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1. Introduction



Reminder: FB systems

@ Here we will focus on the continuous time and space setting

@ We have seen two types of forward-backward systems:

» PDE systems: Kolmogorov-Fokker-Planck (KFP) and
Hamilton-Jacobi-Bellman (HJB)

» SDE systems of McKean-Vlasov (MKV) type

@ We will describe methods based on both approaches

@ In each case, there will be two questions to design a numerical method:

» Discretization — numerical scheme

» Computation — algorithm
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= T (t,z) — vAu(t,xz) + H(z,m(t,-), Vu(t,z)),
0= %T (t,z) — vAm(t, z) — div (m(t, - )OpH (-, m(t), Vu(t,-))) (z),

u(Tv m) - g(m7m(T7 ))7 m(O,I) = mo(m)
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(Tv‘T) —g(x7m(T,-))7 m(O,I) zmo(m)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0

@ Convergence of discrete solution to continuous solution as mesh step — 0
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Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(T, z) = g(x,m(T, ")), m(0,z) = mo(x)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation

@ Link with optimality condition of a discrete problem

= Needs a careful discretization
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MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

ou
0= _E(t x) — vAu(t,z) + H(x,m(t,-), Vu(t, x)),

0= 887? (t,x) — vAm(t, x) — div (m(t,-)0p H (-, m(t), Vu(t,-))) (z),

u(T, z) = g(x,m(T, ")), m(0,z) = mo(x)
Desirable properties for (1):
@ Mass and positivity of distribution: fX (t,z)dz =1,m >0
@ Convergence of discrete solution to continuous solution as mesh step — 0
@ The KFP equation is the adjoint of the linearized HJB equation

@ Link with optimality condition of a discrete problem

= Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?
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2. Methods for the PDE system
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2. Methods for the PDE system
@ A Finite Difference Scheme



Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

@ For simplicity we consider the domain T = one-dimensional (unit) torus.
@ Letv =0?%/2.

@ We consider N, and Nr steps respectively in space and time.

@ Leth=1/N, and At =T/Nr. Let T}, = discretized torus.

@ We approximate mo(x:) by pj such thathy", pf = 1.
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Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010]
Discretization:

@ For simplicity we consider the domain T = one-dimensional (unit) torus.
@ Letv =0?%/2.

@ We consider N, and Nr steps respectively in space and time.

@ Leth=1/N, and At =T/Nr. Let T}, = discretized torus.

@ We approximate mo(x:) by pj such thathy", pf = 1.

Then we introduce the following discrete operators : for o € RV¥7+! and ¢ € RM*

n+l _  n
o time derivative : (D)™ = %, 0<n<Nr-1
. 1 .
e Laplacian : (Ap)i = ——= (21/;Z- — iy1 — Yi—1), 0<i<Np
o partial derivative : (D, v); := w”lh w’, 0<i< N

° gradient : [Vm/;}z = ((Dh’l,b)z, (D}ﬂ/})i_1), 0<i< Ny,

3/63



Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form
b(z,m,a) = a, f(z,m, ) = L(z,a) + £o(z, m), g(xz,m) = go(z,m).
where z € R% o € R4, m € R.. Then

H(z,m,p) = max{—L(z,a) — (o, p)} — fo(z,m) = Ho(z,p) — fo(x,m)
where H is the convex conjugate (also denoted L*) of L with respect to «:

Ho(z,p) = L*(x,p) = sup{{, p) — L(z, )}
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Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form
b(m,m,a) =, f(x7m,a)=L(m,a)+fo(m,m), g(m7m):go(x>m)‘
where z € R%, oo € R, m € R,. Then

H(z,m,p) = max{—L(z,a) — (o, p)} — fo(z,m) = Ho(z,p) — fo(x,m)
where H is the convex conjugate (also denoted L*) of L with respect to «:

Ho(z,p) = L*(x,p) = sup{{, p) — L(z, )}

Discrete Hamiltonian: (z,p:, p2) — Ho(z,p1, p2) satisfying:
@ Monotonicity: decreasing w.r.t. p; and increasing w.r.t. ps
@ Consistency with Ho: for every z, p, Ho(z, p,p) = Ho(z, p)
@ Differentiability: for every z, (p1, p2) — Ho(z, p1, p2) is C!
@ Convexity: for every z, (p1,p2) — FIo(ac,pl,pz) is convex
|2

Example: if Hy(z, p) = |p|?, a possible choice is Ho(xz, p1.p2) = (p17)% + (p21)?
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Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U, M € RNTTD>*Nn
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Discrete HJB

Discrete solution: We replace u,m : [0,7] x T — R by vectors

U.Me RANTHD XN

The HJB equation

{Btu(t, x) + vAu(t, z) + Ho(z, Vu(t,z)) = fo(x, m(t, x))
u(T, ) = go(z, m(T, x))

is discretized as:

—(DtUj)n — I/(Ah( n)i + ﬁo(fbi, [Dh,U"],‘,) = fo(l’i,ﬁfinJrl)
UM = go(i, M)
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Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div <m([, x)0gH (x, m(t), Vu(t, z))) =0, m(0,x) = mo(x)

is discretized as

(DeMi)" = v(AM™™ ), = (U, M"Y =0,  M{ =p}
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Discrete KFP

The KFP equation

dem(t, @) —vAm(t, ©)+div <m(z,,w)e'){,H(I.m(z). Vault, m)) =0,  m(0,z)=mo(z)

is discretized as
(D M) —v(ARM™ Y, — T (U™, M™ )y =0, M =p)
Here we use the discrete transport operator ~ — div(...)

Ti(U, M) == 1 Miaplﬁo(x¢,~[VhU}i) — Mi_18p1ﬁo(xi—1,~[vhU}i—1)
R " h + Mi+1ap2H0(l'i+1, [VhU]¢+1) — Miaszo(ﬂfi, [VhU]i)
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Discrete KFP

The KFP equation

oem(t, z) —vAm(t, z)+div ( (t,2)0q H (z,m(t), V u(t, z))) =0, m(0,x) = mo(x)

is discretized as
(DeMi)" = v(AM™™ ), = (U, M"Y =0,  M{ =p}
Here we use the discrete transport operator ~ — div(...)

1 < M;0p, H()({ci, [VrU]i) — M;—10p, f{o(xi_l, [VaU]i=1) )

(U, M) = — S -
7il ) h + Mi110p, Ho(wit1, [VaUlit1) — MiOp, Ho(z4, [VaU]:)

Intuition: weak formulation & integration by parts

/di\‘(m(‘,),,][”( . Vu))u /m@ Ho(z,Vu) - Vw
T

is discretized as

—hZT(( V%—hZMVqu(xZ,[VhU]) VW]

1
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Discrete System — Properties

Discrete forward-backward system:

—(DeU3)"™ = v(ARU™ )i + Ho(zi, [DyU™]:) = £o(zs, M),
(D:M)™ — v(ARLM™ ), — T (U™, M™Th) =0,

Vn < Np —1
Vn f; ]\pr -1
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Discrete System — Properties

Discrete forward-backward system:

—(Dt(/v/)n — V(Ah(}v”’)i + ﬁ0($i7 [D/I(]”'L‘) = fo(ﬂ?i, A{ZL+1), Vn S NT -1
(D:M)™ — v(ARLM™ ), — T (U™, M™Th) =0, Vn < Ny —1
Y=ol UM =ge(wn M), i=0,. Ny

This scheme enjoys many nice properties, among which:
@ It yields a monotone scheme for the KFP equation: mass and positivity are preserved

@ Convergence to classical solution if monotonicity
[Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]

Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]
The discrete KFP operator is the adjoint of the linearized Bellman operator
Existence and uniqueness result for the discrete system

It corresponds to the optimality condition of a discrete optimization problem (details later)
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2. Methods for the PDE system

@ Algorithms



Algo 1: Fixed Point lterations

Input: Initial guess (M, U); damping 4(-); number of iterations K
Output: Approximation of (M, U) solving the finite difference system
1 Initialize M@ = M© = M, U =0T
2 fork=0,1,2,...,K—1do
3 Let U**1) be the solution to:

UNT = go(@i, MINT)

i

{7(111;,,)" — v(ARU™)s + Holas, [DRU"]) = £olas, ME ™), n< Np—1

4 Let M ®*D be the solution to:

(DeMi)™ — v(Ap M"Y, — T(UED " M) =0, n< Np—1
MY = p}

5 | Let MOHD = 5)M® + (1 - §(k))MEHD

6 return (M® )
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Algo 1: Fixed Point lterations

The HJB equation is non-linear

@ Idea 1: replace H0($i7 [D)LU’”]l) by Ijlo(mi, [DhU(k)"n]i)
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Algo 1: Fixed Point lterations

The HJB equation is non-linear
@ Idea 1: replace Ho(x;, [DyU™];) by Ho(zs, [DnUY"];)

@ Idea 2: use non linear solver to find a zero of

©: RVeX(NT+1) RN;I,XNT7

with:

n=0,...,Np—1
i=0,...,Np—1

P(U) = (=(DU:)" =v(ARU" )i Ho (i, [DnU":) = £0(ws, M)

Example: Newton’s method
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Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1shJWSD2MASFo7_rB625dAvNTdzZSla7bG?usp=sharing
@ Finite difference scheme

@ Solved by (damped) fixed point approach
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https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing
https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, 1) With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)
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Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (o, 1) With @y and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)
@ Orrather: J,(X")Y = —p(X®), then X*+D =y 4 x®)
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Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of ¢ = (i, o) " With @ and g s.t.

ou(U,M)=0 <« (U, M) solves discrete HJB equation
em(U, M) =0 < (U, M) solves discrete KFP equation

@ Let X = (Uu® T
@ lterate: XD = X _ j_(x))~1y(x (k)
@ Orrather: J,(X")Y = —p(X®), then X*+D =y 4 x®)

Key step: Solve a linear system of the form

Auu  Aum U\ _ ([ Gu
Amu Amm ) \ M Gm

where Ay m(U, M) =Vuom(U,M), Auu(U,M)=YVueu(U M),
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Newton Method — Implementation

. o Auu Aum U\ _ [ Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, @and

D, 0 0
—ldy, D 0
Ay = 0 ’
0
0 0 —Zldy, Dng,

where D,, corresponds to the discrete operator

1

Z = (Zij)ij— (EZM

—v(AnZ)ig + [VaZli - VpHo(ij, [VhU(kz)"'L]uj))

2%
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Newton Method — Implementation

. o Auu Aum U\ _ [ Gu
Linear system to be solved: (AM,u AM,M> (M) = <GM)

Structure: Ay a1, Aru are block-diagonal, Ay = Ay, @and

D, 0 0
—ldy, D 0
Ay = 0 ’
0
0 0 —Zldy, Dng,

where D,, corresponds to the discrete operator

1

Z = (Zij)ij— (EZZ'J —v(AwZ)i; + [VaZlij - VpHo(wij, [VhU(kz)‘"]z’,j)>

2%
Rem. Initial guess (U®), M) is important for Newton’s method

@ Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])

@ Idea 2: continuation method w.r.t. v (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.
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Example: Exit of a Room — Distribution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

exit exit

Geometry of the room
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Example: Exit of a Room — Distribution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

o kN ow e
S niwinen

Initial density (left) and final cost (right)
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Example: Exit of a Room — Crowd model

@ Crowd motion with ocal interactions; see
e.g. [Lachapelle and Wolfram, 2011, Achdou and Lasry, 2019,
Achdou and Porretta, 2018, Achdou and Lauriére, 2016a] for other models of
this type and [Aurell and Djehiche, 2018, Achdou and Lauriere, 2015] for crowd
motion models with non-local interactions.

@ Here, control = velocity:

dXt = a(t, Xt)dt + O'th

@ Congestion through the cost: higher density = higher price to move

@ Hamiltonian:

8lpl° 1
H o -
(x7 m,p) (l +m)% 3200

What is the cost function leading to this Hamiltonian? I

14/63




Example: Exit of a Room — Crowd model

@ MFG PDE system:
o Mean field games: the MFG PDE system is:

B 8 1
— 005 AU+ —— |V = ——,
ot (1+m)3 3200
Im .05 Am — 16 div [ —"V4_) —¢
ot (1+m)1

@ Mean field control: the HJB becomes:
o) 2 1
u0.05Au+( = + 6 7) [Vu]? = —.
ot (1+m)i (1+m)d 3200
@ We choose a small v (e.g. 0.05) so the diffusion is not too strong
@ No terminal cost: g =0

@ Boundary has several parts.

» Doors: Dirichlet condition u = 0 (exit cost), m = 0 (m = 0 outside the domain)
> Walls: for u, Neumann condition: ?TZ = 0 (velocity is tangential to the walls); for m:
v2 4+ mBH (. m,Vu) - n =0, therefore J =0

@ Initial density mo: piecewise constant with two values 0 and 4 people/m?
@ Interpretation: At ¢ = 0, there are 3300 people in the hall. T = 50 minutes
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

S NANNG |
[ VAR NG
o—MnwsO

o=MNnwhsOoa

(S)b(+)

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

S NANNG |
[ VAR NG
o—=NnwsO

o=MNnwhsOoa

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

(oI VAN NG
oSN WwhRO
o—=rnwhsG
o=MNwhrO

Density in MFGame (left) and MFControl (right)

16/63



Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

(oI VAN NG

T
oSN WwhRO
o—=rnwhsG

T
o=MNwhrO

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

T
(S A N
o=NwsG

T
o =N wasa

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

T
(S A N
o=NwsG

T
o =N wasa

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

-
o—amfo‘i!
N |

T
il
o =N wasa

[N ARNS)
o=NwsG

o !

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)
o=NwsG

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)
o=NwsG

2
1
0

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]
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Example: Exit of a Room — Evolution
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Example: Exit of a Room — Evolution

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2015]

[N ARNS)

.
o =™
o=NwsG

Density in MFGame (left) and MFControl (right)
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Example: Exit of a Room — Remaining Mass

Evacuation of a room with obstacles & congestion [Achdou and Lauriére, 2020]

3000

2500

2000

I}
2
3

number of people

1000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beta

¢ Price of Anarchy
Remaining mass inside the room (B = exponent)
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Outline

2. Methods for the PDE system

@ A Semi-Lagrangian Scheme



MFG Setup

@ Scheme introduced by [Carlini and Silva, 2014]

@ For simplicity: d =1, domain ¥ =R, A =R

@ v = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]
@ Model:

b(z,m,a) =«
F@,m,0) = la* + fole,m),  gle,m)

where fo and g depend on m € P;(R) in a potentially non-local way
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MFG Setup

Scheme introduced by [Carlini and Silva, 2014]

For simplicity: d = 1, domain X =R, A =R

v = 0, degenerate second order case also possible; see [Carlini and Silva, 2015]
Model:

b(z,m,a) =«
F@,m,0) = la* + fole,m),  gle,m)

where fo and g depend on m € P;(R) in a potentially non-local way
@ MFG PDE system:

ou 1 2 .
— E(t,x) + 5\ Vu(t,z)|” = fo(z,m(t, ), in[0,T) xR,
%—T(t, 2) —div (m(t, ) Vult, ) () =0,  in (0,T] x R,

u(T,z) = g(z,m(T, ")), m(0,z) = mo(z), inR.
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Representation of the Value Function

@ Dynamics:

t
X =Xy +/ a(s)ds, t>0.
0

@ Representation formula for the value function given m = (m:).co, 17

T
1
t, _ . f { {47 ) 2 )(:,Lx7 - ]
wml(te) = ot [ [l + ot ms, )] s

+ g(X;’t’a m(T7 ))}a

where X*"7 gtarts from x at time ¢ and is controlled by «
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Discrete HJB equation

Discrete HJB: Given a flow of densities m,

(]f = éiﬁt,h[rn](L]n4F17i771)’ (7lvi) € ﬂ]Vj'—— lﬂ X Z
UZNT = g(a:“m(T, ))7 ’L € Z,

where

@ Sa¢, is defined as

Saealml(Wyn, i) = inf { (%\042 + folws, m(tn, .))) At + I[W](zs + o At)} ,
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Discrete HJB equation

Discrete HJB: Given a flow of densities m,

U = Saen[m](U™i,n), (n,i) € [Ny — 1] x Z,
U.]VT = g($17m(T7 ))7 ’L € Z,

k3

where

@ Sa¢, is defined as

Saealml(Wyn, i) = inf { (%\042 + folws, m(tn, .))) At + I[W](zs + o At)} ,

@ with I : B(Z) — C»(R) is the interpolation operator defined as

IW]() =Y WiBi(),

@ where B(Z) is the set of bounded functions from Z to R

@ and g; = [1 — 252 . triangular function with support [z;—1,zi11] and s.t
Bi(z:) = L.
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Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;*)»,;, construct the function
uar,n[m](z,t) : [0,T] x R = R,

uaen[ml(t,z) = I[UR)(2),  (t,z)€[0,T] x R.
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Discrete HJB equation — cont.

Before moving to the KFP equation:

@ Interpolation: from U = (U;*)»,;, construct the function
uar,n[m](z,t) : [0,T] x R = R,

unen[ml(t,z) = I[UR)(z),  (t,z) € [0,T] x R.

@ Regularization of HJB solution with a mollifier p.:

Uap[M](t, ) = pe * unr,n[m](t, ), t € [0,7].
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Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
» evolution characterized by the velocity at (¢, )

@ Lagrangian viewpoint:

» focus on a fluid parcel
> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =
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Discrete KFP equation: intuition

@ Eulerian viewpoint:

» focus on a location
> look at the flow passing through it
» evolution characterized by the velocity at (¢, )

@ Lagrangian viewpoint:
» focus on a fluid parcel

> look at how it flows
> evolution characterized by the position at time ¢ of a particle starting at =

@ Here, in our model:
t
X, = X{ +/ a(s)ds, t>0.
0

@ Time and space discretization?
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Discrete KFP equation: intuition — diagram

1
1
1
1
1
1
n+1 n+1 1 n+1
\//7] \// ) J//7|
X el
|

Tj-1 Zj Tjt1 Tjy2
@ + a”A/
n n ". n
M M MY
. R
Li—1 Tit1

Movement of the mass when using control v(t,,, z;) = af'.

Bottom: time ¢,,; top: time ¢,,41.
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Discrete KFP equation: intuition — diagram

Bi+1

+1 +1
M M7
R
o Tj b Tj x
j—1 J - J+1 Jt+2
[
;A af At
M7 M7 M7,
. R
Ti-1 Tit1

Movement of the mass when using control v(t,, z;) = af.

Bottom: time ¢,,; top: time ¢,,+1.
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Discrete KFP equation: intuition — diagram

5;/' ! ﬁ]+1

/
%4/ z]lk Tj1 Tjt2
1 LA
I s ialAt
, :
L
1 7’
”’
M, M I M7,

Ti-1 T Tip1

Movement of the mass when using control v(t,, ;) = af.

Bottom: time t,,; top: time ¢,,+1.
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Discrete KFP equation

@ Control induced by value function:

Aappm](t, ®) = —Vungn[m](t, x),

and its discrete counter part: a;, ; = an, , [m](tn, ).

@ Discrete flow:

D5, p1,:[m] = @i + Qay n[m|(tn, ) AL
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Discrete KFP equation

@ Control induced by value function:
G n[m](t, @) = =Vua,n[m](t, ),

and its discrete counter part: a;, ; = an, , [m](tn, ).

@ Discrete flow:
O n1,5m] = T + Gagp[m](tn, x:) At
@ Discrete KFP equation: for M¢[m] = (M;"[m])n,::
M;’n+1[m] = Zj /81 (¢;,n+l,j [m]) M;,n[mL (n7 7’) S [[NT - 1]] X Z7

MO [m] = mo(x)dz, i €Z.
[@i—h/2,i+h/2]
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Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+l)s

. 1 |t —t on
maep[ml(t,z) = 5 %ZM/ (M) L1z; —ns2,2:4n/2)(2)

i€Z

t—t,
g D M Iy ey 2l ()

i€Z
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Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+1)s

€ 1 tn 7t €,n
maep[ml(t,z) = 5 % D ML n 20,2 ()

i€Z

t—t,
g D M Iy ey 2l ()

i€Z

@ Goal: Fixed-point problem: Find N/ = (M), ,, such that:

M = M [mi,[M]].
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Fixed Point Formulation

@ Function my, ,[m] : [0,T] x R — R defined as: for n € [Nt — 1], for
t S [tn7tn+1)s

€ 1 tn 7t €,n
maep[ml(t,z) = 5 % D ML n 20,2 ()

i€Z

t—t,
g D M Iy ey 2l ()

i€Z

@ Goal: Fixed-point problem: Find N/ = (M), ,, such that:

M = M [mi,[M]].

@ Solution strategy: Fixed point iterations for example
@ See [Carlini and Silva, 2014] for more details
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Numerical Illustration

Costs: 1
9=0,  f(e,m,0) = 5lof + (@ =) + rupV (@, m),
with
V(x,m) = Poy * (pﬁv *TH)(x)v
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Numerical lllustration

Costs: 1
9=0,  fl@m,a)=zlaf* + (@ =) + rarV(@,m),
with
V(z,m) = Poy * (pt’v *’ITL)(:L‘),

Experiments: target ¢* = 0, mo = unif. on [-1.25, —0.75] and on [0.75, 1.25]

kvre = 0.5 kvr = 0.9

See [Lauriere, 2021] for more details on these experiments
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Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1ZikgKh-D1IGNJhhgzPQV0_gIuljOP78g?usp=sharing
@ Semi-Lagrangian scheme

@ Solved by damped fixed point approach
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https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing
https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIu1jOP78g?usp=sharing

Exercise
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Outline

3. Optimization Methods for MFC and Variational MFG



Outline

3. Optimization Methods for MFC and Variational MFG
@ Variational MFGs and Duality



Variational MFGs

Key ideas:

@ Variational MFG

@ Duality

@ Optimization techniques
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Variational MFGs

MFG Variational
Model Problem
PDE
How can we characterize System

the solution?

In some cases, the MFG PDE system can be interpreted as the optimality conditions
for a variational problem

MFG PDE system < optimality condition of two optimization problems in duality

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015],

[Cardaliaguet et al., 2015], [Benamou et al., 2017], ...
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A Variational MFG

@ d=1,domain=T
@ drift and costs:

b(z,m,a) = a, f(z,m,a) = L(z,a) + £o(x,m), g(z,m) = go(x).

where z € R?, oo € R%, m € R,.
@ Then

H(xz,m,p) =sup{—L(z,a) — ap} — fo(z,m) = Ho(z,p) — folx, m)
@ where Hy is the convex conjugate (also denoted L*) of L with respect to «:
Ho(z,p) = L*(z,p) = sup{ ap — L(z, )}
@ Further assume (for simplicity)

1
L(z,0) = =|al?, Ho(x,p) = §|P|2
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A Variational Problem

@ At equilibrium, £(X:) = i+ and

|: Xt, t Xz) (Al(t,Xf))dt+g(XT):|

/OT/ fla,m(t, ), a(t,z)) Th(t,a:)dxdt-i-/T (@)i(T, z)dz

=L(z,&(t,x))+fo(z,m(t,x))

subject to:
0= %7: (t, ) — vAR(t, 2) + div (m(t, Vb, (b, a(t, -)))(:c), o = mao
—_———

=a(t,)
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A Variational Problem

@ At equilibrium, £(X:) = i+ and

|: Xt, t Xz) (Al(t,Xf))dt+g(XT):|

/OT/ fla,m(t, ), a(t,z)) Th(t,a:)dxdt-i-/T (@)i(T, z)dz

=L(z,&(t,x))+fo(z,m(t,x))

subject to:
0= %7: (t, ) — vAR(t, 2) + div (m(t, Vb, (b, a(t, -)))(:c), o = mo
—_———

=a(t,)

@ Change of variable:

w(t,x) = m(t, z)a(t, x)
B, i) / / it ) —|—fg(m,m(t,z))}m(t,x)dmdt—i—/g(x)m(TJ)dx

’ T
subject to:
am

0= N (t,z) — vAmM(t, x) +d1v( (t, )) (), Mo = mo
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Reformulation

@ Reformulation:

B(m,@):/OT/T[L(m, iii”i)))m(t,x)+f0(;c,m(t,m))m(t,x)]dmdt

— - F(a,m(t,z))
L(z,m(t,x),w(t,x))
+ /g(x)ﬁl(T, z)dx
T~
G(z,m(t,x))
T ~ ~ ~
- / / [L(x, mlt, z), d(t, ) + Fz, i, :v))} ddt + / Cla, m(t,z))dz
0 T T
subject to:
om N . N
0= E(t’ x) — vAm(t, ) + div ('u)(t, )) (z), Mo = mo
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Reformulation

@ Reformulation:

B(m,@):/OT/T[L(m, :;((i”i)))m(t,x)+f0(;c,m(t,m))m(t,x)}dmdt

— - F(a,m(t,z))
L(z,m(t,x),w(t,x))
+ /g(x)m(T, z)dx
T~
G(z,m(t,x))
T ~ ~ ~
- / / [L(x, mlt, z), d(t, ) + Fz, i, :r))} ddt + / Cla, m(t,z))dz
0 T T
subject to:
om N . N
0= W(t,x) — vAm(t,z) + div (w(t, )) (z), Mo = mo

@ Convex problem under a linear constraint, provided Z, F, G are convex
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Primal Optimization Problem

Primal problem: Minimize over (m,w) = (m, ma):

Bl w) = /0 ' /T (E(x,m(t,m),w(t,x))+ﬁ(m,m(t,m))) dzdi+ /T Gla, m(T, ))de

subject to the constraint:

Oym — vAm + div(w) = 0, m(0,z) = mo(x)
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Primal Optimization Problem

Primal problem: Minimize over (m,w) =

subject to the constraint:

Orm — vAm + div(w) = 0,

(m, ma):

B(m,w) = /OT/T (z(m,m(t,x),w(t,x)) —I—ﬁ(m,m(t,x))) dxdt—l—/ é(x,m(T, z))dz

T

m(0,z) = mo(x)

where
if m >
F(x m) = fo (z,8)ds, ifm _.0,
+00, otherwise,
and
mL (:m %) ,
L(z,m,w) =< 0,
+o0,

where R 5 m — f(x,m) = Om(m £o(x,m))

é(m,m) _ {mgo(x)v

+o0,
if m > 0,
ifm=0and w =0,
otherwise

ifm >0,
otherwise,

is non-decreasing (hence F convex and l.s.c.) provided m — m fo(x, m) is convex.
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf A(,m)

with A(¢, m) — / ’ / m(t, @) (aﬁz)(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)

A(6) = inf Ao, m)

with A(¢, m) — / ’ / m(t, @) (&(;S(t, z) + vAS(t, 3) — H(z, m(t, z), Vo(t, x)))dwdt
0 T

+ /mo(x)qb(O, z)dz.

Duality relation: .A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)
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Duality

Dual problem: Maximize over ¢ such that (T, z) = gq(z)
A(¢) = inf A(¢,m)

with A(¢p, m / /m (¢, x) 3tq5 (t,z) + vA(t,x) — H(z,m(t,z), Vo(t, x)))dxdt
+/m0(:r)gb(0,x)dx.

Duality relation: .A and B satisfy: (A) = sup, A(¢) = inf () B(m, w) = (B)

Proof idea: Fenchel-Rockafellar duality theorem and observe:

(A):firéf{]-'(qb)Jrg(A(@))}, (B)= mf){f*(A*(m,w)Hg*(fmﬁw)}

m w

where F*, g* are the convex conjugates of 7, G, and A* is the adjoint operator of A, and
Ae) = (52 +v20,V 0),

, ‘ ‘ 0 if pli=1 = 90
F = h) — m f d. =
(¢) = xT () /Td o(x)#(0, z)dx, xT () { otherwise,

T
Gp1,p2) = — inf / / m(t, z) (p1(t,x) — H(x, m(t, x), p2(t, z))) dedt.
Td

0<meLl((0,T)xT4) J,
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Outline

3. Optimization Methods for MFC and Variational MFG

@ Alternating Direction Method of Multipliers



Augmented Lagrangian

Reformulation of the primal problem:

(A) = —igf{]—"(q&) v g(A(¢))} — —in inf{F(¢) +G(q), subj. to g = A(¢)}.

q

@ The corresponding Lagrangian is
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Augmented Lagrangian

Reformulation of the primal problem:

(A) = —igf{]—"(q&) v Q(A(¢))} — —in mf{f(qs) +G(q), subj. to g = A(¢)}.

q

@ The corresponding Lagrangian is

@ We consider the augmented Lagrangian (with parameter r > 0)
£7(6,4,9) = £(0,0:@) + ZIA@) — gl

@ Goal: find a saddle-point of L".
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Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢, )
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]



Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢, )
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

4 (b) Compute

q(k“)Eargmin{Q(qH(d(k) HA Pty QIIZ}
q

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]



Alternating Direction Method of Multipliers (ADMM)

Reminder: £7(¢,4,4) = F(¢) + G(a) — (4, A(¢) — @) + 5|A(¢) — al?

Input: Initial guess (¢'”, ¢, ¢®); number of iterations k
Output: Approximation of a saddle point (¢, ¢, ¢) solving the finite difference
system
1 Initialize (6, ¢, )
2 fork=0,1,2,...,.K—1do
3 (a) Compute

o) € argmin{ 7(6) - (@, A9)) + Z11A(@) - a7}

4 (b) Compute

s ~f r ( p
a*+ e argmin{9(a) + (3%, 0) + FIAG) — q)”}
q

5 (c) Compute

oD = g (A(p*HY) — V)

6 return (¢, ¢®, )

References: ALG2 in the book of [Fortin and Glowinski, 1983]
— in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
— in MFC:[Achdou and Lauriere, 2016b], [Baudelet et al., 2023]
37/63



ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = %|p|2. We take ﬁo(x,pl,pg) = %|(p1_,p;r)|2.

Discrete version of the dual convex problem:

(An) = = inf {Fi(9) +Gn(An(o))},

where A, : RN — R3N is defined by : Vn € {1,..., Nz}, Vi€ {0,..., N, — 1},

(An () = ((Dedi)" +v (Ah¢"71)i V"),
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ADMM: Discrete Primal Problem

Notation: N, Nt steps resp. in space and time, N = (Nt + 1) Ny, N’ = N Nj,.
Recall: Ho(z,p) = [p|*. We take Ho(x,p1,p2) = 5|(p7,p3)I>-

Discrete version of the dual convex problem:

(An) = — @iEI%fN {Fn() + Gn(An(e)},

where A, : RN — R*' is defined by : Vn € {1,...,Nr},Vi € {0,..., Ny — 1},

(An(@)i = ((Deo)" +v (Aned" ) (Vi i),

i

where Fy,, Gy, are the |.s.c. proper functions defined by:

Np—1
FuiRY 2 ¢mxr(e) —h Y plo) € RU{+o0},
1=0
Np Np—1
G : R3N ) (a,b, C) — — hAtZ Z ’Ch(xiya?7b?7c?) eRU {+OO},
n=1 =0

with

0 ifo)" =gg(z)

400 otherwise.
38/63

Kn(@, a0, p1,p2) = min {mlao + Ho(z,m,p1,p2)]}, x7(0) = {
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ADMM with Discretization

Discrete Aug. Lag.: £;,(¢,4,4) = F(¢) + Gn(a) — (@, An(9) — a) + 5] A(0) — g

Input: Initial guess (6(*, ¢(», ®); number of iterations K
Output: Approximation of a saddle point (¢, ¢, §)

Initialize (¢©, ¢, §®)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ argnlin(,,{.ﬁ, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢+ ¢ argminq{g;, (q) + (@™, q) + L AR (™) qHZ}

5 (¢) Compute g+ = G — 7 (A, (D) — ¢+D)
6 return (¢, ¢, g®)
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ADMM with Discretization

Discrete Aug. Lag.: £}, (¢,q,q) = Fn(¢) + Gnlq) — (@, An(d) — @) + E[|A(0) — gl

Input: Initial guess (¢”, ¢, §); number of iterations X
Output: Approximation of a saddle point (¢, g, §)

Initialize (¢, ¢, @)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ al'grllirp,,{?;, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢V e argminq{gh (q) + (@™, q) + Ll AR (o™ Dy - (]Hz}

s | () Compute gD = g0 — (A, (01) — g0+D))

6 return (¢, ¢®, g®))

First-order Optimality Conditions:
Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid
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ADMM with Discretization

Discrete Aug. Lag.: £}, (¢,q,q) = Fn(¢) + Gnlq) — (@, An(d) — @) + E[|A(0) — gl

Input: Initial guess (6(*, ¢(», ®); number of iterations K
Output: Approximation of a saddle point (¢, g, §)

Initialize (¢, ¢, @)

2 forxk=0,1,2,...,.K—1do

3 (a) Compute ¢ ¢ al'grllirp,,{]ﬂ, (6) — (G, An(9)) + SlAL(0) — q(k)”z}

4 (b) Compute ¢V e argminq{gh (q) + (@™, q) + %HA;,,((,J(“ Dy - (]HZ}

s (c) Compute G+ = g0 — r (A, (1)) — g0+

6 return (¢, ¢®, g®))

First-order Optimality Conditions:
Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

Rem.: For (a): discrete PDE
e if v = 0, a direct solver can be used
o if v > 0, PDE with 4t order linear elliptic operator = needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Bricefo Arias et al., 2018]
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1]?\[0.4,0.6]* (obstacle at the center)
e Define the Hamiltonian by duality (on 0 the vector speed is towards the interior)

sup {_5p_L($7m7€)}:m_a|p|ﬁ_€(x>m)7 |fiEEQ7
£€R2

sup {—ﬁ-p—L(a:,m,i)}, if x € 09).
£€R2:¢.n<0

H(x,m,p) =

e The associated Lagrangian (corresponding to the running cost) is:

L(z,m, &) = (B—=1)B" " mm1|¢)® +o(z,m), 1<B<20<a<l
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Numerical Example: Congestion Without Viscosity

e Domain Q = [0, 1]?\[0.4,0.6]* (obstacle at the center)
e Define the Hamiltonian by duality (on 0 the vector speed is towards the interior)

sup {_5p_L($7m7€)}:m_a‘p|ﬁ_€(x,m)7 |fiEEQ7
£€R2

sup {—§-p—L(a:,m,§)}, if x € 09).
£€R2:¢.n<0

H(z,m,p) =
e The associated Lagrangian (corresponding to the running cost) is:

L(z,m, &) = (B—=1)B" " mm1|¢)® +o(z,m), 1<B<20<a<l

e Ex.: mo : & ur : opposite corners; o = 0.01, 8 = 2,¢(x,m) = 0.01m.
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Initial distribution (left) and final cost (right)

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t =0

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 7'/8

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = T'/4

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 377/8

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 7/2

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 577/8

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢ = 37'/4

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density at time ¢t = 77'/8

For more details, see [Achdou and Lauriere, 2016b]
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Numerical Example: Congestion Without Viscosity

Results for the mean field control (MFC) problem, with v = 0

Density attime ¢t =T

For more details, see [Achdou and Lauriere, 2016b]
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Outline

3. Optimization Methods for MFC and Variational MFG

@ A Primal-Dual Method



Optimality Conditions and Proximal Operator

@ Letp,¢: RY — R U {+o0} be convex |.s.c. proper functions.
@ Consider the optimization problem

min o(y) + ¥ (y),

yERN
and its dual
min ¢"(—0) +¢*(0).

ocE€RN

42/63



Optimality Conditions and Proximal Operator

@ Letp,¢: RY — R U {+o0} be convex |.s.c. proper functions.
@ Consider the optimization problem

min ¢(y) + ¥ (y),

yERN

and its dual
min " (—0) + 97 (0).

ocE€RN

@ The 1%-order opt. cond. satisfied by a solution (§, &) are

{(}604,0( NN {71706704%?(3)
(

9
6 6+y) € O™ (6)+ 6

{prOX SO —T16) =17
7 € 0Y*(0)

prox_,« (6 +9) = &,

where v > 0 and 7 > 0 are arbitrary and
@ The proximal operator of a |.s.c. convex proper ¢: RY — RU {40} is:

prox, ,(z) := argmin {¢(y) + %} =T +0(v¢p) '(z), VzeRN.
yERN
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Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions

1 Initialize (¢, 4, 5()
2 fork=0,1,2,...,K—1do
3 (a) Compute

o) = PTOX_ )« (c® 44 ™),




Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions

Initialize (o, 4, 7(©)

2 fork=0,1,2,...,K—1do

3 (a) Compute

O_(k+1) N (

= PIOX_, ) 4 J(k>)

4 (b) Compute

y(kAl) — pr()xw(y(k) _ TU(k+1)>~




Chambolle-Pock’s Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011]
It has been proved to converge when 7 < 1.

1

3

Input: Initial guess (0,4, 59); 0 € [0,1]; ¥ > 0,7 > 0; number of iterations K
Output: Approximation of (5, y) solving the optimality conditions
Initialize (o, 4, 7(©)

2 fork=0,1,2,...,K—1do
(a) Compute
O_(k+1) = Prox, - ( + J[k\)
(b) Compute
y<k‘1) = prox,_y_(y(k> — T(r(k+l)).

(c) Compute

7;(k+1) _ y(k+1) + 0(y(k+1) _ y(k)).

6 return (c®,y® 7®)
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[ (By) = min  {Fp (A} (0) + Gi(-0)}, ]

(m,w1,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

o Fi(p) = SUPyerN {(M: ¢)e2(RN) - fh(¢)}y VpeRY

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) qg{g)};,{ (0.0) s oy~ 9(a) | hAtZ:l ; Ly(wi,of), Vo R

o with L, (¢, 00) = max,, cgs { — 00 -po+ ICh(:c,qo)}, Yoo € R3.
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[ (Bn) = min A F @A) + G-} ]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV
Np Nj—1

¢ Gl (—0) = max { — <‘7’q>£2(R3N’) —gh(q)} = hAtZ Z f/h(zi,U?), Vo e R3Y

g n=1 i=0
o with L, (¢, 00) = max, g3 { — 00 - po + Kp(z, qo)}, Yoo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.
Finally Ay : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(¢)>g2(R3N’)
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Dual of Discrete Problem (Ay,)

By Fenchel-Rockafellar theorem, the dual problem of (Ay) is:

[ (Bn) = min A F @A) + G-} ]

(m,wy,w2)=0€R3N

where G; and F;; are respectively the Legendre-Fenchel conjugates of G, and 7}, defined by:

* 70 = subycan {1 Npan) ~ F(0)}, Vi€ RV

Np Np—1
(= = — ry — = 3 : n 3N’
*Gi(~0) g;;fv{ (0,0) 2 o)~ Gn0) } hm; ;Lh(zuoz ), VoeR

o with L, (¢, 00) = max,, cgs { — 00 - po + Kp(z, qo)}, Voo € R3.
Rem.: The max can be costly to compute but in some cases L, has a closed-form expression.

Finally A} : R3N' s RN denotes the adjoint of A,: for all (m,y, z) € R3N' ¢ € RV:

(A;—l(m’ Y, Z): ¢>£2(]RN) = ((m7 Y, Z), Ah(®)>g2(R3N’)

Np—1 . -
Rem.: We have 7+ (A% (m, y, 2)) — h Zi:’lo mZNT go(x;), if (m,v, 2) satisfies (x) below,
.- h h b 9 -

+o00, otherwise,
with Vi € {0,...,Np — 1}, m{ = p?, andVn € {0,..., Ny — 1}:
n+1 n+1 n+1 n+1
Y Y Zi —
(Dem)" —v (Apm™ ) 4 = R =0, *)
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Reformulation

The discrete dual problem can be recast as:

( inf Bh(mz w) + Fh(m) + LG—1(p9,0) (m7 ’LU) (Pnr)
TNLW ) — e’
(m, w) P(m, w)
with the costs
wih,

~ 1 ~ P
Fu(m) =Y Fleomi)+ = > Glanm™),  By(m,w) =y bm;
in i in

mL (z,-2), ifm>0wekK =R xRy,
b(m,w) =< 0, if (m,w) = (0,0),
+o00, otherwise,

and G(m,w) := (mo, (Am"T1 + Bw")ogngNT—l) with

(Am)i = (Dem) —v(Apm)7*Y, (Bw)] o= (Dpw)y + (Dpw®)

i

n
Q-
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Reformulation

The discrete dual problem can be recast as:

inf  Bp(m,w) +Fr(m) + tg-1(,0 0)(m,w) (Pr)

(m,w

e(m,w) P(m, w)

with the costs 1
Fu(m) =Y Flanmi)+ 1 Glem™),  Bu(mw):= ) bm? ] ™),
i,n i i,n
mL (z,-2), ifm>0wekK =R xRy,
b(m,w) =< 0, if (m,w) = (0,0),

+o00, otherwise,

and G(m,w) := (mo, (Am"T1 + Bw")g<,< N, —1) With

(Am):L+1 = (Dym)} — U(Ahm)?"'l, (Bw)} = (thl)?_1 + (thQ)?.

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply Chambolle-Pock’s method for (P,) with
y= (myw)a (,o(m, ’LU) :]Bh(mv w) +Fh(m)7 ¢(m7 w) = LG*l(pO,O)(mv w)

See [Bricefo Arias et al., 2018] and [Briceno Arias et al., 2019] in stationary and dynamic cases.
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Numerical Example

Setting: g = 0 and R? x R 3 (z,m) ~ f(x,m) := m? — H(x), with
H(z) = sin(27z2) + sin(27rz1) + cos(2mz1)

We solve the corresponding MFG and obtain the following evolution of the density:

a)t=0 b)t=01

05 05 05 05

Evolution of the density

More details in [Bricefio Arias et al., 2019]
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Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

e the mass starts from an initial density;
e it converges to a steady state, influenced only by the running cost;

e ast — T, the mass is influenced by the final cost and converges to a final state.

25 T T T

a4 E—

distance

time t

L? distance between dynamic and stationary solutions

More details in [Bricefo Arias et al., 2019]
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Outline

4. Methods for MKV FBSDE



Outline

4. Methods for MKV FBSDE
@ A Picard Scheme for MKV FBSDE



MKV FBSDE System

@ Recall: generic form:

dXt :B(Xt,E(Xt),YVt,Zt)dt-‘rUth, OStST
dYy = —F (X4, L(Xy), Yy, Zo)dt + ZedWy,  0<t<T
Xo ~ mo, Yr = G(Xr, L(X71))

@ Decouple:

> Given (£(X),Y, Z), solve for X
> Given (X, L(X )) solve for (Y, Z)

@ lterate
@ Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]
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Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢




Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

4 Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,,  0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)
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Picard Scheme for MKV FBSDE System

1

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K

Output: Approximation of (X, Y, Z) solving the MKV FBSDE system

Initialize X = ¢, ¥ =0,z =0,0<t<T

2 fork=0,1,2,...,.K—1do

3

Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,,  0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)

Notation: @, ¢ : (X®, £(X®) y® Zz®) o (X&) £(x &)yt 70d1))
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Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (¢, ¢); initial condition &; terminal condition ¢; time horizon T';
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X(¥ = ¢, V9 =0,2” =0,0<t<T
2 fork=0,1,2,...,.K—1do
3 Let X ®+1) pe the solution to:

{dXi =B(X®, (x¥), V™ zdt + cdW,, 0<t<T
Xo=¢

4 Let (Y &+ zE+1) pe the solution to:

{dYt = —F(XMV LX), v®, zF)dt + 2P dw,,  0<t<T
Yr=¢

5 return Picard[T](¢,¢) = (X®,y® z®)

Notation: @, ¢ : (X®, £(X®) y® Zz®) o (X&) £(x &)yt 70d1))
Contraction? Small T' or small Lipschitz constants for B, F, G
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Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
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Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th < <Tu-1<Tu =T

@ Subproblem: Given (¢r,,, £(é7,,)) and ¢r,, ., , Solve:

dXt :B(Xt,C(Xt),Y,g,Zt)dt+O'th, Tm St
dY; = —F(Xt,ﬁ(Xt),Yt, Zt)dt + ZydWy, m <t < Tyt

X, = &1, YTm+1 = CTm+1
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Continuation Method

@ If T is big: Solve FBSDE on small intervals & “patch” the solutions together
Q@ Grid:0=To<Th < <Tu-1<Tu =T

@ Subproblem: Given (¢r,,, £(é7,,)) and ¢r,, ., , Solve:

dXt :B(Xt,C(Xt),Y,g,Zt)dt+O'th, Tm St
dY; = —F(Xt,ﬁ(Xt),Yt, Zt)dt + ZydWy, m <t < Tyt

X, = &1, YTm+1 = CTm+1

@ How to find é7,,, and (.., ?

— &7, from previous problem’s solution (or initial condition)
— (1,4, from next problem’s solution (or terminal condition)
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Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:
solver[m](o, po)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

s | WD =7, v =a(xf

£(XE).)




Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](&o, io)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

k+1 k (k)
3 | Wl =T YR = GOXE) L L(XE) )
4 Else: compute recursively:

Y = Solver[m + 1](X(k)

(k)
Tm+41 Tm+1’['(XTm+1))




Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver[m](&o, io)

with & a random variable with distribution 1o

Input: Initial guess (&, £(£)); time step index m; number of iterations K
Output: Approximation of Yr,, where (X,Y, Z) solves the MKV FBSDE system on
[T, T starting with (&, £(€)) at time T,
1 Initialize X = ¢, £(X{") = £(¢) forall Ty, <t < Trns1
2 fork=0,1,2,...,K—1do

k+1 k (k)
3 | Wl =T YR = GOXE) L L(XE) )
4 Else: compute recursively:

YiH) = sotver[m + 1)(X) L L(X5Y )

5 Compute:

(XD, L), v, 20 ey = Picard| T —Tn] (X4, VD)

& return solver[m|(¢, £(¢)) := Yo
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Implementation: Discretizations

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

@ Tree algorithm:

» Time discretization
» Space discretization: binomial tree structure
» Look at trajectories

@ Grid algorithm:

» Time and space discretization on a grid
> Look at time marginals
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Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)
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Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)
@ Time discretization: 0 =tg < t1 < --- <tn, =T, tit1 —t; = At

@ Euler Scheme: 0 <i < Ny —1

X(ikill) X(k+1) +B(X(k+1) ,C(X(k+l)) Y(k) Z(k))At"rUAWtHrl
X(k+1) =¢
YO = B [y S+ P L Y), v 9z A
R YD+ PO L), v, 28 A - 2 Aaw,

Y(k+1) _ G(X(k+1) [,(X(k+1)))

+1 +1)
Zf = LR, [ VAW, ]
Z$‘+” = 0
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Tree-Based Algorithm: Time Discretization

@ Focus on an interval [0, 7] with small enough T (otherwise: call recursive solver)
@ Time discretization: 0 =tg < t1 < --- <tn, =T, tit1 —t; = At

@ Euler Scheme: 0 <i < Ny —1

XD = x M0 4 B(x Y L(x ), v 28 AL+ o AW,
X(ngrl) —¢
YO = By, [V V] + PO, LX), v, 209) At
+1 +1 >
A Y 4 P L(x ), v,z A — 2 A,
Y(k+1) _ G(X(k+1) L(X(k+1)))

A(kJrl) 1 LE, [Y(7k++11 AWtq“]
Z$‘+” = 0

@ Questions:
> How to represent L:(Xt(f“))?

» How to compute the conditional expectation E;, [Y(k“)}
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Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

NJCO
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Y)fqi”} ~ weighted average of values on the two next branches
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Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

NJCO
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Y)fqi”} ~ weighted average of values on the two next branches

@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |
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Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

Nazg
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Yt(,im} ~ weighted average of values on the two next branches
@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |

@ Save space thanks to recombinations?
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Tree-Based Algorithm: Remarks

@ Ateach t;, replace AW, ., by a branch with 2 values: =V At w.p. 1/2

i+1

@ Answers:
> £(x*") ~ weighted empirical distribution:

Nazg
1
LX)~ pho,
n=1

and at time ¢;,7 > 1: look at values on the nodes at depth i

> Ky, [Yt(,im} ~ weighted average of values on the two next branches
@ Starting from some o, doing N; steps: 2™Vt paths

@ N,, starting points i.i.d. ~ po: Ny, x 27t paths |

@ Save space thanks to recombinations? Not really but . ..
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Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(thta[’(Xt))ﬂ Zy :’U(t,Xt,E(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1
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Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(tvxtﬂ['(Xt))a Zt :U(taXt7‘C(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1

@ Difficulty: space of £(X,) is infinite dimensional
— Freeze it during each Picard iteration:

Y;(lﬂ’l) _ u(k+1) (t, X§k+1)), Zt(kJrl) — ”U(k+1)(t,Xt<k+1)) (*)

55/63



Grid-Based Algorithm: Time & Space Discretization

@ Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):
Y :u(thtﬂL(Xt))7 Zt :U(taXt7‘C(Xt))

— Approximate u(-, -, -),v(:, -, -) instead of (Y, Zt) (0,1

@ Difficulty: space of £(X,) is infinite dimensional
— Freeze it during each Picard iteration:

)/;(IH»I) _ u(k+1)(t’ AX—t(kjtl))7 Zt(k+1> _ U(k+1)(t7Xt(k+1)) (*)

@ Picard iterations for distribution & decoupling functions:
> Step 1: Given (1@, u® v®)), compute p**") = £(x ) 0 <t < T, where

axt =B (Xf”l), ) (g, x BT 0 (¢, Xt(k'H)))dt + odW,
> Step 2: Given (X® ;&+1)) compute (u(xt1) &) such that (x) holds, where
ay D) _ _F<Xt(k+1)”u£k+1),)/t(k+1)7 Zt(k+1)>dt + 20 D,

> Return (p(t1) 1) 5 0t1))

55/63



Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az

56/63



Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az
)

@ Use projection IT to stay on T" at every ¢;: E(Xt( ~ vector of weights
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Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az
)

@ Use projection IT to stay on T" at every ¢;: E(Xt( ~ vector of weights

@ Picard iterations for distribution & decoupling functions:

> Step 1: Given (1, u® +®)), compute p{**) = E(XS‘*”)J =0,..., Ny, where

7

Xt(i(j:ll) -1 [ngl) + B(Xt(:(+1)1lu‘§l:)7uil,:)(Xéf+l))7vi?)(X§§+1)))dt + aAWti+1:|
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Grid-Based Algorithm: Forward Equation

@ Focus on an interval [0, T'] with small enough 7" (otherwise: call recursive solver)
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tiy1 — t; = At

@ Space discretization (d =1): GridTI': o < 21 < -+ < TN, Tj+1 — T3 = Az

@ Use projection I1 to stay on I at every t;: £(X,*"") ~ vector of weights

@ Picard iterations for distribution & decoupling functions:

> Step 1: Given (u®, u® v®) compute ,utkH) E(XS‘*U)J =0,..., Ny, where

XD = H[X(k“)-i—B(X(k“) 8 ul (), (?)(X§f+1)))dt+aAWti+l}

<k+1) (k+1)

> Infact yu;, can be expressed in terms of y.; and a transition kernel
> Ex: b|nom|al approx. of W — efficient computatlon using quantization
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Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) _E |:uf(ki—11)(X(k+1))
(XD, () of) () v ) ]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+l>(z) =0

» Ex.: binomial approximation of W — more explicit formulas
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Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) -E |:uf(ki—11)(X(k+1))
(XD, () of) () v ) ]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+1>(z) =0

» Ex.: binomial approximation of W — more explicit formulas
@ Summary:

» Forward: (), 4®) @) — &) = £(x (&)
> Backward: (u&EtD (0 ¢0)) 1y (1) 41y
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Grid-Based Algorithm: Backward Equation

@ Picard iterations for distribution & decoupling functions (continued):
> Step 2: Update u,v: forall0 <i < Ny, z € T,
u§§+1)(x) _E |:uf(ki—11)(X(k+1))
(XD, () of) () v ) ]
uf (@) = G(a, ui““’)

oD (@) = B duft) () | x40 =]

v§£{+l>(z) =0

» Ex.: binomial approximation of W — more explicit formulas
@ Summary:

> Forward: (p®, 4u® v®) - [+ = £(x &+
> Backward: (u&EtD (0 ¢0)) 1y (1) 41y

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]
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Outline

4. Methods for MKV FBSDE

@ Stochastic Methods for some Finite-Dimensional MFC Problems



Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

58/63



Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

58/63



Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?
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@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

@ Ex. 2:
{b(x, w, ) = b(z, I, a) = (cos(z) + cos(n) )
f(xvu‘?a) = |(1|2, g(xmu) =0

» Can the optimal control be expressed as a function of X, E[X] only?
» ODE for iz, ?

&y = E(cos(X1) + cos())a(t, X0)

It involves not only E[X;] = 1z, but also E[cos(X¢)]
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Dependence on the Moments

@ In general: b, f, g involve the whole distribution u; = £(X) (infinite dim.)

@ What if they involve only the first moment iz, = E[X]?

@ Ex. 1: LQ (see lecture 2)

» optimal control is a function of X; and i, = E[X/]
> ODE for fi, of the form 47, = (¢, 7,)

@ Ex. 2:
{b(x, w, ) = b(z, I, a) = (cos(z) + cos(n) )
f@,p,0) = |(1|2, g(z,p) =0

> Can the optimal control be expressed as a function of X;, E[X] only?
» ODE for iz, ?

&y = E(cos(X1) + cos())a(t, X0)

It involves not only E[X;] = 1z, but also E[cos(X¢)]

@ Class of MFC s.t. the problem can be solved with a finite number of moments?
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Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

T
J(a)=E U F(X,, c0)dt +G(X )
0
subject to:
dX, = B(X,, a;)dt + dW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R})?
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Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

T
J(@)=E [/ F(X,,an)dt+ G(X 1)
0
subject to:
dX, = B(X,,a)dt + SdW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 = to<t1 < --- < tNt =T, tiv1 —ti = At

@ DPPfor V : [0,T] x (R)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

{ Vas (T7 &) = g(&)

VAt(tnyﬁ) = sup,, {f(@, Oé)At + Efnoe |:VAt(t"+17&tn+1):| }7” =N:—1,...,

where Etn-z>e |:VAt( ntl, Xt i ):| =FE |:VAt(tn+1, Xy +1) |X0‘ — 35:|

1,0
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Finite-Dimensional Reformulation

Following [Balata et al., 2019]
@ In some cases, MFC problems can be written as:

J(@)=E |:/ F(X,,an)dt+ G(X 1)

subject to:
dX, = B(X,, a;)dt + dW,
where the state is: X, = (E[X.],E[|X:|?],...,E[|X:|?]) € (R%)?
@ Time discretization: 0 =to < t1 < -+ <tn, =T, tig1 —t; = At
@ DPPfor V : [0,T] x (R)? — R or rather Va; : {to,...,tn,} x (RY)? — R:

Va(T,z) = G(z)
Vadltn,2) = sup, { Fa, )M+ B2 [Varltner, X, )] fon= M= 10,10

where Etn-z>e |:VAt( ntl, Xt i ):| =FE |:VAt(tn+1, Xy +1) |X“ — 93:|

— Key difficulty: estimation of the conditional expectation
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m

@ Projection: y
B [Vailtrn, X5 ) 1X5 | = 30 0067 (X5)
where m:IM 5
= arggl}\/i{nﬂi Vae(tni1, X5 ) Z " (X5,) 1

m=1
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m

@ Projection:
M
E [VAt(tn+1,X?n+1) K;L} ~ Z ¢m(K;yn)
m=1
where
Iy 2
= argminE VAt(th,X?nH) — Z " (X)) 1
ERM

@ Explicit expression:
= El¢(X7 )¢(X7 ) 17 ElVar(tory, X7, )$(X7))]
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,....m
@ Projection:

M
E [VAt(tm_hK?nH 7%} Z ¢m(K:n)

1
where

= argmin E

2
eRM ‘|
@ Explicit expression:

= B[p(X; )o(X ) T EVar(tarr, X7, )o(X])]

@ Estimation with Ny, Monte Carlo samples:

NNI\I( Z¢ X0 G)T

Ny

1 L,
Norc ZVAt n+1, Xt +1)¢(th)

M
Vat(tnt1, X tn+1 Z " (X5,)

m=1

E[p(Xy ) p(Xo™) "

and

E[Vai(tnt1, X0% (X)) =

tn+4+1

with training set { (X7, X% )i¢=1,..., Nuc}

“tn41
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Estimation Method 1: Regression Monte Carlo

@ Family of basis functions ¢ = (¢™)m=1,...,m Not always easy to choose !
@ Projection:

M
E [VAt(tm_hK?nH 7%} Z o (K:n)

1
where

= argmin E

2
eRM ‘|
@ Explicit expression:

= B[p(X; )o(X ) T EVar(tarr, X7, )o(X])]

@ Estimation with Ny, Monte Carlo samples:

NN\/( Z¢ X0 G)T

Ny

1 £,c
Nue ZVM ntl Xt +1)¢(th)

M
VAt( 'n+17 tn+1 Z ¢m(&;¥n)

m=1

E[p(Xy ) p(Xo™) "

and

E[Vai(tnt1, X0% (X)) =

tn+4+1

with training set { (X7, X% )i¢=1,..., Nuc}

“tn41
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Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

SetofcellsCo ={Cj;j=1,...,Jo}

Associated grid points G = {¢;:7 =1....,Jo}

Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
Discrete version: AW € Gg: P(AW = ¢;) = p;

Can be optimized'; particularly helpful when d > 1

L S 2

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
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Estimation Method 2: Quantization

@ Two space discretizations:

> Set of points " on which we want to approximate Va; projection I

> Quantization of noise (see e.g. [Pages, 2018]):

* SetofcellsCo ={Cj;j=1,...,Jq}

* Associated grid points G = {¢j;7 =1,....Jo}

* Weights for Gaussian r.v. AW ~ N(0, At): p; = P(AW € C})
* Discrete version: AW € Gg: P(AW = ¢;) = p;

* Can be optimized'; particularly helpful when d > 1

@ Estimation with piecewise constant interpolation: Va; : {to,...,tn,} xI' = R
Jo
E [VAt(tn+17 Xo DIXE = &} ~ ijVAt (tn+17 IIr (B(L o, ) At + EC_}))
Jj=1
forallz e T

@ Other interpolations are possible
For more details and numerical examples, see [Balata et al., 2019]

1Optimal grids/weights available here: http://www.quantize.maths-£fi.com
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Outline

5. Conclusion



Summary

@ Two schemes for FB PDEs of MFG

@ Optimization methods for MFC and variational MFGs

@ Two methods based on the probabilistic approach
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Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Lauriere and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]

Monotone operators [Almulla et al., 2017], [Gomes and Saude, 2018],
[Gomes and Yang, 2020]

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriére et al., 2023]

Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]

Gaussian processes [Mou et al., 2022]

Kernel-based representation [Liu et al., 2021]

Fourier approximation [Nurbekyan et al., 2019]

63/63



Other numerical methods

The previous presentation is not exhaustive!

Some other references:

Gradient descent based methods [Lauriere and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]

Monotone operators [Almulla et al., 2017], [Gomes and Saude, 2018],
[Gomes and Yang, 2020]

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriére et al., 2023]

Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
Cubature [de Raynal and Trillos, 2015]

Gaussian processes [Mou et al., 2022]

Kernel-based representation [Liu et al., 2021]

Fourier approximation [Nurbekyan et al., 2019]

However efficient, these methods are usually limited to problems with:

(relatively) small dimension
(relatively) simple structure

= motivations to develop machine learning methods (see next lectures)
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu


mathieu.lauriere@nyu.edu
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