1 < · · · < TM−1 < TM = T

Subproblem: Given (ξTm ,L(ξTm)) and ζTm+1 , solve:
dXt = B(Xt,L(Xt), Yt, Zt)dt+ σdWt, Tm ≤ t ≤ Tm+1

dYt = −F (Xt,L(Xt), Yt, Zt)dt+ ZtdWt, Tm ≤ t ≤ Tm+1

XTm = ξTm , YTm+1 = ζTm+1

How to find ξTm and ζTm+1 ?

→ ξTm from previous problem’s solution (or initial condition)

→ ζTm+1 from next problem’s solution (or terminal condition)

50 / 63

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](ξ0, µ0)

with ξ0 a random variable with distribution µ0

Input: Initial guess (ξ,L(ξ)); time step index m; number of iterations K
Output: Approximation of YTm where (X,Y, Z) solves the MKV FBSDE system on

[Tm, T] starting with (ξ,L(ξ)) at time Tm
1 Initialize X(0)

t = ξ,L(X(0)
t) = L(ξ) for all Tm ≤ t ≤ Tm+1

2 for k = 0, 1, 2, . . . , K − 1 do
3 If Tm+1 = T , Y (k+1)

Tm+1
= G(X(k)

Tm+1
,L(X(k)

Tm+1
))

4 Else: compute recursively:

Y
(k+1)
Tm+1

= Solver[m+ 1](X(k)
Tm+1

,L(X(k)
Tm+1

))

5 Compute:

(X(k+1)
t ,L(X(k+1)

t), Y (k+1)
t , Z

(k+1)
t)Tm≤t≤Tm+1 = Picard[Tm+1−Tm](X(k)

Tm
, Y

(k+1)
Tm+1

)

6 return Solver[m](ξ,L(ξ)) := Y
(K)
Tm

51 / 63

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](ξ0, µ0)

with ξ0 a random variable with distribution µ0

Input: Initial guess (ξ,L(ξ)); time step index m; number of iterations K
Output: Approximation of YTm where (X,Y, Z) solves the MKV FBSDE system on

[Tm, T] starting with (ξ,L(ξ)) at time Tm
1 Initialize X(0)

t = ξ,L(X(0)
t) = L(ξ) for all Tm ≤ t ≤ Tm+1

2 for k = 0, 1, 2, . . . , K − 1 do
3 If Tm+1 = T , Y (k+1)

Tm+1
= G(X(k)

Tm+1
,L(X(k)

Tm+1
))

4 Else: compute recursively:

Y
(k+1)
Tm+1

= Solver[m+ 1](X(k)
Tm+1

,L(X(k)
Tm+1

))

5 Compute:

(X(k+1)
t ,L(X(k+1)

t), Y (k+1)
t , Z

(k+1)
t)Tm≤t≤Tm+1 = Picard[Tm+1−Tm](X(k)

Tm
, Y

(k+1)
Tm+1

)

6 return Solver[m](ξ,L(ξ)) := Y
(K)
Tm

51 / 63

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](ξ0, µ0)

with ξ0 a random variable with distribution µ0

Input: Initial guess (ξ,L(ξ)); time step index m; number of iterations K
Output: Approximation of YTm where (X,Y, Z) solves the MKV FBSDE system on

[Tm, T] starting with (ξ,L(ξ)) at time Tm
1 Initialize X(0)

t = ξ,L(X(0)
t) = L(ξ) for all Tm ≤ t ≤ Tm+1

2 for k = 0, 1, 2, . . . , K − 1 do
3 If Tm+1 = T , Y (k+1)

Tm+1
= G(X(k)

Tm+1
,L(X(k)

Tm+1
))

4 Else: compute recursively:

Y
(k+1)
Tm+1

= Solver[m+ 1](X(k)
Tm+1

,L(X(k)
Tm+1

))

5 Compute:

(X(k+1)
t ,L(X(k+1)

t), Y (k+1)
t , Z

(k+1)
t)Tm≤t≤Tm+1 = Picard[Tm+1−Tm](X(k)

Tm
, Y

(k+1)
Tm+1

)

6 return Solver[m](ξ,L(ξ)) := Y
(K)
Tm

51 / 63

Implementation: Discretizations

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

Tree algorithm:
▶ Time discretization
▶ Space discretization: binomial tree structure
▶ Look at trajectories

Grid algorithm:
▶ Time and space discretization on a grid
▶ Look at time marginals

52 / 63

Tree-Based Algorithm: Time Discretization

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Euler Scheme: 0 ≤ i ≤ Nt − 1

X
(k+1)
ti+1

= X
(k+1)
ti

+B(X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t+ σ∆Wti+1

X
(k+1)
0 = ξ

Y
(k+1)
ti

= Eti [Y (k+1)
ti+1

] + F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t
≈ Y

(k+1)
ti+1

+ F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t− Z
(k+1)
ti

∆Wti+1

Y
(k+1)
T = G(X(k+1)

T ,L(X(k+1)
T))

Z
(k+1)
ti

= 1
∆tEti [Y (k+1)

ti+1
∆Wti+1]

Z
(k+1)
T = 0

Questions:
▶ How to represent L(X(k+1)

ti
)?

▶ How to compute the conditional expectation Eti [Y (k+1)
ti+1

]?

53 / 63

Tree-Based Algorithm: Time Discretization

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Euler Scheme: 0 ≤ i ≤ Nt − 1

X
(k+1)
ti+1

= X
(k+1)
ti

+B(X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t+ σ∆Wti+1

X
(k+1)
0 = ξ

Y
(k+1)
ti

= Eti [Y (k+1)
ti+1

] + F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t
≈ Y

(k+1)
ti+1

+ F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t− Z
(k+1)
ti

∆Wti+1

Y
(k+1)
T = G(X(k+1)

T ,L(X(k+1)
T))

Z
(k+1)
ti

= 1
∆tEti [Y (k+1)

ti+1
∆Wti+1]

Z
(k+1)
T = 0

Questions:
▶ How to represent L(X(k+1)

ti
)?

▶ How to compute the conditional expectation Eti [Y (k+1)
ti+1

]?

53 / 63

Tree-Based Algorithm: Time Discretization

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Euler Scheme: 0 ≤ i ≤ Nt − 1

X
(k+1)
ti+1

= X
(k+1)
ti

+B(X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t+ σ∆Wti+1

X
(k+1)
0 = ξ

Y
(k+1)
ti

= Eti [Y (k+1)
ti+1

] + F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t
≈ Y

(k+1)
ti+1

+ F (X(k+1)
ti

,L(X(k+1)
ti

), Y (k)
ti
, Z

(k)
ti

)∆t− Z
(k+1)
ti

∆Wti+1

Y
(k+1)
T = G(X(k+1)

T ,L(X(k+1)
T))

Z
(k+1)
ti

= 1
∆tEti [Y (k+1)

ti+1
∆Wti+1]

Z
(k+1)
T = 0

Questions:
▶ How to represent L(X(k+1)

ti
)?

▶ How to compute the conditional expectation Eti [Y (k+1)
ti+1

]?

53 / 63

Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63

Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63

Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations?

Not really but . . .

54 / 63

Tree-Based Algorithm: Remarks

At each ti, replace ∆Wti+1 by a branch with 2 values: ±
√

∆t w.p. 1/2

Answers:
▶ L(X(k+1)

ti
) ≈ weighted empirical distribution:

L(X(k+1)
t0

) ≈
Nx0∑
n=1

pk0δxk
0
,

and at time ti, i ≥ 1: look at values on the nodes at depth i

▶ Eti [Y (k+1)
ti+1

] ≈ weighted average of values on the two next branches

Starting from some x0, doing Nt steps: 2Nt paths

Nx0 starting points i.i.d. ∼ µ0: Nx0 × 2Nt paths !

Save space thanks to recombinations? Not really but . . .

54 / 63

Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

Yt = u(t,Xt,L(Xt)), Zt = v(t,Xt,L(Xt))

→ Approximate u(·, ·, ·), v(·, ·, ·) instead of (Yt, Zt)t∈[0,T]

Difficulty: space of L(Xt) is infinite dimensional
→ Freeze it during each Picard iteration:

Y
(k+1)
t = u(k+1)(t,X(k+1)

t), Z
(k+1)
t = v(k+1)(t,X(k+1)

t) (⋆)

Picard iterations for distribution & decoupling functions:
▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)

t = L(X(k+1)
t), 0 ≤ t ≤ T , where

dX
(k+1)
t = B

(
X

(k+1)
t , µ

(k)
t , u(k)(t,X(k+1)

t), v(k)(t,X(k+1)
t)

)
dt+ σdWt

▶ Step 2: Given (X(k), µ(k+1)), compute (u(k+1), v(k+1)) such that (⋆) holds, where

dY
(k+1)
t = −F

(
X

(k+1)
t , µ

(k+1)
t , Y

(k+1)
t , Z

(k+1)
t

)
dt+ Z

(k+1)
t dWt

▶ Return (µ(k+1), u(k+1), v(k+1))

55 / 63

Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

Yt = u(t,Xt,L(Xt)), Zt = v(t,Xt,L(Xt))

→ Approximate u(·, ·, ·), v(·, ·, ·) instead of (Yt, Zt)t∈[0,T]

Difficulty: space of L(Xt) is infinite dimensional
→ Freeze it during each Picard iteration:

Y
(k+1)
t = u(k+1)(t,X(k+1)

t), Z
(k+1)
t = v(k+1)(t,X(k+1)

t) (⋆)

Picard iterations for distribution & decoupling functions:
▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)

t = L(X(k+1)
t), 0 ≤ t ≤ T , where

dX
(k+1)
t = B

(
X

(k+1)
t , µ

(k)
t , u(k)(t,X(k+1)

t), v(k)(t,X(k+1)
t)

)
dt+ σdWt

▶ Step 2: Given (X(k), µ(k+1)), compute (u(k+1), v(k+1)) such that (⋆) holds, where

dY
(k+1)
t = −F

(
X

(k+1)
t , µ

(k+1)
t , Y

(k+1)
t , Z

(k+1)
t

)
dt+ Z

(k+1)
t dWt

▶ Return (µ(k+1), u(k+1), v(k+1))

55 / 63

Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

Yt = u(t,Xt,L(Xt)), Zt = v(t,Xt,L(Xt))

→ Approximate u(·, ·, ·), v(·, ·, ·) instead of (Yt, Zt)t∈[0,T]

Difficulty: space of L(Xt) is infinite dimensional
→ Freeze it during each Picard iteration:

Y
(k+1)
t = u(k+1)(t,X(k+1)

t), Z
(k+1)
t = v(k+1)(t,X(k+1)

t) (⋆)

Picard iterations for distribution & decoupling functions:
▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)

t = L(X(k+1)
t), 0 ≤ t ≤ T , where

dX
(k+1)
t = B

(
X

(k+1)
t , µ

(k)
t , u(k)(t,X(k+1)

t), v(k)(t,X(k+1)
t)

)
dt+ σdWt

▶ Step 2: Given (X(k), µ(k+1)), compute (u(k+1), v(k+1)) such that (⋆) holds, where

dY
(k+1)
t = −F

(
X

(k+1)
t , µ

(k+1)
t , Y

(k+1)
t , Z

(k+1)
t

)
dt+ Z

(k+1)
t dWt

▶ Return (µ(k+1), u(k+1), v(k+1))
55 / 63

Grid-Based Algorithm: Forward Equation

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Space discretization (d = 1): Grid Γ: x0 < x1 < · · · < xNx , xj+1 − xj = ∆x

Use projection Π to stay on Γ at every ti: L(X(k+1)
ti

) ≈ vector of weights

Picard iterations for distribution & decoupling functions:

▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)
ti

= L(X(k+1)
ti

), i = 0, . . . , Nt, where

X
(k+1)
ti+1

= Π
[
X

(k+1)
ti

+B

(
X

(k+1)
ti

, µ
(k)
ti
, u

(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)
dt+ σ∆Wti+1

]
▶ In fact µ(k+1)

ti+1
can be expressed in terms of µ(k+1)

ti
and a transition kernel

▶ Ex: binomial approx. of W → efficient computation using quantization

56 / 63

Grid-Based Algorithm: Forward Equation

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Space discretization (d = 1): Grid Γ: x0 < x1 < · · · < xNx , xj+1 − xj = ∆x

Use projection Π to stay on Γ at every ti: L(X(k+1)
ti

) ≈ vector of weights

Picard iterations for distribution & decoupling functions:

▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)
ti

= L(X(k+1)
ti

), i = 0, . . . , Nt, where

X
(k+1)
ti+1

= Π
[
X

(k+1)
ti

+B

(
X

(k+1)
ti

, µ
(k)
ti
, u

(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)
dt+ σ∆Wti+1

]
▶ In fact µ(k+1)

ti+1
can be expressed in terms of µ(k+1)

ti
and a transition kernel

▶ Ex: binomial approx. of W → efficient computation using quantization

56 / 63

Grid-Based Algorithm: Forward Equation

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Space discretization (d = 1): Grid Γ: x0 < x1 < · · · < xNx , xj+1 − xj = ∆x

Use projection Π to stay on Γ at every ti: L(X(k+1)
ti

) ≈ vector of weights

Picard iterations for distribution & decoupling functions:

▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)
ti

= L(X(k+1)
ti

), i = 0, . . . , Nt, where

X
(k+1)
ti+1

= Π
[
X

(k+1)
ti

+B

(
X

(k+1)
ti

, µ
(k)
ti
, u

(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)
dt+ σ∆Wti+1

]

▶ In fact µ(k+1)
ti+1

can be expressed in terms of µ(k+1)
ti

and a transition kernel
▶ Ex: binomial approx. of W → efficient computation using quantization

56 / 63

Grid-Based Algorithm: Forward Equation

Focus on an interval [0, T] with small enough T (otherwise: call recursive solver)

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

Space discretization (d = 1): Grid Γ: x0 < x1 < · · · < xNx , xj+1 − xj = ∆x

Use projection Π to stay on Γ at every ti: L(X(k+1)
ti

) ≈ vector of weights

Picard iterations for distribution & decoupling functions:

▶ Step 1: Given (µ(k), u(k), v(k)), compute µ(k+1)
ti

= L(X(k+1)
ti

), i = 0, . . . , Nt, where

X
(k+1)
ti+1

= Π
[
X

(k+1)
ti

+B

(
X

(k+1)
ti

, µ
(k)
ti
, u

(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)
dt+ σ∆Wti+1

]
▶ In fact µ(k+1)

ti+1
can be expressed in terms of µ(k+1)

ti
and a transition kernel

▶ Ex: binomial approx. of W → efficient computation using quantization

56 / 63

Grid-Based Algorithm: Backward Equation

Picard iterations for distribution & decoupling functions (continued):
▶ Step 2: Update u, v: for all 0 ≤ i ≤ Nt, x ∈ Γ,

u
(k+1)
ti

(x) = E
[
u

(k+1)
ti+1

(X(k+1)
ti

)

+F
(
X

(k+1)
ti

, µ
(k+1)
ti

, u
(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)

∆t
∣∣∣X(k+1)

ti
= x

]
u

(k+1)
T (x) = G(x, µ(k+1)

ti
)

v
(k+1)
ti

(x) = E
[

1
∆tu

(k+1)
ti+1

(X(k+1)
ti

)
∣∣∣X(k+1)

ti
= x

]
v

(k+1)
T (x) = 0

▶ Ex.: binomial approximation of W → more explicit formulas

Summary:
▶ Forward: (µ(k), u(k), v(k)) 7→ µ(k+1) = L(X(k+1))
▶ Backward: (µ(k+1), u(k), v(k)) 7→ (u(k+1), v(k+1))

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

57 / 63

Grid-Based Algorithm: Backward Equation

Picard iterations for distribution & decoupling functions (continued):
▶ Step 2: Update u, v: for all 0 ≤ i ≤ Nt, x ∈ Γ,

u
(k+1)
ti

(x) = E
[
u

(k+1)
ti+1

(X(k+1)
ti

)

+F
(
X

(k+1)
ti

, µ
(k+1)
ti

, u
(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)

∆t
∣∣∣X(k+1)

ti
= x

]
u

(k+1)
T (x) = G(x, µ(k+1)

ti
)

v
(k+1)
ti

(x) = E
[

1
∆tu

(k+1)
ti+1

(X(k+1)
ti

)
∣∣∣X(k+1)

ti
= x

]
v

(k+1)
T (x) = 0

▶ Ex.: binomial approximation of W → more explicit formulas

Summary:
▶ Forward: (µ(k), u(k), v(k)) 7→ µ(k+1) = L(X(k+1))
▶ Backward: (µ(k+1), u(k), v(k)) 7→ (u(k+1), v(k+1))

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

57 / 63

Grid-Based Algorithm: Backward Equation

Picard iterations for distribution & decoupling functions (continued):
▶ Step 2: Update u, v: for all 0 ≤ i ≤ Nt, x ∈ Γ,

u
(k+1)
ti

(x) = E
[
u

(k+1)
ti+1

(X(k+1)
ti

)

+F
(
X

(k+1)
ti

, µ
(k+1)
ti

, u
(k)
ti

(X(k+1)
ti

), v(k)
ti

(X(k+1)
ti

)
)

∆t
∣∣∣X(k+1)

ti
= x

]
u

(k+1)
T (x) = G(x, µ(k+1)

ti
)

v
(k+1)
ti

(x) = E
[

1
∆tu

(k+1)
ti+1

(X(k+1)
ti

)
∣∣∣X(k+1)

ti
= x

]
v

(k+1)
T (x) = 0

▶ Ex.: binomial approximation of W → more explicit formulas

Summary:
▶ Forward: (µ(k), u(k), v(k)) 7→ µ(k+1) = L(X(k+1))
▶ Backward: (µ(k+1), u(k), v(k)) 7→ (u(k+1), v(k+1))

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

57 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE
A Picard Scheme for MKV FBSDE
Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?

58 / 63

Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?

58 / 63

Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?

58 / 63

Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?

58 / 63

Dependence on the Moments

In general: b, f, g involve the whole distribution µt = L(Xt) (infinite dim.)

What if they involve only the first moment µt = E[Xt]?

Ex. 1: LQ (see lecture 2)
▶ optimal control is a function of Xt and µt = E[Xt]
▶ ODE for µt of the form d

dt
µt = φ(t, µt)

Ex. 2: {
b(x, µ, α) = b(x, µ, α) = (cos(x) + cos(µ))α
f(x, µ, α) = |α|2, g(x, µ) = 0

▶ Can the optimal control be expressed as a function of Xt,E[Xt] only?
▶ ODE for µt?

d

dt
µt = E [(cos(Xt) + cos(µt))α(t,Xt)]

It involves not only E[Xt] = µt but also E[cos(Xt)]

Class of MFC s.t. the problem can be solved with a finite number of moments?

58 / 63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

J(α) = E
[∫ T

0
F(Xt, αt)dt+ G(XT)

]
subject to:

dXt = B(Xt, αt)dt+ ΣdWt

where the state is: Xt = (E[Xt],E[|Xt|2], . . . ,E[|Xt|p]) ∈ (Rd)p

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t
DPP for V : [0, T] × (Rd)p → R or rather V∆t : {t0, . . . , tNt } × (Rd)p → R:{

V∆t(T, x) = G(x)
V∆t(tn, x) = supα

{
F(x, α)∆t+ Etn,x,α

[
V∆t(tn+1, Xtn+1

)
] }

, n = Nt − 1, . . . , 1, 0

where Etn,x,α
[
V∆t(tn+1, Xtn+1

)
]

= E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

→ Key difficulty: estimation of the conditional expectation

59 / 63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

J(α) = E
[∫ T

0
F(Xt, αt)dt+ G(XT)

]
subject to:

dXt = B(Xt, αt)dt+ ΣdWt

where the state is: Xt = (E[Xt],E[|Xt|2], . . . ,E[|Xt|p]) ∈ (Rd)p

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t

DPP for V : [0, T] × (Rd)p → R or rather V∆t : {t0, . . . , tNt } × (Rd)p → R:{
V∆t(T, x) = G(x)
V∆t(tn, x) = supα

{
F(x, α)∆t+ Etn,x,α

[
V∆t(tn+1, Xtn+1

)
] }

, n = Nt − 1, . . . , 1, 0

where Etn,x,α
[
V∆t(tn+1, Xtn+1

)
]

= E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

→ Key difficulty: estimation of the conditional expectation

59 / 63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

J(α) = E
[∫ T

0
F(Xt, αt)dt+ G(XT)

]
subject to:

dXt = B(Xt, αt)dt+ ΣdWt

where the state is: Xt = (E[Xt],E[|Xt|2], . . . ,E[|Xt|p]) ∈ (Rd)p

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t
DPP for V : [0, T] × (Rd)p → R or rather V∆t : {t0, . . . , tNt } × (Rd)p → R:{

V∆t(T, x) = G(x)
V∆t(tn, x) = supα

{
F(x, α)∆t+ Etn,x,α

[
V∆t(tn+1, Xtn+1

)
] }

, n = Nt − 1, . . . , 1, 0

where Etn,x,α
[
V∆t(tn+1, Xtn+1

)
]

= E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

→ Key difficulty: estimation of the conditional expectation

59 / 63

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

J(α) = E
[∫ T

0
F(Xt, αt)dt+ G(XT)

]
subject to:

dXt = B(Xt, αt)dt+ ΣdWt

where the state is: Xt = (E[Xt],E[|Xt|2], . . . ,E[|Xt|p]) ∈ (Rd)p

Time discretization: 0 = t0 < t1 < · · · < tNt = T , ti+1 − ti = ∆t
DPP for V : [0, T] × (Rd)p → R or rather V∆t : {t0, . . . , tNt } × (Rd)p → R:{

V∆t(T, x) = G(x)
V∆t(tn, x) = supα

{
F(x, α)∆t+ Etn,x,α

[
V∆t(tn+1, Xtn+1

)
] }

, n = Nt − 1, . . . , 1, 0

where Etn,x,α
[
V∆t(tn+1, Xtn+1

)
]

= E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

→ Key difficulty: estimation of the conditional expectation

59 / 63

Estimation Method 1: Regression Monte Carlo

Family of basis functions ϕ = (ϕm)m=1,...,M

Not always easy to choose !

Projection:

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

]
≈

M∑
m=1

βmtnϕ
m(Xα

tn
)

where

βmtn = argmin
β∈RM

E

[∣∣∣∣∣V∆t(tn+1, X
α
tn+1

) −
M∑
m=1

βmϕm(Xα
tn

)

∣∣∣∣∣
2]

Explicit expression:

βmtn = E[ϕ(Xα
tn

)ϕ(Xα
tn

)⊤]−1 E[V∆t(tn+1, X
α
tn+1

)ϕ(Xα
tn

)]

Estimation with NMC Monte Carlo samples:

E[ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤] ≈ 1
NMC

NMC∑
ℓ=1

ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤

and

E[V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)] ≈ 1
NMC

NMC∑
ℓ=1

V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)

with training set {
(
Xℓ,α
tn
, Xℓ,α

tn+1

)
; ℓ = 1, . . . , NMC}

60 / 63

Estimation Method 1: Regression Monte Carlo

Family of basis functions ϕ = (ϕm)m=1,...,M

Not always easy to choose !

Projection:

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

]
≈

M∑
m=1

βmtnϕ
m(Xα

tn
)

where

βmtn = argmin
β∈RM

E

[∣∣∣∣∣V∆t(tn+1, X
α
tn+1

) −
M∑
m=1

βmϕm(Xα
tn

)

∣∣∣∣∣
2]

Explicit expression:

βmtn = E[ϕ(Xα
tn

)ϕ(Xα
tn

)⊤]−1 E[V∆t(tn+1, X
α
tn+1

)ϕ(Xα
tn

)]

Estimation with NMC Monte Carlo samples:

E[ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤] ≈ 1
NMC

NMC∑
ℓ=1

ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤

and

E[V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)] ≈ 1
NMC

NMC∑
ℓ=1

V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)

with training set {
(
Xℓ,α
tn
, Xℓ,α

tn+1

)
; ℓ = 1, . . . , NMC}

60 / 63

Estimation Method 1: Regression Monte Carlo

Family of basis functions ϕ = (ϕm)m=1,...,M

Not always easy to choose !

Projection:

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

]
≈

M∑
m=1

βmtnϕ
m(Xα

tn
)

where

βmtn = argmin
β∈RM

E

[∣∣∣∣∣V∆t(tn+1, X
α
tn+1

) −
M∑
m=1

βmϕm(Xα
tn

)

∣∣∣∣∣
2]

Explicit expression:

βmtn = E[ϕ(Xα
tn

)ϕ(Xα
tn

)⊤]−1 E[V∆t(tn+1, X
α
tn+1

)ϕ(Xα
tn

)]

Estimation with NMC Monte Carlo samples:

E[ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤] ≈ 1
NMC

NMC∑
ℓ=1

ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤

and

E[V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)] ≈ 1
NMC

NMC∑
ℓ=1

V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)

with training set {
(
Xℓ,α
tn
, Xℓ,α

tn+1

)
; ℓ = 1, . . . , NMC}

60 / 63

Estimation Method 1: Regression Monte Carlo

Family of basis functions ϕ = (ϕm)m=1,...,M Not always easy to choose !
Projection:

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

]
≈

M∑
m=1

βmtnϕ
m(Xα

tn
)

where

βmtn = argmin
β∈RM

E

[∣∣∣∣∣V∆t(tn+1, X
α
tn+1

) −
M∑
m=1

βmϕm(Xα
tn

)

∣∣∣∣∣
2]

Explicit expression:

βmtn = E[ϕ(Xα
tn

)ϕ(Xα
tn

)⊤]−1 E[V∆t(tn+1, X
α
tn+1

)ϕ(Xα
tn

)]

Estimation with NMC Monte Carlo samples:

E[ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤] ≈ 1
NMC

NMC∑
ℓ=1

ϕ(Xℓ,α
tn

)ϕ(Xℓ,α
tn

)⊤

and

E[V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)] ≈ 1
NMC

NMC∑
ℓ=1

V∆t(tn+1, X
ℓ,α
tn+1

)ϕ(Xℓ,α
tn

)

with training set {
(
Xℓ,α
tn
, Xℓ,α

tn+1

)
; ℓ = 1, . . . , NMC}

60 / 63

Estimation Method 2: Quantization

Two space discretizations:

▶ Set of points Γ on which we want to approximate V∆t; projection ΠΓ

▶ Quantization of noise (see e.g. [Pagès, 2018]):
⋆ Set of cells CQ = {Cj ; j = 1, . . . , JQ}
⋆ Associated grid points GQ = {ζj ; j = 1, . . . , JQ}
⋆ Weights for Gaussian r.v. ∆W ∼ N (0,∆t): pj = P(∆W ∈ Cj)
⋆ Discrete version: ∆Ŵ ∈ GQ: P(∆Ŵ = ζj) = pj
⋆ Can be optimized1; particularly helpful when d > 1

Estimation with piecewise constant interpolation: V̄∆t : {t0, . . . , tNt } × Γ → R

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

≈
JQ∑
j=1

pj V̄∆t

(
tn+1,ΠΓ

(
B(x, αtn)∆t+ Σζj

))
for all x ∈ Γ
Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

1
Optimal grids/weights available here: http://www.quantize.maths-fi.com

61 / 63

Estimation Method 2: Quantization

Two space discretizations:

▶ Set of points Γ on which we want to approximate V∆t; projection ΠΓ

▶ Quantization of noise (see e.g. [Pagès, 2018]):
⋆ Set of cells CQ = {Cj ; j = 1, . . . , JQ}
⋆ Associated grid points GQ = {ζj ; j = 1, . . . , JQ}
⋆ Weights for Gaussian r.v. ∆W ∼ N (0,∆t): pj = P(∆W ∈ Cj)
⋆ Discrete version: ∆Ŵ ∈ GQ: P(∆Ŵ = ζj) = pj
⋆ Can be optimized1; particularly helpful when d > 1

Estimation with piecewise constant interpolation: V̄∆t : {t0, . . . , tNt } × Γ → R

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

≈
JQ∑
j=1

pj V̄∆t

(
tn+1,ΠΓ

(
B(x, αtn)∆t+ Σζj

))
for all x ∈ Γ

Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

1
Optimal grids/weights available here: http://www.quantize.maths-fi.com

61 / 63

Estimation Method 2: Quantization

Two space discretizations:

▶ Set of points Γ on which we want to approximate V∆t; projection ΠΓ

▶ Quantization of noise (see e.g. [Pagès, 2018]):
⋆ Set of cells CQ = {Cj ; j = 1, . . . , JQ}
⋆ Associated grid points GQ = {ζj ; j = 1, . . . , JQ}
⋆ Weights for Gaussian r.v. ∆W ∼ N (0,∆t): pj = P(∆W ∈ Cj)
⋆ Discrete version: ∆Ŵ ∈ GQ: P(∆Ŵ = ζj) = pj
⋆ Can be optimized1; particularly helpful when d > 1

Estimation with piecewise constant interpolation: V̄∆t : {t0, . . . , tNt } × Γ → R

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

≈
JQ∑
j=1

pj V̄∆t

(
tn+1,ΠΓ

(
B(x, αtn)∆t+ Σζj

))
for all x ∈ Γ
Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

1
Optimal grids/weights available here: http://www.quantize.maths-fi.com

61 / 63

Estimation Method 2: Quantization

Two space discretizations:

▶ Set of points Γ on which we want to approximate V∆t; projection ΠΓ

▶ Quantization of noise (see e.g. [Pagès, 2018]):
⋆ Set of cells CQ = {Cj ; j = 1, . . . , JQ}
⋆ Associated grid points GQ = {ζj ; j = 1, . . . , JQ}
⋆ Weights for Gaussian r.v. ∆W ∼ N (0,∆t): pj = P(∆W ∈ Cj)
⋆ Discrete version: ∆Ŵ ∈ GQ: P(∆Ŵ = ζj) = pj
⋆ Can be optimized1; particularly helpful when d > 1

Estimation with piecewise constant interpolation: V̄∆t : {t0, . . . , tNt } × Γ → R

E
[
V∆t(tn+1, X

α
tn+1

) |Xα
tn

= x
]

≈
JQ∑
j=1

pj V̄∆t

(
tn+1,ΠΓ

(
B(x, αtn)∆t+ Σζj

))
for all x ∈ Γ
Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

1
Optimal grids/weights available here: http://www.quantize.maths-fi.com

61 / 63

Outline

1. Introduction

2. Methods for the PDE system

3. Optimization Methods for MFC and Variational MFG

4. Methods for MKV FBSDE

5. Conclusion

Summary

Two schemes for FB PDEs of MFG

Optimization methods for MFC and variational MFGs

Two methods based on the probabilistic approach

62 / 63

Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Laurière and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018],
[Gomes and Yang, 2020]
Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]
Gaussian processes [Mou et al., 2022]
Kernel-based representation [Liu et al., 2021]
Fourier approximation [Nurbekyan et al., 2019]
. . .

However efficient, these methods are usually limited to problems with:

(relatively) small dimension
(relatively) simple structure

⇒ motivations to develop machine learning methods (see next lectures)

63 / 63

Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Laurière and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018],
[Gomes and Yang, 2020]
Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]
Gaussian processes [Mou et al., 2022]
Kernel-based representation [Liu et al., 2021]
Fourier approximation [Nurbekyan et al., 2019]
. . .

However efficient, these methods are usually limited to problems with:

(relatively) small dimension
(relatively) simple structure

⇒ motivations to develop machine learning methods (see next lectures)
63 / 63

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References I

[Achdou, 2013] Achdou, Y. (2013).
Finite difference methods for mean field games.
In Hamilton-Jacobi equations: approximations, numerical analysis and applications, volume
2074 of Lecture Notes in Math., pages 1–47. Springer, Heidelberg.

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77–109.

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136–1162.

[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmäki, P., Periaux, J., and
Pironneau, O., editors, Contributions to Partial Differential Equations and Applications,
chapter 4, pages 17–42. Springer International Publishing.

[Achdou and Laurière, 2015] Achdou, Y. and Laurière, M. (2015).
On the system of partial differential equations arising in mean field type control.
Discrete Contin. Dyn. Syst., 35(9):3879–3900.

1 / 9

References II

[Achdou and Laurière, 2016a] Achdou, Y. and Laurière, M. (2016a).
Mean Field Type Control with Congestion.
Appl. Math. Optim., 73(3):393–418.

[Achdou and Laurière, 2016b] Achdou, Y. and Laurière, M. (2016b).
Mean Field Type Control with Congestion (II): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535–578.

[Achdou and Laurière, 2020] Achdou, Y. and Laurière, M. (2020).
Mean field games and applications: Numerical aspects.
Mean Field Games: Cetraro, Italy 2019, 2281:249–307.

[Achdou et al., 2021] Achdou, Y., Lauriere, M., and Lions, P.-L. (2021).
Optimal control of conditioned processes with feedback controls.
Journal de Mathématiques Pures et Appliquées, 148:308–341.

[Achdou and Perez, 2012] Achdou, Y. and Perez, V. (2012).
Iterative strategies for solving linearized discrete mean field games systems.
Netw. Heterog. Media, 7(2):197–217.

[Achdou and Porretta, 2016] Achdou, Y. and Porretta, A. (2016).
Convergence of a finite difference scheme to weak solutions of the system of partial
differential equations arising in mean field games.
SIAM J. Numer. Anal., 54(1):161–186.

2 / 9

References III

[Achdou and Porretta, 2018] Achdou, Y. and Porretta, A. (2018).
Mean field games with congestion.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 35(2):443–480.

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657–682.

[Andreev, 2017] Andreev, R. (2017).
Preconditioning the augmented lagrangian method for instationary mean field games with
diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763–A2783.

[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and
Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84–113.

[Aurell and Djehiche, 2018] Aurell, A. and Djehiche, B. (2018).
Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics.
SIAM Journal on Control and Optimization, 56(1):434–455.

[Balata et al., 2019] Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114–144.

3 / 9

References IV

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023).
Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.

[Benamou and Carlier, 2015a] Benamou, J.-D. and Carlier, G. (2015a).
Augmented Lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
J. Optim. Theory Appl., 167(1):1–26.

[Benamou and Carlier, 2015b] Benamou, J.-D. and Carlier, G. (2015b).
Augmented lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1–26.

[Benamou et al., 2017] Benamou, J.-D., Carlier, G., and Santambrogio, F. (2017).
Variational mean field games.
In Active Particles, Volume 1, pages 141–171. Springer.

[Briceño Arias et al., 2019] Briceño Arias, L. M., Kalise, D., Kobeissi, Z., Laurière, M.,
Mateos González, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field
games with local couplings.
ESAIM: ProcS, 65:330–348.

4 / 9

References V

[Briceño Arias et al., 2018] Briceño Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801–836.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.

[Cardaliaguet, 2015] Cardaliaguet, P. (2015).
Weak solutions for first order mean field games with local coupling.
In Analysis and geometry in control theory and its applications, pages 111–158. Springer.

[Cardaliaguet and Graber, 2015] Cardaliaguet, P. and Graber, P. J. (2015).
Mean field games systems of first order.
ESAIM Control Optim. Calc. Var., 21(3):690–722.

[Cardaliaguet et al., 2015] Cardaliaguet, P., Graber, P. J., Porretta, A., and Tonon, D. (2015).
Second order mean field games with degenerate diffusion and local coupling.
NoDEA Nonlinear Differential Equations Appl., 22(5):1287–1317.

5 / 9

References VI

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45–67.

[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269–4292.

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011).
A first-order primal-dual algorithm for convex problems with applications to imaging.
J. Math. Imaging Vision, 40(1):120–145.

[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640–1684.

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909–1917. PMLR.

6 / 9

References VII

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).
A cubature based algorithm to solve decoupled mckean–vlasov forward–backward stochastic
differential equations.
Stochastic Processes and their Applications, 125(6):2206–2255.

[Fortin and Glowinski, 1983] Fortin, M. and Glowinski, R. (1983).
Augmented Lagrangian methods: applications to the numerical solution of boundary-value
problems.
North-Holland.

[Gomes and Saúde, 2018] Gomes, D. A. and Saúde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition.
Applied Mathematics & Optimization.

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton’s method for effective hamiltonians and mather
measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883–1915.

[Lachapelle and Wolfram, 2011] Lachapelle, A. and Wolfram, M.-T. (2011).
On a mean field game approach modeling congestion and aversion in pedestrian crowds.
Transportation research part B: methodological, 45(10):1572–1589.

7 / 9

References VIII

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P.-L. (2007).
Mean field games.
Jpn. J. Math., 2(1):229–260.

[Laurière, 2021] Laurière, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.

[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902–924.

[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable
hamiltonians.
Applied Mathematics & Optimization, 87(2):17.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.

[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639–2668.

8 / 9

References IX

[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.

[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367–396.

[Pagès, 2018] Pagès, G. (2018).
Numerical probability.
In Universitext. Springer.

[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629–655.

[Porretta and Zuazua, 2013] Porretta, A. and Zuazua, E. (2013).
Long time versus steady state optimal control.
SIAM J. Control Optim., 51(6):4242–4273.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

9 / 9

	Introduction
	Methods for the PDE system
	A Finite Difference Scheme
	Algorithms
	A Semi-Lagrangian Scheme

	Optimization Methods for MFC and Variational MFG
	Variational MFGs and Duality
	Alternating Direction Method of Multipliers
	A Primal-Dual Method

	Methods for MKV FBSDE
	A Picard Scheme for MKV FBSDE
	Stochastic Methods for some Finite-Dimensional MFC Problems

	Conclusion
	Appendix

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

