Numerical Methods for Mean Field Games

Lecture 3
 Classical Numerical Methods: Part II FBPDE and FBSDE systems

Mathieu Laurière
New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD,
University Côte d'Azur, \& GE2MI
Open Doctoral Lectures
July 5-7, 2023

Outline

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

Reminder: FB systems

- Here we will focus on the continuous time and space setting
- We have seen two types of forward-backward systems:
- PDE systems: Kolmogorov-Fokker-Planck (KFP) and Hamilton-Jacobi-Bellman (HJB)
- SDE systems of McKean-Vlasov (MKV) type
- We will describe methods based on both approaches
- In each case, there will be two questions to design a numerical method:
- Discretization \rightarrow numerical scheme
- Computation \rightarrow algorithm

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{X}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{X}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
\Rightarrow Needs a careful discretization

MFG PDE System

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$
\left\{\begin{array}{l}
0=-\frac{\partial u}{\partial t}(t, x)-\nu \Delta u(t, x)+H(x, m(t, \cdot), \nabla u(t, x)) \\
0=\frac{\partial m}{\partial t}(t, x)-\nu \Delta m(t, x)-\operatorname{div}\left(m(t, \cdot) \partial_{p} H(\cdot, m(t), \nabla u(t, \cdot))\right)(x) \\
u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x)
\end{array}\right.
$$

Desirable properties for (1):

- Mass and positivity of distribution: $\int_{\mathcal{X}} m(t, x) d x=1, m \geq 0$
- Convergence of discrete solution to continuous solution as mesh step $\rightarrow 0$
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
\Rightarrow Needs a careful discretization
For (2): Once we have a discrete system, how can we compute its solution?

Outline

1. Introduction

2. Methods for the PDE system

- A Finite Difference Scheme
- Algorithms
- A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

Outline

1. Introduction
2. Methods for the PDE system

- A Finite Difference Scheme
- Algorithms
- A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010] Discretization:

- For simplicity we consider the domain $\mathbb{T}=$ one-dimensional (unit) torus.
- Let $\nu=\sigma^{2} / 2$.
- We consider N_{h} and N_{T} steps respectively in space and time.
- Let $h=1 / N_{h}$ and $\Delta t=T / N_{T}$. Let $\mathbb{T}_{h}=$ discretized torus.
- We approximate $m_{0}\left(x_{i}\right)$ by ρ_{i}^{0} such that $h \sum_{i} \rho_{i}^{0}=1$.

Discretization

Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010] Discretization:

- For simplicity we consider the domain $\mathbb{T}=$ one-dimensional (unit) torus.
- Let $\nu=\sigma^{2} / 2$.
- We consider N_{h} and N_{T} steps respectively in space and time.
- Let $h=1 / N_{h}$ and $\Delta t=T / N_{T}$. Let $\mathbb{T}_{h}=$ discretized torus.
- We approximate $m_{0}\left(x_{i}\right)$ by ρ_{i}^{0} such that $h \sum_{i} \rho_{i}^{0}=1$.

Then we introduce the following discrete operators : for $\varphi \in \mathbb{R}^{N_{T}+1}$ and $\psi \in \mathbb{R}^{N_{h}}$

- time derivative :

$$
\begin{array}{rlr}
\left(D_{t} \varphi\right)^{n}:=\frac{\varphi^{n+1}-\varphi^{n}}{\Delta t}, & 0 \leq n \leq N_{T}-1 \\
\left(\Delta_{h} \psi\right)_{i}:=-\frac{1}{h^{2}}\left(2 \psi_{i}-\psi_{i+1}-\psi_{i-1}\right), & 0 \leq i \leq N_{h} \\
\left(D_{h} \psi\right)_{i}:=\frac{\psi_{i+1}-\psi_{i}}{h}, & 0 \leq i \leq N_{h} \\
{\left[\nabla_{h} \psi\right]_{i}:=\left(\left(D_{h} \psi\right)_{i},\left(D_{h} \psi\right)_{i-1}\right),} & 0 \leq i \leq N_{h}
\end{array}
$$

- Laplacian :
- partial derivative :
- gradient :

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

$$
b(x, m, \alpha)=\alpha, \quad f(x, m, \alpha)=L(x, \alpha)+\mathrm{f}_{0}(x, m), \quad g(x, m)=\mathrm{g}_{0}(x, m)
$$

where $x \in \mathbb{R}^{d}, \alpha \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$. Then

$$
H(x, m, p)=\max _{\alpha}\{-L(x, \alpha)-\langle\alpha, p\rangle\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to α :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{\alpha}\{\langle\alpha, p\rangle-L(x, \alpha)\}
$$

Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

$$
b(x, m, \alpha)=\alpha, \quad f(x, m, \alpha)=L(x, \alpha)+\mathrm{f}_{0}(x, m), \quad g(x, m)=\mathrm{g}_{0}(x, m)
$$

where $x \in \mathbb{R}^{d}, \alpha \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$. Then

$$
H(x, m, p)=\max _{\alpha}\{-L(x, \alpha)-\langle\alpha, p\rangle\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to α :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{\alpha}\{\langle\alpha, p\rangle-L(x, \alpha)\}
$$

Discrete Hamiltonian: $\left(x, p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ satisfying:

- Monotonicity: decreasing w.r.t. p_{1} and increasing w.r.t. p_{2}
- Consistency with H_{0} : for every $x, p, \tilde{H}_{0}(x, p, p)=H_{0}(x, p)$
- Differentiability: for every $x,\left(p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ is \mathcal{C}^{1}
- Convexity: for every $x,\left(p_{1}, p_{2}\right) \mapsto \tilde{H}_{0}\left(x, p_{1}, p_{2}\right)$ is convex

Example: if $H_{0}(x, p)=|p|^{2}$, a possible choice is $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\left(p_{1}{ }^{-}\right)^{2}+\left(p_{2}{ }^{+}\right)^{2}$

Discrete HJB

Discrete solution: We replace $u, m:[0, T] \times \mathbb{T} \rightarrow \mathbb{R}$ by vectors

$$
U, M \in \mathbb{R}^{\left(N_{T}+1\right) \times N_{h}}
$$

Discrete HJB

Discrete solution: We replace $u, m:[0, T] \times \mathbb{T} \rightarrow \mathbb{R}$ by vectors

$$
U, M \in \mathbb{R}^{\left(N_{T}+1\right) \times N_{h}}
$$

The HJB equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+\nu \Delta u(t, x)+H_{0}(x, \nabla u(t, x))=\mathrm{f}_{0}(x, m(t, x)) \\
u(T, x)=\mathrm{g}_{0}(x, m(T, x))
\end{array}\right.
$$

is discretized as:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=f_{0}\left(x_{i}, M_{i}^{n+1}\right) \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right)
\end{array}\right.
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$ is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$
is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Here we use the discrete transport operator $\approx-\operatorname{div}(\ldots)$

$$
\mathcal{T}_{i}(U, M):=\frac{1}{h}\binom{M_{i} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)-M_{i-1} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i-1},\left[\nabla_{h} U\right]_{i-1}\right)}{+M_{i+1} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i+1},\left[\nabla_{h} U\right]_{i+1}\right)-M_{i} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)}
$$

Discrete KFP

The KFP equation
$\partial_{t} m(t, x)-\nu \Delta m(t, x)+\operatorname{div}\left(m(t, x) \partial_{q} H(x, m(t), \nabla u(t, x))\right)=0, \quad m(0, x)=m_{0}(x)$
is discretized as

$$
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, \quad M_{i}^{0}=\rho_{i}^{0}
$$

Here we use the discrete transport operator $\approx-\operatorname{div}(\ldots)$

$$
\mathcal{T}_{i}(U, M):=\frac{1}{h}\binom{M_{i} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)-M_{i-1} \partial_{p_{1}} \tilde{H}_{0}\left(x_{i-1},\left[\nabla_{h} U\right]_{i-1}\right)}{+M_{i+1} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i+1},\left[\nabla_{h} U\right]_{i+1}\right)-M_{i} \partial_{p_{2}} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right)}
$$

Intuition: weak formulation \& integration by parts

$$
\int_{\mathbb{T}} \operatorname{div}\left(m \partial_{p} H_{0}(x, \nabla u)\right) w=-\int_{\mathbb{T}} m \partial_{p} H_{0}(x, \nabla u) \cdot \nabla w
$$

is discretized as

$$
-h \sum_{i} \mathcal{T}_{i}(U, M) W_{i}=h \sum_{i} M_{i} \nabla_{q} \tilde{H}_{0}\left(x_{i},\left[\nabla_{h} U\right]_{i}\right) \cdot\left[\nabla_{h} W\right]_{i}
$$

Discrete System - Properties

Discrete forward-backward system:

$$
\begin{cases}-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=f_{0}\left(x_{i}, M_{i}^{n+1}\right), & \forall n \leq N_{T}-1 \\ \left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, & \forall n \leq N_{T}-1 \\ M_{i}^{0}=\rho_{i}^{0}, \quad U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right), & i=0, \ldots, N_{h}\end{cases}
$$

Discrete System - Properties

Discrete forward-backward system:

$$
\begin{cases}-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=f_{0}\left(x_{i}, M_{i}^{n+1}\right), & \forall n \leq N_{T}-1 \\ \left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{n}, M^{n+1}\right)=0, & \forall n \leq N_{T}-1 \\ M_{i}^{0}=\rho_{i}^{0}, \quad U_{i}^{N_{T}}=g_{0}\left(x_{i}, M_{i}^{N_{T}}\right), & i=0, \ldots, N_{h}\end{cases}
$$

This scheme enjoys many nice properties, among which:

- It yields a monotone scheme for the KFP equation: mass and positivity are preserved
- Convergence to classical solution if monotonicity [Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]
- Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]
- The discrete KFP operator is the adjoint of the linearized Bellman operator
- Existence and uniqueness result for the discrete system
- It corresponds to the optimality condition of a discrete optimization problem (details later)

Outline

1. Introduction
2. Methods for the PDE system

- A Finite Difference Scheme
- Algorithms
- A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

Algo 1: Fixed Point Iterations

Input: Initial guess (\tilde{M}, \tilde{U}); damping $\delta(\cdot)$; number of iterations K
Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
Initialize $M^{(0)}=\tilde{M}^{(0)}=\tilde{M}, U^{(0)}=\tilde{U}$
for $k=0,1,2, \ldots, k-1$ do
Let $U^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)=\mathrm{f}_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}, n+1}\right), \quad n \leq N_{T}-1 \\
U_{i}^{N_{T}}=g_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), N_{T}}\right)
\end{array}\right.
$$

Let $M^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
\left(D_{t} M_{i}\right)^{n}-\nu\left(\Delta_{h} M^{n+1}\right)_{i}-\mathcal{T}_{i}\left(U^{(k+1), n}, M^{n+1}\right)=0, \quad n \leq N_{T}-1 \\
M_{i}^{0}=\rho_{i}^{0}
\end{array}\right.
$$

Let $\tilde{M}^{(\mathrm{k}+1)}=\delta(\mathrm{k}) \tilde{M}^{(\mathrm{k})}+(1-\delta(\mathrm{k})) M^{(\mathrm{k}+1)}$
return $\left(M^{(\mathrm{K})}, U^{(\mathrm{K})}\right)$

Algo 1: Fixed Point Iterations

The HJB equation is non-linear

- Idea 1: replace $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)$ by $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{(k), n}\right]_{i}\right)$

Algo 1: Fixed Point Iterations

The HJB equation is non-linear

- Idea 1: replace $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)$ by $\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{(k), n}\right]_{i}\right)$
- Idea 2: use non linear solver to find a zero of

$$
\varphi: \mathbb{R}^{N_{h} \times\left(N_{T}+1\right)} \rightarrow \mathbb{R}^{N_{h} \times N_{T}}
$$

with:
$\varphi(U)=\left(-\left(D_{t} U_{i}\right)^{n}-\nu\left(\Delta_{h} U^{n}\right)_{i}+\tilde{H}_{0}\left(x_{i},\left[D_{h} U^{n}\right]_{i}\right)-\mathrm{f}_{0}\left(x_{i}, \tilde{M}_{i}^{(\mathrm{k}), n+1}\right)\right)_{i=0, \ldots, N_{h}-1}^{n=0, \ldots, N_{T}-1}$
Example: Newton's method

Sample code

Code

Sample code to illustrate: IPython notebook
https://colab.research.google.com/drive/1shJWSD2MA5Fo7_rB625dAvNTdZS1a7bG?usp=sharing

- Finite difference scheme
- Solved by (damped) fixed point approach

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{U}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$

Algo 2: Newton’s Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{U}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$
- Or rather: $J_{\varphi}\left(X^{(k)}\right) Y=-\varphi\left(X^{(k)}\right)$, then $X^{(k+1)}=Y+X^{(k)}$

Algo 2: Newton's Method for FD System

Idea: Directly look for a zero of $\varphi=\left(\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}}\right)^{\top}$ with $\varphi_{\mathfrak{u}}$ and $\varphi_{\mathcal{M}}$ s.t.

$$
\begin{cases}\varphi_{\mathcal{U}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete HJB equation } \\ \varphi_{\mathcal{M}}(U, M)=0 & \Leftrightarrow(U, M) \text { solves discrete KFP equation }\end{cases}
$$

- Let $X^{(k)}=\left(U^{(k)}, M^{(k)}\right)^{\top}$
- Iterate: $X^{(k+1)}=X^{(k)}-J_{\varphi}\left(X^{(k)}\right)^{-1} \varphi\left(X^{(k)}\right)$
- Or rather: $J_{\varphi}\left(X^{(k)}\right) Y=-\varphi\left(X^{(k)}\right)$, then $X^{(k+1)}=Y+X^{(k)}$

Key step: Solve a linear system of the form

$$
\left(\begin{array}{cc}
A_{\mathcal{u}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\
A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}
\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}
$$

where $A_{\mathcal{U}, \mathcal{M}}(U, M)=\nabla_{U} \varphi_{\mathcal{M}}(U, M), \quad A_{\mathcal{U}, \mathcal{U}}(U, M)=\nabla_{U} \varphi_{\mathcal{U}}(U, M), \quad \ldots$

Linear system to be solved: $\left(\begin{array}{cc}A_{\mathcal{U}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\ A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}$
Structure: $A_{\mathcal{U}, \mathcal{M}}, A_{\mathcal{M}, \mathcal{U}}$ are block-diagonal, $A_{\mathcal{U}, \mathcal{U}}=A_{\mathcal{M}, \mathcal{M}}^{\top}$, and

$$
A_{\mathcal{U}, \mathcal{U}}=\left(\begin{array}{ccccc}
D_{1} & 0 & \cdots & \cdots & 0 \\
-\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{2} & \ddots & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ddots & 0 & -\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{N_{T}}
\end{array}\right)
$$

where D_{n} corresponds to the discrete operator

$$
Z=\left(Z_{i, j}\right)_{i, j} \mapsto\left(\frac{1}{\Delta t} Z_{i, j}-\nu\left(\Delta_{h} Z\right)_{i, j}+\left[\nabla_{h} Z\right]_{i, j} \cdot \nabla_{p} \tilde{H}_{0}\left(x_{i, j},\left[\nabla_{h} U^{(k), n}\right]_{i, j}\right)\right)_{i, j}
$$

Newton Method - Implementation

Linear system to be solved: $\left(\begin{array}{cc}A_{\mathcal{U}, \mathcal{U}} & A_{\mathcal{U}, \mathcal{M}} \\ A_{\mathcal{M}, \mathcal{U}} & A_{\mathcal{M}, \mathcal{M}}\end{array}\right)\binom{U}{M}=\binom{G_{\mathcal{U}}}{G_{\mathcal{M}}}$
Structure: $A_{\mathcal{U}, \mathcal{M}}, A_{\mathcal{M}, \mathcal{U}}$ are block-diagonal, $A_{\mathcal{U}, \mathcal{U}}=A_{\mathcal{M}, \mathcal{M}}^{\top}$, and

$$
A_{\mathcal{U}, \mathcal{U}}=\left(\begin{array}{ccccc}
D_{1} & 0 & \cdots & \cdots & 0 \\
-\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{2} & \ddots & 0 & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ddots & 0 & -\frac{1}{\Delta t} \operatorname{Id}_{N_{h}} & D_{N_{T}}
\end{array}\right)
$$

where D_{n} corresponds to the discrete operator

$$
Z=\left(Z_{i, j}\right)_{i, j} \mapsto\left(\frac{1}{\Delta t} Z_{i, j}-\nu\left(\Delta_{h} Z\right)_{i, j}+\left[\nabla_{h} Z\right]_{i, j} \cdot \nabla_{p} \tilde{H}_{0}\left(x_{i, j},\left[\nabla_{h} U^{(k), n}\right]_{i, j}\right)\right)_{i, j}
$$

Rem. Initial guess $\left(U^{(0)}, M^{(0)}\right)$ is important for Newton's method

- Idea 1: initialize with the ergodic solution (see e.g., [Achdou et al., 2021])
- Idea 2: continuation method w.r.t. ν (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.

Example: Exit of a Room - Distribution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2020]

Geometry of the room

Example: Exit of a Room - Distribution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2020]

Example: Exit of a Room - Crowd model

- Crowd motion with ocal interactions; see e.g. [Lachapelle and Wolfram, 2011, Achdou and Lasry, 2019, Achdou and Porretta, 2018, Achdou and Laurière, 2016a] for other models of this type and [Aurell and Djehiche, 2018, Achdou and Laurière, 2015] for crowd motion models with non-local interactions.
- Here, control = velocity:

$$
d X_{t}=\alpha\left(t, X_{t}\right) d t+\sigma d W_{t}
$$

- Congestion through the cost: higher density \Rightarrow higher price to move
- Hamiltonian:

$$
H(x, m, p)=\frac{8|p|^{2}}{(1+m)^{\frac{3}{4}}}-\frac{1}{3200}
$$

Exercise

What is the cost function leading to this Hamiltonian?

Example: Exit of a Room - Crowd model

- MFG PDE system:
(1) Mean field games: the MFG PDE system is:

$$
\left\{\begin{aligned}
-\frac{\partial u}{\partial t}-0.05 \Delta u+\frac{8}{(1+m)^{\frac{3}{4}}}|\nabla u|^{2} & =\frac{1}{3200} \\
\frac{\partial m}{\partial t}-0.05 \Delta m-16 \operatorname{div}\left(\frac{m \nabla u}{(1+m)^{\frac{3}{4}}}\right) & =0
\end{aligned}\right.
$$

(2) Mean field control: the HJB becomes:

$$
-\frac{\partial u}{\partial t}-0.05 \Delta u+\left(\frac{2}{(1+m)^{\frac{3}{4}}}+\frac{6}{(1+m)^{\frac{7}{4}}}\right)|\nabla u|^{2}=\frac{1}{3200} .
$$

- We choose a small ν (e.g. 0.05) so the diffusion is not too strong
- No terminal cost: $g \equiv 0$
- Boundary has several parts.
- Doors: Dirichlet condition $u=0$ (exit cost), $m=0$ ($m=0$ outside the domain)
- Walls: for u, Neumann condition: $\frac{\partial u}{\partial n}=0$ (velocity is tangential to the walls); for m :

$$
\nu \frac{\partial m}{\partial n}+m \frac{\partial H}{\partial p}(\cdot, m, \nabla u) \cdot n=0, \text { therefore } \frac{\partial m}{\partial n}=0
$$

- Initial density m_{0} : piecewise constant with two values 0 and 4 people $/ \mathrm{m}^{2}$
- Interpretation: At $t=0$, there are 3300 people in the hall. $T=50$ minutes

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Density in MFGame (left) and MFControl (right)

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Evolution

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2015]

Example: Exit of a Room - Remaining Mass

Evacuation of a room with obstacles \& congestion [Achdou and Laurière, 2020]

Remaining mass inside the room

Price of Anarchy
($\beta=$ exponent)

Outline

1. Introduction
2. Methods for the PDE system

- A Finite Difference Scheme
- Algorithms
- A Semi-Lagrangian Scheme

3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

MFG Setup

- Scheme introduced by [Carlini and Silva, 2014]
- For simplicity: $d=1$, domain $\mathcal{X}=\mathbb{R}, \mathcal{A}=\mathbb{R}$
- $\nu=0$, degenerate second order case also possible; see [Carlini and Silva, 2015]
- Model:

$$
\begin{aligned}
& b(x, m, \alpha)=\alpha \\
& f(x, m, \alpha)=\frac{1}{2}|\alpha|^{2}+f_{0}(x, m), \quad g(x, m)
\end{aligned}
$$

where f_{0} and g depend on $m \in \mathcal{P}_{1}(\mathbb{R})$ in a potentially non-local way

MFG Setup

- Scheme introduced by [Carlini and Silva, 2014]
- For simplicity: $d=1$, domain $\mathcal{X}=\mathbb{R}, \mathcal{A}=\mathbb{R}$
- $\nu=0$, degenerate second order case also possible; see [Carlini and Silva, 2015]
- Model:

$$
\begin{aligned}
& b(x, m, \alpha)=\alpha \\
& f(x, m, \alpha)=\frac{1}{2}|\alpha|^{2}+f_{0}(x, m), \quad g(x, m)
\end{aligned}
$$

where f_{0} and g depend on $m \in \mathcal{P}_{1}(\mathbb{R})$ in a potentially non-local way

- MFG PDE system:

$$
\begin{cases}-\frac{\partial u}{\partial t}(t, x)+\frac{1}{2}|\nabla u(t, x)|^{2}=f_{0}(x, m(t, \cdot)), & \text { in }[0, T) \times \mathbb{R} \\ \frac{\partial m}{\partial t}(t, x)-\operatorname{div}(m(t, \cdot) \nabla u(t, \cdot))(x)=0, & \text { in }(0, T] \times \mathbb{R} \\ u(T, x)=g(x, m(T, \cdot)), \quad m(0, x)=m_{0}(x), & \text { in } \mathbb{R}\end{cases}
$$

- Dynamics:

$$
X_{t}^{\alpha}=X_{0}^{\alpha}+\int_{0}^{t} \alpha(s) d s, \quad t \geq 0
$$

- Representation formula for the value function given $m=\left(m_{t}\right)_{t \in[0, T]}$:

$$
\begin{aligned}
u[m](t, x)=\inf _{\left.\alpha \in L^{2}(t, T] ; \mathbb{R}\right)}\{ & \int_{t}^{T}\left[\frac{1}{2}|\alpha(s)|^{2}+f_{0}\left(X_{s}^{\alpha, t, x}, m(s, \cdot)\right)\right] d s \\
& \left.+g\left(X_{T}^{\alpha, t, x}, m(T, \cdot)\right)\right\},
\end{aligned}
$$

where $X^{\alpha, t, x}$ starts from x at time t and is controlled by α

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

$$
\begin{cases}U_{i}^{n}=S_{\Delta t, h}[m]\left(U^{n+1}, i, n\right), & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z}, \\ U_{i}^{N_{T}}=g\left(x_{i}, m(T, \cdot)\right), & i \in \mathbb{Z},\end{cases}
$$

where

- $S_{\Delta t, h}$ is defined as

$$
S_{\Delta t, h}[m](W, n, i)=\inf _{\alpha \in \mathbb{R}}\left\{\left(\frac{1}{2}|\alpha|^{2}+f_{0}\left(x_{i}, m\left(t_{n}, \cdot\right)\right)\right) \Delta t+I[W]\left(x_{i}+\alpha \Delta t\right)\right\}
$$

Discrete HJB equation

Discrete HJB: Given a flow of densities m,

$$
\begin{cases}U_{i}^{n}=S_{\Delta t, h}[m]\left(U^{n+1}, i, n\right), & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z} \\ U_{i}^{N_{T}}=g\left(x_{i}, m(T, \cdot)\right), & i \in \mathbb{Z}\end{cases}
$$

where

- $S_{\Delta t, h}$ is defined as

$$
S_{\Delta t, h}[m](W, n, i)=\inf _{\alpha \in \mathbb{R}}\left\{\left(\frac{1}{2}|\alpha|^{2}+f_{0}\left(x_{i}, m\left(t_{n}, \cdot\right)\right)\right) \Delta t+I[W]\left(x_{i}+\alpha \Delta t\right)\right\}
$$

- with $I: \mathcal{B}(\mathbb{Z}) \rightarrow \mathcal{C}_{b}(\mathbb{R})$ is the interpolation operator defined as

$$
I[W](\cdot)=\sum_{i \in \mathbb{Z}} W_{i} \beta_{i}(\cdot)
$$

- where $\mathcal{B}(\mathbb{Z})$ is the set of bounded functions from \mathbb{Z} to \mathbb{R}
- and $\beta_{i}=\left[1-\frac{\left|x-x_{i}\right|}{h}\right]_{+}$: triangular function with support $\left[x_{i-1}, x_{i+1}\right]$ and s.t. $\beta_{i}\left(x_{i}\right)=1$.

Discrete HJB equation - cont.

Before moving to the KFP equation:

- Interpolation: from $U=\left(U_{i}^{n}\right)_{n, i}$, construct the function $u_{\Delta t, h}[m](x, t):[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
u_{\Delta t, h}[m](t, x)=I\left[U^{\left[\frac{t}{\Delta t}\right]}\right](x), \quad(t, x) \in[0, T] \times \mathbb{R}
$$

Discrete HJB equation - cont.

Before moving to the KFP equation:

- Interpolation: from $U=\left(U_{i}^{n}\right)_{n, i}$, construct the function $u_{\Delta t, h}[m](x, t):[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
u_{\Delta t, h}[m](t, x)=I\left[U^{\left[\frac{t}{\Delta t}\right]}\right](x), \quad(t, x) \in[0, T] \times \mathbb{R}
$$

- Regularization of HJB solution with a mollifier ρ_{ϵ} :

$$
u_{\Delta t, h}^{\epsilon}[m](t, \cdot)=\rho_{\epsilon} * u_{\Delta t, h}[m](t, \cdot), \quad t \in[0, T] .
$$

- Eulerian viewpoint:
- focus on a location
- look at the flow passing through it
- evolution characterized by the velocity at (t, x)
- Lagrangian viewpoint:
- focus on a fluid parcel
- look at how it flows
- evolution characterized by the position at time t of a particle starting at x
- Eulerian viewpoint:
- focus on a location
- look at the flow passing through it
- evolution characterized by the velocity at (t, x)
- Lagrangian viewpoint:
- focus on a fluid parcel
- look at how it flows
- evolution characterized by the position at time t of a particle starting at x
- Here, in our model:

$$
X_{t}^{\alpha}=X_{0}^{\alpha}+\int_{0}^{t} \alpha(s) d s, \quad t \geq 0
$$

- Time and space discretization?

Bottom: time t_{n}; top: time t_{n+1}.

Movement of the mass when using control $v\left(t_{n}, x_{i}\right)=\alpha_{i}^{n}$.
Bottom: time t_{n}; top: time t_{n+1}.

Movement of the mass when using control $v\left(t_{n}, x_{i}\right)=\alpha_{i}^{n}$.
Bottom: time t_{n}; top: time t_{n+1}.

Discrete KFP equation

- Control induced by value function:

$$
\hat{\alpha}_{\Delta t, h}^{\epsilon}[m](t, x)=-\nabla u_{\Delta t, h}^{\epsilon}[m](t, x),
$$

and its discrete counter part: $\hat{\alpha}_{n, i}^{\epsilon}=\hat{\alpha}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right)$.

- Discrete flow:

$$
\Phi_{n, n+1, i}^{\epsilon}[m]=x_{i}+\hat{\alpha}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right) \Delta t
$$

Discrete KFP equation

- Control induced by value function:

$$
\hat{\alpha}_{\Delta t, h}^{\epsilon}[m](t, x)=-\nabla u_{\Delta t, h}^{\epsilon}[m](t, x),
$$

and its discrete counter part: $\hat{\alpha}_{n, i}^{\epsilon}=\hat{\alpha}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right)$.

- Discrete flow:

$$
\Phi_{n, n+1, i}^{\epsilon}[m]=x_{i}+\hat{\alpha}_{\Delta t, h}^{\epsilon}[m]\left(t_{n}, x_{i}\right) \Delta t .
$$

- Discrete KFP equation: for $M^{\epsilon}[m]=\left(M_{i}^{\epsilon, n}[m]\right)_{n, i}$:

$$
\begin{cases}M_{i}^{\epsilon, n+1}[m]=\sum_{j} \beta_{i}\left(\Phi_{n, n+1, j}^{\epsilon}[m]\right) M_{j}^{\epsilon, n}[m], & (n, i) \in \llbracket N_{T}-1 \rrbracket \times \mathbb{Z}, \\ M_{i}^{\epsilon, 0}[m]=\int_{\left[x_{i}-h / 2, x_{i}+h / 2\right]} m_{0}(x) d x, & i \in \mathbb{Z} .\end{cases}
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \llbracket N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \llbracket N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

- Goal: Fixed-point problem: Find $\hat{M}=\left(\hat{M}_{i}^{n}\right)_{i, n}$ such that:

$$
\hat{M}_{i}^{n}=M_{i}^{n}\left[m_{\Delta t, h}^{\epsilon}[\hat{M}]\right] .
$$

Fixed Point Formulation

- Function $m_{\Delta t, h}^{\epsilon}[m]:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined as: for $n \in \llbracket N_{T}-1 \rrbracket$, for $t \in\left[t_{n}, t_{n+1}\right)$,

$$
\begin{aligned}
m_{\Delta t, h}^{\epsilon}[m](t, x)=\frac{1}{h}\left[\frac{t_{n+1}-t}{\Delta t}\right. & \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x) \\
& \left.+\frac{t-t_{n}}{\Delta t} \sum_{i \in \mathbb{Z}} M_{i}^{\epsilon, n+1}[m] \mathbf{1}_{\left[x_{i}-h / 2, x_{i}+h / 2\right]}(x)\right]
\end{aligned}
$$

- Goal: Fixed-point problem: Find $\hat{M}=\left(\hat{M}_{i}^{n}\right)_{i, n}$ such that:

$$
\hat{M}_{i}^{n}=M_{i}^{n}\left[m_{\Delta t, h}^{\epsilon}[\hat{M}]\right] .
$$

- Solution strategy: Fixed point iterations for example
- See [Carlini and Silva, 2014] for more details

Numerical Illustration

Costs:

$$
g \equiv 0, \quad f(x, m, \alpha)=\frac{1}{2}|\alpha|^{2}+\left(x-c^{*}\right)^{2}+\kappa_{M F} V(x, m),
$$

with

$$
V(x, m)=\rho_{\sigma_{V}} *\left(\rho_{\sigma_{V}} * m\right)(x),
$$

Numerical Illustration

Costs:

$$
g \equiv 0, \quad f(x, m, \alpha)=\frac{1}{2}|\alpha|^{2}+\left(x-c^{*}\right)^{2}+\kappa_{M F} V(x, m),
$$

with

$$
V(x, m)=\rho_{\sigma_{V}} *\left(\rho_{\sigma_{V}} * m\right)(x),
$$

Experiments: target $c^{*}=0, m_{0}=$ unif. on $[-1.25,-0.75]$ and on $[0.75,1.25]$

$$
\kappa_{M F}=0.5
$$

$\kappa_{M F}=0.9$

See [Laurière, 2021] for more details on these experiments

Sample code

Code

Sample code to illustrate: IPython notebook
https://colab.research.google.com/drive/1ZikqKh-DlIGNJhhgzPQV0_gIuljOP78g?usp=sharing

- Semi-Lagrangian scheme
- Solved by damped fixed point approach

Exercise

Exercise

Implement the previous finite difference scheme on the same MFG model.
If the algorithm fails to converge with $\nu=0$, try with $\nu>0$ but small.

Outline

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

4. Methods for MKV FBSDE
5. Conclusion

Outline

3. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

4. Methods for MKV FBSDE
5. Conclusion

Variational MFGs

Key ideas:

- Variational MFG
- Duality
- Optimization techniques

Variational MFGs

In some cases, the MFG PDE system can be interpreted as the optimality conditions for a variational problem

MFG PDE system \Leftrightarrow optimality condition of two optimization problems in duality

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015], [Cardaliaguet et al., 2015], [Benamou et al., 2017], ...

A Variational MFG

- $d=1$, domain $=\mathbb{T}$
- drift and costs:

$$
b(x, m, \alpha)=\alpha, \quad f(x, m, \alpha)=L(x, \alpha)+f_{0}(x, m), \quad g(x, m)=g_{0}(x)
$$

where $x \in \mathbb{R}^{d}, \alpha \in \mathbb{R}^{d}, m \in \mathbb{R}_{+}$.

- Then

$$
H(x, m, p)=\sup _{\alpha}\{-L(x, \alpha)-\alpha p\}-\mathrm{f}_{0}(x, m)=H_{0}(x, p)-\mathrm{f}_{0}(x, m)
$$

- where H_{0} is the convex conjugate (also denoted L^{*}) of L with respect to α :

$$
H_{0}(x, p)=L^{*}(x, p)=\sup _{\alpha}\{\alpha p-L(x, \alpha)\}
$$

- Further assume (for simplicity)

$$
L(x, \alpha)=\frac{1}{2}|\alpha|^{2}, \quad H_{0}(x, p)=\frac{1}{2}|p|^{2}
$$

A Variational Problem

- At equilibrium, $\mathcal{L}\left(X_{t}\right)=\hat{\mu}_{t}$ and

$$
\begin{aligned}
J(\hat{\alpha} ; \hat{m}) & =\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \hat{m}\left(t, X_{t}\right), \hat{\alpha}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right] \\
& =\int_{0}^{T} \int_{\mathbb{T}} \underbrace{f(x, \hat{m}(t, x), \hat{\alpha}(t, x))}_{=L(x, \hat{\alpha}(t, x))+\mathrm{f}_{0}(x, \hat{m}(t, x))} \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{\alpha}(t, \cdot)}_{=\hat{\alpha}(t, \cdot)}))(x), \quad \hat{m}_{0}=m_{0}
$$

A Variational Problem

- At equilibrium, $\mathcal{L}\left(X_{t}\right)=\hat{\mu}_{t}$ and

$$
\begin{aligned}
J(\hat{\alpha} ; \hat{m}) & =\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \hat{m}\left(t, X_{t}\right), \hat{\alpha}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right] \\
& =\int_{0}^{T} \int_{\mathbb{T}} \underbrace{f(x, \hat{m}(t, x), \hat{\alpha}(t, x)}_{=L(x, \hat{\alpha}(t, x))+\mathrm{f}_{0}(x, \hat{m}(t, x))} \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{\alpha}(t, \cdot)}_{=\hat{\alpha}(t, \cdot)}))(x), \quad \hat{m}_{0}=m_{0}
$$

- Change of variable:

$$
\hat{w}(t, x)=\hat{m}(t, x) \hat{\alpha}(t, x)
$$

$\mathcal{B}(\hat{m}, \hat{w})=\int_{0}^{T} \int_{\mathbb{T}}\left[L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right)+f_{0}(x, \hat{m}(t, x))\right] \hat{m}(t, x) d x d t+\int_{\mathbb{T}} g(x) \hat{m}(T, x) d x$
subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

- Reformulation:

$$
\begin{aligned}
\mathcal{B}(\hat{m}, \hat{w})= & \int_{0}^{T} \int_{\mathbb{T}}[\underbrace{L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right) \hat{m}(t, x)}_{\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))}+\underbrace{f_{0}(x, \hat{m}(t, x)) \hat{m}(t, x)}_{\widetilde{F}(x, \hat{m}(t, x))}] d x d t \\
& +\int_{\mathbb{T}} \underbrace{g(x) \hat{m}(T, x)}_{\widetilde{G}(x, \hat{m}(t, x))} d x \\
= & \int_{0}^{T} \int_{\mathbb{T}}[\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))+\widetilde{F}(x, \hat{m}(t, x))] d x d t+\int_{\mathbb{T}} \widetilde{G}(x, \hat{m}(t, x)) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

Reformulation

- Reformulation:

$$
\begin{aligned}
\mathcal{B}(\hat{m}, \hat{w})= & \int_{0}^{T} \int_{\mathbb{T}}[\underbrace{L\left(x, \frac{\hat{w}(t, x)}{\hat{m}(t, x)}\right) \hat{m}(t, x)}_{\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))}+\underbrace{f_{0}(x, \hat{m}(t, x)) \hat{m}(t, x)}_{\widetilde{F}(x, \hat{m}(t, x))}] d x d t \\
& +\int_{\mathbb{T}} \underbrace{g(x) \hat{m}(T, x)}_{\widetilde{G}(x, \hat{m}(t, x))} d x \\
= & \int_{0}^{T} \int_{\mathbb{T}}[\widetilde{L}(x, \hat{m}(t, x), \hat{w}(t, x))+\widetilde{F}(x, \hat{m}(t, x))] d x d t+\int_{\mathbb{T}} \widetilde{G}(x, \hat{m}(t, x)) d x
\end{aligned}
$$

subject to:

$$
0=\frac{\partial \hat{m}}{\partial t}(t, x)-\nu \Delta \hat{m}(t, x)+\operatorname{div}(\hat{w}(t, \cdot))(x), \quad \hat{m}_{0}=m_{0}
$$

- Convex problem under a linear constraint, provided $\widetilde{L}, \widetilde{F}, \widetilde{G}$ are convex

Primal Optimization Problem

Primal problem: Minimize over $(m, w)=(m, m \alpha)$:
$\mathcal{B}(m, w)=\int_{0}^{T} \int_{\mathbb{T}}(\widetilde{L}(x, m(t, x), w(t, x))+\widetilde{F}(x, m(t, x))) d x d t+\int_{\mathbb{T}} \widetilde{G}(x, m(T, x)) d x$
subject to the constraint:

$$
\partial_{t} m-\nu \Delta m+\operatorname{div}(w)=0, \quad m(0, x)=m_{0}(x)
$$

Primal Optimization Problem

Primal problem: Minimize over $(m, w)=(m, m \alpha)$:
$\mathcal{B}(m, w)=\int_{0}^{T} \int_{\mathbb{T}}(\widetilde{L}(x, m(t, x), w(t, x))+\widetilde{F}(x, m(t, x))) d x d t+\int_{\mathbb{T}} \widetilde{G}(x, m(T, x)) d x$
subject to the constraint:

$$
\partial_{t} m-\nu \Delta m+\operatorname{div}(w)=0, \quad m(0, x)=m_{0}(x)
$$

where

$$
\widetilde{F}(x, m)=\left\{\begin{array}{ll}
\int_{0}^{m} \tilde{f}(x, s) d s, & \text { if } m \geq 0, \\
+\infty, & \text { otherwise },
\end{array} \quad \widetilde{G}(x, m)= \begin{cases}m g_{0}(x), & \text { if } m \geq 0 \\
+\infty, & \text { otherwise }\end{cases}\right.
$$

and

$$
\widetilde{L}(x, m, w)= \begin{cases}m L\left(x, \frac{w}{m}\right), & \text { if } m>0 \\ 0, & \text { if } m=0 \text { and } w=0 \\ +\infty, & \text { otherwise }\end{cases}
$$

where $\mathbb{R} \ni m \mapsto \tilde{f}(x, m)=\partial_{m}\left(m f_{0}(x, m)\right)$
is non-decreasing (hence \widetilde{F} convex and I.s.c.) provided $m \mapsto m \mathrm{f}_{0}(x, m)$ is convex.

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\begin{aligned}
& \mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m) \\
& \text { with } \mathcal{A}(\phi, m)=\int_{0}^{T} \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\
& \quad+\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x
\end{aligned}
$$

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m)
$$

with $\begin{aligned} \mathcal{A}(\phi, m)= & \int_{0}^{T} \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\ & +\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x .\end{aligned}$
Duality relation: \mathcal{A} and \mathcal{B} satisfy: $(\mathbf{A})=\sup _{\phi} \mathcal{A}(\phi)=\inf _{(m, w)} \mathcal{B}(m, w)=\mathbf{(B)}$

Duality

Dual problem: Maximize over ϕ such that $\phi(T, x)=g_{0}(x)$

$$
\mathcal{A}(\phi)=\inf _{m} \mathcal{A}(\phi, m)
$$

$$
\begin{aligned}
\text { with } \mathcal{A}(\phi, m)= & \int_{0}^{T} \\
& \int_{\mathbb{T}} m(t, x)\left(\partial_{t} \phi(t, x)+\nu \Delta \phi(t, x)-H(x, m(t, x), \nabla \phi(t, x))\right) d x d t \\
& +\int_{\mathbb{T}} m_{0}(x) \phi(0, x) d x
\end{aligned}
$$

Duality relation: \mathcal{A} and \mathcal{B} satisfy: $(\mathbf{A})=\sup _{\phi} \mathcal{A}(\phi)=\inf _{(m, w)} \mathcal{B}(m, w)=\mathbf{(B)}$
Proof idea: Fenchel-Rockafellar duality theorem and observe:
$(\mathbf{A})=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}$,
$\mathbf{(B)}=\inf _{(m, w)}\left\{\mathcal{F}^{*}\left(\Lambda^{*}(m, w)\right)+\mathcal{G}^{*}(-m,-w)\right\}$
where $\mathcal{F}^{*}, \mathcal{G}^{*}$ are the convex conjugates of \mathcal{F}, \mathcal{G}, and Λ^{*} is the adjoint operator of Λ, and $\Lambda(\phi)=\left(\frac{\partial \phi}{\partial t}+\nu \Delta \phi, \nabla \phi\right)$,

$$
\begin{gathered}
\mathcal{F}(\phi)=\chi_{T}(\phi)-\int_{\mathbb{T}^{d}} m_{0}(x) \phi(0, x) d x, \quad \chi_{T}(\phi)= \begin{cases}0 & \text { if }\left.\phi\right|_{t=T}=g_{0} \\
+\infty & \text { otherwise }\end{cases} \\
\mathcal{G}\left(\varphi_{1}, \varphi_{2}\right)=-\inf _{0 \leq m \in L^{1}\left((0, T) \times \mathbb{T}^{d}\right)} \int_{0}^{T} \int_{\mathbb{T}^{d}} m(t, x)\left(\varphi_{1}(t, x)-H\left(x, m(t, x), \varphi_{2}(t, x)\right)\right) d x d t .
\end{gathered}
$$

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

4. Methods for MKV FBSDE
5. Conclusion

Augmented Lagrangian

Reformulation of the primal problem:
$\mathbf{(A)}=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}=-\inf _{\phi} \inf _{q}\{\mathcal{F}(\phi)+\mathcal{G}(q)$, subj. to $q=\Lambda(\phi)\}$.

- The corresponding Lagrangian is

$$
\mathcal{L}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle
$$

Augmented Lagrangian

Reformulation of the primal problem:

$$
\mathbf{(A)}=-\inf _{\phi}\{\mathcal{F}(\phi)+\mathcal{G}(\Lambda(\phi))\}=-\inf _{\phi} \inf _{q}\{\mathcal{F}(\phi)+\mathcal{G}(q), \text { subj. to } q=\Lambda(\phi)\}
$$

- The corresponding Lagrangian is

$$
\mathcal{L}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle
$$

- We consider the augmented Lagrangian (with parameter $r>0$)

$$
\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{L}(\phi, q, \tilde{q})+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}
$$

- Goal: find a saddle-point of \mathcal{L}^{r}.

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess (\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)});\mathrm{ number of iterations K}
```

Output: Approximation of a saddle point (ϕ, q, \tilde{q}) solving the finite difference system
1 Initialize ($\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}$)
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3
(a) Compute

$$
\phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}
$$

References: ALG2 in the book of [Fortin and Glowinski, 1983]
\rightarrow in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
\rightarrow in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess (\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)});\mathrm{ number of iterations K}
```

Output: Approximation of a saddle point (ϕ, q, \tilde{q}) solving the finite difference system
1 Initialize ($\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}$)
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3
(a) Compute

$$
\phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\}
$$

$4 \quad$ (b) Compute

$$
q^{(\mathrm{k}+1)} \in \underset{q}{\operatorname{argmin}}\left\{\mathcal{G}(q)+\left\langle\tilde{q}^{(\mathrm{k})}, q\right\rangle+\frac{r}{2}\left\|\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q\right\|^{2}\right\}
$$

References: ALG2 in the book of [Fortin and Glowinski, 1983]
\rightarrow in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
\rightarrow in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

Alternating Direction Method of Multipliers (ADMM)

Reminder: $\mathcal{L}^{r}(\phi, q, \tilde{q})=\mathcal{F}(\phi)+\mathcal{G}(q)-\langle\tilde{q}, \Lambda(\phi)-q\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

$$
\begin{aligned}
& \text { Input: Initial guess }\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right) \text {; number of iterations K } \\
& \text { Output: Approximation of a saddle point }(\phi, q, \tilde{q}) \text { solving the finite difference } \\
& \text { system } \\
& 1 \text { Initialize }\left(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}\right) \\
& 2 \text { for } \mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1 \text { do } \\
& 3 \text { (a) Compute } \\
& \phi^{(\mathrm{k}+1)} \in \underset{\phi}{\operatorname{argmin}}\left\{\mathcal{F}(\phi)-\left\langle\tilde{q}^{(\mathrm{k})}, \Lambda(\phi)\right\rangle+\frac{r}{2}\left\|\Lambda(\phi)-q^{(\mathrm{k})}\right\|^{2}\right\} \\
& 4 \text { (b) Compute } \\
& q^{(\mathrm{k}+1)} \in \underset{q}{\operatorname{argmin}}\left\{\mathcal{G}(q)+\left\langle\tilde{q}^{(\mathrm{k})}, q\right\rangle+\frac{r}{2}\left\|\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q\right\|^{2}\right\} \\
& 5 \\
& \text { (c) Compute } \\
& \tilde{q}^{(\mathrm{k}+1)}=\tilde{q}^{(\mathrm{k})}-r\left(\Lambda\left(\phi^{(\mathrm{k}+1)}\right)-q^{(\mathrm{k}+1)}\right) \\
& 6 \text { return }\left(\phi^{(\mathrm{K})}, q^{(\mathrm{K})}, \tilde{q}^{(\mathrm{K})}\right)
\end{aligned}
$$

References: ALG2 in the book of [Fortin and Glowinski, 1983]
\rightarrow in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
\rightarrow in MFC:[Achdou and Laurière, 2016b], [Baudelet et al., 2023]

ADMM: Discrete Primal Problem

Notation: N_{h}, N_{T} steps resp. in space and time, $N=\left(N_{T}+1\right) N_{h}, N^{\prime}=N_{T} N_{h}$.
Recall: $H_{0}(x, p)=\frac{1}{2}|p|^{2}$. We take $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\frac{1}{2}\left|\left(p_{1}^{-}, p_{2}^{+}\right)\right|^{2}$.
Discrete version of the dual convex problem:

$$
\left(\mathbf{A}_{\mathbf{h}}\right)=-\inf _{\phi \in \mathbb{R}^{N}}\left\{\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}\left(\Lambda_{h}(\phi)\right)\right\}
$$

where $\Lambda_{h}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{3 N^{\prime}}$ is defined by : $\forall n \in\left\{1, \ldots, N_{T}\right\}, \forall i \in\left\{0, \ldots, N_{h}-1\right\}$,

$$
\left(\Lambda_{h}(\phi)\right)_{i}^{n}=\left(\left(D_{t} \phi_{i}\right)^{n}+\nu\left(\Delta_{h} \phi^{n-1}\right)_{i},\left[\nabla_{h} \phi^{n-1}\right]_{i}\right)
$$

ADMM: Discrete Primal Problem

Notation: N_{h}, N_{T} steps resp. in space and time, $N=\left(N_{T}+1\right) N_{h}, N^{\prime}=N_{T} N_{h}$.
Recall: $H_{0}(x, p)=\frac{1}{2}|p|^{2}$. We take $\tilde{H}_{0}\left(x, p_{1}, p_{2}\right)=\frac{1}{2}\left|\left(p_{1}^{-}, p_{2}^{+}\right)\right|^{2}$.
Discrete version of the dual convex problem:

$$
\left(\mathbf{A}_{\mathbf{h}}\right)=-\inf _{\phi \in \mathbb{R}^{N}}\left\{\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}\left(\Lambda_{h}(\phi)\right)\right\}
$$

where $\Lambda_{h}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{3 N^{\prime}}$ is defined by : $\forall n \in\left\{1, \ldots, N_{T}\right\}, \forall i \in\left\{0, \ldots, N_{h}-1\right\}$,

$$
\left(\Lambda_{h}(\phi)\right)_{i}^{n}=\left(\left(D_{t} \phi_{i}\right)^{n}+\nu\left(\Delta_{h} \phi^{n-1}\right)_{i},\left[\nabla_{h} \phi^{n-1}\right]_{i}\right)
$$

where $\mathcal{F}_{h}, \mathcal{G}_{h}$ are the l.s.c. proper functions defined by:

$$
\begin{gathered}
\mathcal{F}_{h}: \mathbb{R}^{N} \ni \phi \mapsto \chi_{T}(\phi)-h \sum_{i=0}^{N_{h}-1} \rho_{i}^{0} \phi_{i}^{0} \in \mathbb{R} \cup\{+\infty\}, \\
\mathcal{G}_{h}: \mathbb{R}^{3 N^{\prime}} \ni(a, b, c) \mapsto-h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \mathcal{K}_{h}\left(x_{i}, a_{i}^{n}, b_{i}^{n}, c_{i}^{n}\right) \in \mathbb{R} \cup\{+\infty\},
\end{gathered}
$$

with
$\mathcal{K}_{h}\left(x, a_{0}, p_{1}, p_{2}\right)=\min _{m \in \mathbb{R}_{+}}\left\{m\left[a_{0}+\tilde{H}_{0}\left(x, m, p_{1}, p_{2}\right)\right]\right\}, \quad \chi_{T}(\phi)= \begin{cases}0 & \text { if } \phi_{i}^{N_{T}} \equiv g_{0}\left(x_{i}\right) \\ +\infty & \text { otherwise } .\end{cases}$

ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess (\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)})\mathrm{ ; number of iterations K}
Output: Approximation of a saddle point ( }\phi,q,\tilde{q}
Initialize ( }\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)}
for k}=0,1,2,\ldots,K-1 do
    (a) Compute }\mp@subsup{\phi}{}{(\textrm{k}+1)}\in\mp@subsup{\operatorname{argmin}}{\phi}{}{\mp@subsup{\mathcal{F}}{h}{}(\phi)-\langle\mp@subsup{\tilde{q}}{}{(\textrm{k})},\mp@subsup{\Lambda}{h}{}(\phi)\rangle+\frac{r}{2}|\mp@subsup{\Lambda}{h}{}(\phi)-\mp@subsup{q}{}{(\textrm{k})}\mp@subsup{|}{}{2}
    (b) Compute q}\mp@subsup{q}{}{(\textrm{k}+1)}\in\mp@subsup{\operatorname{argmin}}{q}{}{\mp@subsup{\mathcal{G}}{h}{}(q)+\langle\mp@subsup{\tilde{q}}{}{(\textrm{k})},q\rangle+\frac{r}{2}|\mp@subsup{\Lambda}{h}{}(\mp@subsup{\phi}{}{(\textrm{k}+1)})-q\mp@subsup{|}{}{2}
    (c) Compute }\mp@subsup{\tilde{q}}{}{(\textrm{k}+1)}=\mp@subsup{\tilde{q}}{}{(\textrm{k})}-r(\mp@subsup{\Lambda}{h}{}(\mp@subsup{\phi}{}{(\textrm{k}+1)})-\mp@subsup{q}{}{(\textrm{k}+1)}
return (\mp@subsup{\phi}{}{(\textrm{K})},\mp@subsup{q}{}{(\textrm{K})},\mp@subsup{\tilde{q}}{}{(\textrm{K})})
```


ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess ( }\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)})\mathrm{ ; number of iterations K
Output: Approximation of a saddle point ( }\phi,q,\tilde{q}
1 Initialize ( }\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)}
2 for k}=0,1,2,\ldots,K-1 do
3 (a) Compute }\mp@subsup{\phi}{}{(\textrm{k}+1)}\in\mp@subsup{\operatorname{argmin}}{\phi}{}{\mp@subsup{\mathcal{F}}{h}{}(\phi)-\langle\mp@subsup{\tilde{q}}{}{(\textrm{k})},\mp@subsup{\Lambda}{h}{}(\phi)\rangle+\frac{r}{2}|\mp@subsup{\Lambda}{h}{}(\phi)-\mp@subsup{q}{}{(\textrm{k})}\mp@subsup{|}{}{2}
5 (c) Compute \tilde{q}}\mp@subsup{}{(\textrm{k}+1)}{=}\mp@subsup{\tilde{q}}{}{(\textrm{k})}-r(\mp@subsup{\Lambda}{h}{}(\mp@subsup{\phi}{}{(\textrm{k}+1)})-\mp@subsup{q}{}{(\textrm{k}+1)}
6 return (\mp@subsup{\phi}{}{(K)},\mp@subsup{q}{}{(\textrm{K})},\mp@subsup{\tilde{q}}{}{(\textrm{K})})
```

4

First-order Optimality Conditions:
Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid

ADMM with Discretization

Discrete Aug. Lag.: $\mathcal{L}_{h}^{r}(\phi, q, \tilde{q})=\mathcal{F}_{h}(\phi)+\mathcal{G}_{h}(q)-\left\langle\tilde{q}, \Lambda_{h}(\phi)-q\right\rangle+\frac{r}{2}\|\Lambda(\phi)-q\|^{2}$

```
Input: Initial guess ( }\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)})\mathrm{ ; number of iterations K
Output: Approximation of a saddle point ( }\phi,q,\tilde{q}
1 Initialize ( }\mp@subsup{\phi}{}{(0)},\mp@subsup{q}{}{(0)},\mp@subsup{\tilde{q}}{}{(0)}
2 for k}=0,1,2,\ldots,k-1 do
5 (c) Compute \tilde{q}}\mp@subsup{}{(\textrm{k}+1)}{=}\mp@subsup{\tilde{q}}{}{(\textrm{k})}-r(\mp@subsup{\Lambda}{h}{}(\mp@subsup{\phi}{}{(\textrm{k}+1)})-\mp@subsup{q}{}{(\textrm{k}+1)}
return (\mp@subsup{\phi}{}{(\textrm{K})},\mp@subsup{q}{}{(\textrm{K}},\mp@subsup{\tilde{q}}{}{(\textrm{K}})
```

3
4

First-order Optimality Conditions:

Step (a): finite-difference equation
Step (b): minimization problem at each point of the grid
Rem.: For (a): discrete PDE

- if $\nu=0$, a direct solver can be used
- if $\nu>0$, PDE with $4^{\text {th }}$ order linear elliptic operator \Rightarrow needs preconditioner See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]
- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega, \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega .\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Domain $\Omega=[0,1]^{2} \backslash[0.4,0.6]^{2}$ (obstacle at the center)
- Define the Hamiltonian by duality (on $\partial \Omega$ the vector speed is towards the interior)

$$
H(x, m, p)= \begin{cases}\sup _{\xi \in \mathbb{R}^{2}}\{-\xi \cdot p-L(x, m, \xi)\}=m^{-\alpha}|p|^{\beta}-\ell(x, m), & \text { if } x \in \Omega, \\ \sup _{\xi \in \mathbb{R}^{2}: \xi \cdot n \leq 0}\{-\xi \cdot p-L(x, m, \xi)\}, & \text { if } x \in \partial \Omega .\end{cases}
$$

- The associated Lagrangian (corresponding to the running cost) is:

$$
L(x, m, \xi)=(\beta-1) \beta^{-\beta^{*}} m^{\frac{\alpha}{\beta-1}}|\xi|^{\beta^{*}}+\ell(x, m), \quad 1<\beta \leq 2,0 \leq \alpha<1
$$

- Ex.: $m_{0}: \& u_{T}$: opposite corners; $\alpha=0.01, \beta=2, \ell(x, m)=0.01 \mathrm{~m}$.

Results for the mean field control (MFC) problem, with $\nu=0$

> Initial distribution (left) and final cost (right)

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

Density at time $t=0$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=T / 8
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=T / 4
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=3 T / 8
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=T / 2
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=5 T / 8
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=3 T / 4
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

$$
\text { Density at time } t=7 T / 8
$$

For more details, see [Achdou and Laurière, 2016b]

Results for the mean field control (MFC) problem, with $\nu=0$

Density at time $t=T$

For more details, see [Achdou and Laurière, 2016b]

Outline

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG

- Variational MFGs and Duality
- Alternating Direction Method of Multipliers
- A Primal-Dual Method

4. Methods for MKV FBSDE
5. Conclusion

Optimality Conditions and Proximal Operator

- Let $\varphi, \psi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex I.s.c. proper functions.
- Consider the optimization problem

$$
\min _{y \in \mathbb{R}^{N}} \varphi(y)+\psi(y)
$$

and its dual

$$
\min _{\sigma \in \mathbb{R}^{N}} \varphi^{*}(-\sigma)+\psi^{*}(\sigma)
$$

Optimality Conditions and Proximal Operator

- Let $\varphi, \psi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex l.s.c. proper functions.
- Consider the optimization problem

$$
\min _{y \in \mathbb{R}^{N}} \varphi(y)+\psi(y)
$$

and its dual

$$
\min _{\sigma \in \mathbb{R}^{N}} \varphi^{*}(-\sigma)+\psi^{*}(\sigma)
$$

- The $1^{s t}$-order opt. cond. satisfied by a solution $(\hat{y}, \hat{\sigma})$ are
$\left\{\begin{array}{l}-\hat{\sigma} \in \partial \varphi(\hat{y}) \\ \hat{y} \in \partial \psi^{*}(\hat{\sigma})\end{array} \Leftrightarrow\left\{\begin{array}{l}\hat{y}-\tau \hat{\sigma} \in \tau \partial \varphi(\hat{y})+\hat{y} \\ \hat{\sigma}+\gamma \hat{y} \in \gamma \partial \psi^{*}(\hat{\sigma})+\hat{\sigma}\end{array} \Leftrightarrow\left\{\begin{array}{l}\operatorname{prox}_{\tau \varphi}(\hat{y}-\tau \hat{\sigma})=\hat{y} \\ \operatorname{prox}_{\gamma \psi^{*}}(\hat{\sigma}+\gamma \hat{y})=\hat{\sigma},\end{array}\right.\right.\right.$
where $\gamma>0$ and $\tau>0$ are arbitrary and
- The proximal operator of a l.s.c. convex proper $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ is:

$$
\operatorname{prox}_{\gamma \phi}(x):=\underset{y \in \mathbb{R}^{N}}{\operatorname{argmin}}\left\{\phi(y)+\frac{|y-x|^{2}}{2 \gamma}\right\}=(I+\partial(\gamma \phi))^{-1}(x), \quad \forall x \in \mathbb{R}^{N}
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when $\tau \gamma<1$.

Input: Initial guess $\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right) ; \theta \in[0,1] ; \gamma>0, \tau>0$; number of iterations K
Output: Approximation of ($\hat{\sigma}, \hat{y}$) solving the optimality conditions
1 Initialize ($\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}$)
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3 (a) Compute

$$
\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right),
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when $\tau \gamma<1$.

Input: Initial guess $\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right) ; \theta \in[0,1] ; \gamma>0, \tau>0$; number of iterations K
Output: Approximation of ($\hat{\sigma}, \hat{y}$) solving the optimality conditions
1 Initialize ($\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}$)
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3 (a) Compute

$$
\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right),
$$

(b) Compute

$$
y^{(\mathrm{k}+1)}=\operatorname{prox}_{\tau \varphi}\left(y^{(\mathrm{k})}-\tau \sigma^{(\mathrm{k}+1)}\right),
$$

Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when $\tau \gamma<1$.

```
Input: Initial guess \(\left(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\right) ; \theta \in[0,1] ; \gamma>0, \tau>0\); number of iterations K
Output: Approximation of ( \(\hat{\sigma}, \hat{y}\) ) solving the optimality conditions
1 Initialize ( \(\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}\) )
2 for \(\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1\) do
    (a) Compute
\[
\sigma^{(\mathrm{k}+1)}=\operatorname{prox}_{\gamma \psi^{*}}\left(\sigma^{(\mathrm{k})}+\gamma \bar{y}^{(\mathrm{k})}\right),
\]
(b) Compute
\[
y^{(\mathrm{k}+1)}=\operatorname{prox}_{\tau \varphi}\left(y^{(\mathrm{k})}-\tau \sigma^{(\mathrm{k}+1)}\right),
\]
(c) Compute
\[
\bar{y}^{(\mathrm{k}+1)}=y^{(\mathrm{k}+1)}+\theta\left(y^{(\mathrm{k}+1)}-y^{(\mathrm{k})}\right) .
\]
6 return \(\left(\sigma^{(\mathrm{K})}, y^{(\mathrm{K})}, \bar{y}^{(\mathrm{K})}\right)\)
```


Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\},
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
$\bullet \mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
\bullet with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.

Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\},
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
$\bullet \mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
\bullet with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.
Rem.: The max can be costly to compute but in some cases \tilde{L}_{h} has a closed-form expression. Finally $\Lambda_{h}^{*}: \mathbb{R}^{3 N^{\prime}} \rightarrow \mathbb{R}^{N}$ denotes the adjoint of Λ_{h} : for all $(m, y, z) \in \mathbb{R}^{3 N^{\prime}}, \phi \in \mathbb{R}^{N}$:

$$
\left\langle\Lambda_{h}^{*}(m, y, z), \phi\right\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}=\left\langle(m, y, z), \Lambda_{h}(\phi)\right\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}
$$

Dual of Discrete Problem ($\mathbf{A}_{\mathbf{h}}$)

By Fenchel-Rockafellar theorem, the dual problem of $\left(\mathbf{A}_{\mathbf{h}}\right)$ is:

$$
\left(\mathbf{B}_{\mathbf{h}}\right)=\min _{\left(m, w_{1}, w_{2}\right)=\sigma \in \mathbb{R}^{3 N^{\prime}}}\left\{\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(\sigma)\right)+\mathcal{G}_{h}^{*}(-\sigma)\right\},
$$

where \mathcal{G}_{h}^{*} and \mathcal{F}_{h}^{*} are respectively the Legendre-Fenchel conjugates of \mathcal{G}_{h} and \mathcal{F}_{h}, defined by:

- $\mathcal{F}_{h}^{*}(\mu)=\sup _{\phi \in \mathbb{R}^{N}}\left\{\langle\mu, \phi\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}-\mathcal{F}_{h}(\phi)\right\}, \quad \forall \mu \in \mathbb{R}^{N}$
$\bullet \mathcal{G}_{h}^{*}(-\sigma)=\max _{q \in \mathbb{R}^{3 N^{\prime}}}\left\{-\langle\sigma, q\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}-\mathcal{G}_{h}(q)\right\}=h \Delta t \sum_{n=1}^{N_{T}} \sum_{i=0}^{N_{h}-1} \tilde{L}_{h}\left(x_{i}, \sigma_{i}^{n}\right), \quad \forall \sigma \in \mathbb{R}^{3 N^{\prime}}$
- with $\tilde{L}_{h}\left(x, \sigma_{0}\right)=\max _{p_{0} \in \mathbb{R}^{3}}\left\{-\sigma_{0} \cdot p_{0}+\mathcal{K}_{h}\left(x, q_{0}\right)\right\}, \quad \forall \sigma_{0} \in \mathbb{R}^{3}$.

Rem.: The max can be costly to compute but in some cases \tilde{L}_{h} has a closed-form expression. Finally $\Lambda_{h}^{*}: \mathbb{R}^{3 N^{\prime}} \rightarrow \mathbb{R}^{N}$ denotes the adjoint of Λ_{h} : for all $(m, y, z) \in \mathbb{R}^{3 N^{\prime}}, \phi \in \mathbb{R}^{N}$:

$$
\left\langle\Lambda_{h}^{*}(m, y, z), \phi\right\rangle_{\ell^{2}\left(\mathbb{R}^{N}\right)}=\left\langle(m, y, z), \Lambda_{h}(\phi)\right\rangle_{\ell^{2}\left(\mathbb{R}^{3 N^{\prime}}\right)}
$$

Rem.: We have $\mathcal{F}_{h}^{*}\left(\Lambda_{h}^{*}(m, y, z)\right)= \begin{cases}h \sum_{i=0}^{N_{h}-1} m_{i}^{N_{T}} \mathrm{~g}_{0}\left(x_{i}\right), & \text { if }(m, y, z) \text { satisfies }(\star) \text { below, } \\ +\infty, & \text { otherwise, }\end{cases}$
with $\forall i \in\left\{0, \ldots, N_{h}-1\right\}, m_{i}^{0}=\rho_{i}^{0}$, and $\forall n \in\left\{0, \ldots, N_{T}-1\right\}$:

$$
\left(D_{t} m_{i}\right)^{n}-\nu\left(\Delta_{h} m^{n+1}\right)_{i}+\frac{y_{i}^{n+1}-y_{i-1}^{n+1}}{h}+\frac{z_{i+1}^{n+1}-z_{i}^{n+1}}{h}=0 .
$$

Reformulation

The discrete dual problem can be recast as:

$$
\begin{equation*}
\inf _{(m, w)} \underbrace{\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m)}_{\varphi(m, w)}+\underbrace{\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)}_{\psi(m, w)} \tag{h}
\end{equation*}
$$

with the costs

$$
\begin{aligned}
& \qquad \mathbb{F}_{h}(m):=\sum_{i, n} \widetilde{F}\left(x_{i}, m_{i}^{n}\right)+\frac{1}{\Delta t} \sum_{i} \widetilde{G}\left(x_{i}, m_{i}^{N_{T}}\right), \quad \mathbb{B}_{h}(m, w):=\sum_{i, n} \hat{b}\left(m_{i}^{n}, w_{i}^{n-1}\right) \\
& \qquad \hat{b}(m, w):= \begin{cases}m L\left(x,-\frac{w}{m}\right), & \text { if } m>0, w \in K=\mathbb{R}_{-} \times \mathbb{R}_{+} \\
0, & \text { if }(m, w)=(0,0) \\
+\infty, & \text { otherwise, }\end{cases} \\
& \text { and } \mathbb{G}(m, w):=\left(m_{0},\left(A m^{n+1}+B w^{n}\right)_{0 \leq n \leq N_{T}-1}\right) \text { with }
\end{aligned}
$$

$$
(A m)_{i}^{n+1}:=\left(D_{t} m\right)_{i}^{n}-\nu\left(\Delta_{h} m\right)_{i}^{n+1}, \quad(B w)_{i}^{n}:=\left(D_{h} w^{1}\right)_{i-1}^{n}+\left(D_{h} w^{2}\right)_{i}^{n}
$$

Reformulation

The discrete dual problem can be recast as:

$$
\begin{equation*}
\inf _{(m, w)} \underbrace{\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m)}_{\varphi(m, w)}+\underbrace{\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)}_{\psi(m, w)} \tag{h}
\end{equation*}
$$

with the costs

$$
\begin{aligned}
& \qquad \mathbb{F}_{h}(m):=\sum_{i, n} \widetilde{F}\left(x_{i}, m_{i}^{n}\right)+\frac{1}{\Delta t} \sum_{i} \widetilde{G}\left(x_{i}, m_{i}^{N_{T}}\right), \quad \mathbb{B}_{h}(m, w):=\sum_{i, n} \hat{b}\left(m_{i}^{n}, w_{i}^{n-1}\right), \\
& \qquad \hat{b}(m, w):= \begin{cases}m L\left(x,-\frac{w}{m}\right), & \text { if } m>0, w \in K=\mathbb{R}-\times \mathbb{R}_{+}, \\
0, & \text { if }(m, w)=(0,0), \\
+\infty, & \text { otherwise, }\end{cases} \\
& \text { and } \mathbb{G}(m, w):=\left(m_{0},\left(A m^{n+1}+B w^{n}\right)_{\left.0 \leq n \leq N_{T}-1\right) \text { with }}\right.
\end{aligned}
$$

$$
(A m)_{i}^{n+1}:=\left(D_{t} m\right)_{i}^{n}-\nu\left(\Delta_{h} m\right)_{i}^{n+1}, \quad(B w)_{i}^{n}:=\left(D_{h} w^{1}\right)_{i-1}^{n}+\left(D_{h} w^{2}\right)_{i}^{n}
$$

Rem.: The optimality conditions of this problem correspond to the finite-difference system
So we can apply Chambolle-Pock's method for $\left(P_{h}\right)$ with

$$
y=(m, w), \quad \varphi(m, w)=\mathbb{B}_{h}(m, w)+\mathbb{F}_{h}(m), \quad \psi(m, w)=\iota_{\mathbb{G}^{-1}\left(\rho^{0}, 0\right)}(m, w)
$$

See [Briceño Arias et al., 2018] and [Briceño Arias et al., 2019] in stationary and dynamic cases.

Numerical Example

Setting: $g \equiv 0$ and $\mathbb{R}^{2} \times \mathbb{R} \ni(x, m) \mapsto f(x, m):=m^{2}-\bar{H}(x)$, with

$$
\bar{H}(x)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(2 \pi x_{1}\right)
$$

We solve the corresponding MFG and obtain the following evolution of the density:

Evolution of the density
More details in [Briceño Arias et al., 2019]

Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

- the mass starts from an initial density;
- it converges to a steady state, influenced only by the running cost;
- as $t \rightarrow T$, the mass is influenced by the final cost and converges to a final state.

L^{2} distance between dynamic and stationary solutions
More details in [Briceño Arias et al., 2019]

Outline

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE

- A Picard Scheme for MKV FBSDE
- Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

Outline

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE

- A Picard Scheme for MKV FBSDE
- Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

MKV FBSDE System

- Recall: generic form:

$$
\left\{\begin{array}{lc}
d X_{t}=B\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+\sigma d W_{t}, & 0 \leq t \leq T \\
d Y_{t}=-F\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, & 0 \leq t \leq T \\
X_{0} \sim m_{0}, \quad Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) &
\end{array}\right.
$$

- Decouple:
- Given $(\mathcal{L}(X), Y, Z)$, solve for X
- Given $(X, \mathcal{L}(X))$ solve for (Y, Z)
- Iterate
- Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T;
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
Initialize $X_{t}^{(0)}=\xi, Y_{t}^{(0)}=0, Z_{t}^{(0)}=0,0 \leq t \leq T$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $X^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
d X_{t}=B\left(X_{t}^{(\mathrm{k})}, \mathcal{L}\left(X_{t}^{(\mathrm{k})}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+\sigma d W_{t}, \quad 0 \leq t \leq T \\
X_{0}=\xi
\end{array}\right.
$$

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T;
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize $X_{t}^{(0)}=\xi, Y_{t}^{(0)}=0, Z_{t}^{(0)}=0,0 \leq t \leq T$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $X^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
d X_{t}=B\left(X_{t}^{(\mathrm{k})}, \mathcal{L}\left(X_{t}^{(\mathrm{k})}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+\sigma d W_{t}, \quad 0 \leq t \leq T \\
X_{0}=\xi
\end{array}\right.
$$

Let $\left(Y^{(\mathrm{k}+1)}, Z^{(\mathrm{k}+1)}\right)$ be the solution to:

$$
\left\{\begin{array}{l}
d Y_{t}=-F\left(X_{t}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t}^{(\mathrm{k}+1)}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+Z_{t}^{(\mathrm{k})} d W_{t}, \quad 0 \leq t \leq T \\
Y_{T}=\zeta
\end{array}\right.
$$

5 return Picard $[T](\xi, \zeta)=\left(X^{(\mathrm{K})}, Y^{(\mathrm{K})}, Z^{(\mathrm{K})}\right)$

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T;
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize $X_{t}^{(0)}=\xi, Y_{t}^{(0)}=0, Z_{t}^{(0)}=0,0 \leq t \leq T$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $X^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
d X_{t}=B\left(X_{t}^{(\mathrm{k})}, \mathcal{L}\left(X_{t}^{(\mathrm{k})}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+\sigma d W_{t}, \quad 0 \leq t \leq T \\
X_{0}=\xi
\end{array}\right.
$$

Let $\left(Y^{(\mathrm{k}+1)}, Z^{(\mathrm{k}+1)}\right)$ be the solution to:

$$
\left\{\begin{array}{l}
d Y_{t}=-F\left(X_{t}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t}^{(\mathrm{k}+1)}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+Z_{t}^{(\mathrm{k})} d W_{t}, \quad 0 \leq t \leq T \\
Y_{T}=\zeta
\end{array}\right.
$$

5 return Picard $[T](\xi, \zeta)=\left(X^{(\mathrm{K})}, Y^{(\mathrm{K})}, Z^{(\mathrm{K})}\right)$

Notation: $\Phi_{\xi, \zeta}:\left(X^{(\mathrm{k})}, \mathcal{L}\left(X^{(\mathrm{k})}\right), Y^{(\mathrm{k})}, Z^{(\mathrm{k})}\right) \mapsto\left(X^{(\mathrm{k}+1)}, \mathcal{L}\left(X^{(\mathrm{k}+1)}\right), Y^{(\mathrm{k}+1)}, Z^{(\mathrm{k}+1)}\right)$

Picard Scheme for MKV FBSDE System

Algorithm: Picard scheme for MKV FBSDE

Input: Initial guess (ξ, ζ); initial condition ξ; terminal condition ζ; time horizon T;
number of iterations K
Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize $X_{t}^{(0)}=\xi, Y_{t}^{(0)}=0, Z_{t}^{(0)}=0,0 \leq t \leq T$
for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
Let $X^{(k+1)}$ be the solution to:

$$
\left\{\begin{array}{l}
d X_{t}=B\left(X_{t}^{(\mathrm{k})}, \mathcal{L}\left(X_{t}^{(\mathrm{k})}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+\sigma d W_{t}, \quad 0 \leq t \leq T \\
X_{0}=\xi
\end{array}\right.
$$

Let $\left(Y^{(\mathrm{k}+1)}, Z^{(\mathrm{k}+1)}\right)$ be the solution to:

$$
\left\{\begin{array}{l}
d Y_{t}=-F\left(X_{t}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t}^{(\mathrm{k}+1)}\right), Y_{t}^{(\mathrm{k})}, Z_{t}^{(\mathrm{k})}\right) d t+Z_{t}^{(\mathrm{k})} d W_{t}, \quad 0 \leq t \leq T \\
Y_{T}=\zeta
\end{array}\right.
$$

5 return Picard $[T](\xi, \zeta)=\left(X^{(\mathrm{K})}, Y^{(\mathrm{K})}, Z^{(\mathrm{K})}\right)$

Notation: $\Phi_{\xi, \zeta}:\left(X^{(\mathrm{k})}, \mathcal{L}\left(X^{(\mathrm{k})}\right), Y^{(\mathrm{k})}, Z^{(\mathrm{k})}\right) \mapsto\left(X^{(\mathrm{k}+1)}, \mathcal{L}\left(X^{(\mathrm{k}+1)}\right), Y^{(\mathrm{k}+1)}, Z^{(\mathrm{k}+1)}\right)$
Contraction? Small T or small Lipschitz constants for B, F, G

Continuation Method

- If T is big: Solve FBSDE on small intervals \& "patch" the solutions together

Continuation Method

- If T is big: Solve FBSDE on small intervals \& "patch" the solutions together
- Grid: $0=T_{0}<T_{1}<\cdots<T_{M-1}<T_{M}=T$
- Subproblem: Given $\left(\xi_{T_{m}}, \mathcal{L}\left(\xi_{T_{m}}\right)\right)$ and $\zeta_{T_{m+1}}$, solve:

$$
\left\{\begin{array}{lr}
d X_{t}=B\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+\sigma d W_{t}, & T_{m} \leq t \leq T_{m+1} \\
d Y_{t}=-F\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, & T_{m} \leq t \leq T_{m+1} \\
X_{T_{m}}=\xi_{T_{m}}, \quad Y_{T_{m+1}}=\zeta_{T_{m+1}} &
\end{array}\right.
$$

Continuation Method

- If T is big: Solve FBSDE on small intervals \& "patch" the solutions together
- Grid: $0=T_{0}<T_{1}<\cdots<T_{M-1}<T_{M}=T$
- Subproblem: Given $\left(\xi_{T_{m}}, \mathcal{L}\left(\xi_{T_{m}}\right)\right)$ and $\zeta_{T_{m+1}}$, solve:

$$
\left\{\begin{array}{lr}
d X_{t}=B\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+\sigma d W_{t}, & T_{m} \leq t \leq T_{m+1} \\
d Y_{t}=-F\left(X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, & T_{m} \leq t \leq T_{m+1} \\
X_{T_{m}}=\xi_{T_{m}}, \quad Y_{T_{m+1}}=\zeta_{T_{m+1}} &
\end{array}\right.
$$

- How to find $\xi_{T_{m}}$ and $\zeta_{T_{m+1}}$?
$\rightarrow \xi_{T_{m}}$ from previous problem's solution (or initial condition)
$\rightarrow \zeta_{T_{m+1}}$ from next problem's solution (or terminal condition)

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

$$
\text { Solver }[m]\left(\xi_{0}, \mu_{0}\right)
$$

with ξ_{0} a random variable with distribution μ_{0}

Input: Initial guess $(\xi, \mathcal{L}(\xi))$; time step index m; number of iterations K
Output: Approximation of $Y_{T_{m}}$ where (X, Y, Z) solves the MKV FBSDE system on $\left[T_{m}, T\right]$ starting with $(\xi, \mathcal{L}(\xi))$ at time T_{m}
1 Initialize $X_{t}^{(0)}=\xi, \mathcal{L}\left(X_{t}^{(0)}\right)=\mathcal{L}(\xi)$ for all $T_{m} \leq t \leq T_{m+1}$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
${ }^{3} \quad$ If $T_{m+1}=T, Y_{T_{m+1}}^{(\mathrm{k}+1)}=G\left(X_{T_{m+1}}^{(\mathrm{k})}, \mathcal{L}\left(X_{T_{m+1}}^{(\mathrm{k})}\right)\right)$

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

$$
\text { Solver }[m]\left(\xi_{0}, \mu_{0}\right)
$$

with ξ_{0} a random variable with distribution μ_{0}

Input: Initial guess $(\xi, \mathcal{L}(\xi))$; time step index m; number of iterations K
Output: Approximation of $Y_{T_{m}}$ where (X, Y, Z) solves the MKV FBSDE system on $\left[T_{m}, T\right]$ starting with $(\xi, \mathcal{L}(\xi))$ at time T_{m}
1 Initialize $X_{t}^{(0)}=\xi, \mathcal{L}\left(X_{t}^{(0)}\right)=\mathcal{L}(\xi)$ for all $T_{m} \leq t \leq T_{m+1}$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
3 If $T_{m+1}=T, Y_{T_{m+1}}^{(\mathrm{k}+1)}=G\left(X_{T_{m+1}}^{(\mathrm{k})}, \mathcal{L}\left(X_{T_{m+1}}^{(\mathrm{k})}\right)\right)$
4 Else: compute recursively:

$$
Y_{T_{m+1}}^{(\mathrm{k}+1)}=\text { Solver }[m+1]\left(X_{T_{m+1}}^{(\mathrm{k})}, \mathcal{L}\left(X_{T_{m+1}}^{(\mathrm{k})}\right)\right)
$$

Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

$$
\text { Solver }[m]\left(\xi_{0}, \mu_{0}\right)
$$

with ξ_{0} a random variable with distribution μ_{0}

Input: Initial guess $(\xi, \mathcal{L}(\xi))$; time step index m; number of iterations K
Output: Approximation of $Y_{T_{m}}$ where (X, Y, Z) solves the MKV FBSDE system on [$\left.T_{m}, T\right]$ starting with $(\xi, \mathcal{L}(\xi))$ at time T_{m}
1 Initialize $X_{t}^{(0)}=\xi, \mathcal{L}\left(X_{t}^{(0)}\right)=\mathcal{L}(\xi)$ for all $T_{m} \leq t \leq T_{m+1}$
2 for $\mathrm{k}=0,1,2, \ldots, \mathrm{~K}-1$ do
$3 \quad$ If $T_{m+1}=T, Y_{T_{m+1}}^{(\mathrm{k}+1)}=G\left(X_{T_{m+1}}^{(\mathrm{k})}, \mathcal{L}\left(X_{T_{m+1}}^{(\mathrm{k})}\right)\right)$
4 Else: compute recursively:

$$
Y_{T_{m+1}}^{(\mathrm{k}+1)}=\text { Solver }[m+1]\left(X_{T_{m+1}}^{(\mathrm{k})}, \mathcal{L}\left(X_{T_{m+1}}^{(\mathrm{k})}\right)\right)
$$

Compute:

$$
\left(X_{t}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t}^{(\mathrm{k}+1)}\right), Y_{t}^{(\mathrm{k}+1)}, Z_{t}^{(\mathrm{k}+1)}\right)_{T_{m} \leq t \leq T_{m+1}}=\operatorname{Picard}\left[T_{m+1}-T_{m}\right]\left(X_{T_{m}}^{(\mathrm{k})}, Y_{T_{m+1}}^{(\mathrm{k}+1)}\right)
$$

$6 \underline{\text { return } \mathrm{Solver}[m](\xi, \mathcal{L}(\xi)):=Y_{T_{m}}^{(\mathrm{K})}}$

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

- Tree algorithm:
- Time discretization
- Space discretization: binomial tree structure
- Look at trajectories
- Grid algorithm:
- Time and space discretization on a grid
- Look at time marginals

Tree-Based Algorithm: Time Discretization

- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Euler Scheme: $0 \leq i \leq N_{t}-1$

$$
\left\{\begin{aligned}
X_{t_{i+1}}^{(\mathrm{k}+1)} & =X_{t_{i}}^{(\mathrm{k}+1)}+B\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t+\sigma \Delta W_{t_{i+1}} \\
X_{0}^{(\mathrm{k}+1)} & =\xi \\
Y_{t_{i}}^{(\mathrm{k}+1)} & =\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right]+F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t \\
& \approx Y_{t_{i+1}}^{(\mathrm{k}+1}+F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t-Z_{t_{i}}^{(\mathrm{k}+1)} \Delta W_{t_{i+1}} \\
Y_{T}^{(\mathrm{k}+1)} & =G\left(X_{T}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{T}^{(\mathrm{k}+1)}\right)\right) \\
Z_{t_{i}}^{(\mathrm{k}+1)} & =\frac{1}{\Delta t} \mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)} \Delta W_{t_{i+1}}\right] \\
Z_{T}^{(\mathrm{k}+1)} & =0
\end{aligned}\right.
$$

- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Euler Scheme: $0 \leq i \leq N_{t}-1$

$$
\left\{\begin{aligned}
X_{t_{i+1}}^{(\mathrm{k}+1)} & =X_{t_{i}}^{(\mathrm{k}+1)}+B\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t+\sigma \Delta W_{t_{i+1}} \\
X_{0}^{(\mathrm{k}+1)} & =\xi \\
Y_{t_{i}}^{(\mathrm{k}+1)} & =\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right]+F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t \\
& \approx Y_{t_{i+1}^{(\mathrm{k}+1}}^{(\mathrm{k}+1)}+F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), Y_{t_{i}}^{(\mathrm{k})}, Z_{t_{i}}^{(\mathrm{k})}\right) \Delta t-Z_{t_{i}}^{(\mathrm{k}+1)} \Delta W_{t_{i+1}} \\
Y_{T}^{(\mathrm{k}+1)} & \left.=G\left(X_{T}^{(\mathrm{k}+1)}\right)\right) \\
Z_{t_{i}}^{(\mathrm{k}+1)} & =\frac{1}{\Delta t} \mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)} \Delta W_{t_{i+1}}\right] \\
Z_{T}^{(\mathrm{k}+1)} & =0
\end{aligned}\right.
$$

- Questions:
- How to represent $\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)$?
- How to compute the conditional expectation $\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right]$?

Tree-Based Algorithm: Remarks

- At each t_{i}, replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. $1 / 2$
- Answers:
- $\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ weighted empirical distribution:

$$
\mathcal{L}\left(X_{t_{0}}^{(\mathrm{k}+1)}\right) \approx \sum_{n=1}^{N_{x_{0}}} p_{0}^{k} \delta_{x_{0}^{k}},
$$

and at time $t_{i}, i \geq 1$: look at values on the nodes at depth i

- $\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right] \approx$ weighted average of values on the two next branches

Tree-Based Algorithm: Remarks

- At each t_{i}, replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. $1 / 2$
- Answers:
- $\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ weighted empirical distribution:

$$
\mathcal{L}\left(X_{t_{0}}^{(\mathrm{k}+1)}\right) \approx \sum_{n=1}^{N_{x_{0}}} p_{0}^{k} \delta_{x_{0}^{k}},
$$

and at time $t_{i}, i \geq 1$: look at values on the nodes at depth i

- $\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right] \approx$ weighted average of values on the two next branches
- Starting from some x_{0}, doing N_{t} steps: $2^{N_{t}}$ paths
- $N_{x_{0}}$ starting points i.i.d. $\sim \mu_{0}: N_{x_{0}} \times 2^{N_{t}}$ paths !

Tree-Based Algorithm: Remarks

- At each t_{i}, replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. $1 / 2$
- Answers:
- $\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ weighted empirical distribution:

$$
\mathcal{L}\left(X_{t_{0}}^{(\mathrm{k}+1)}\right) \approx \sum_{n=1}^{N_{x_{0}}} p_{0}^{k} \delta_{x_{0}^{k}},
$$

and at time $t_{i}, i \geq 1$: look at values on the nodes at depth i

- $\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right] \approx$ weighted average of values on the two next branches
- Starting from some x_{0}, doing N_{t} steps: $2^{N_{t}}$ paths
- $N_{x_{0}}$ starting points i.i.d. $\sim \mu_{0}: N_{x_{0}} \times 2^{N_{t}}$ paths !
- Save space thanks to recombinations?

Tree-Based Algorithm: Remarks

- At each t_{i}, replace $\Delta W_{t_{i+1}}$ by a branch with 2 values: $\pm \sqrt{\Delta t}$ w.p. $1 / 2$
- Answers:
- $\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ weighted empirical distribution:

$$
\mathcal{L}\left(X_{t_{0}}^{(\mathrm{k}+1)}\right) \approx \sum_{n=1}^{N_{x_{0}}} p_{0}^{k} \delta_{x_{0}^{k}},
$$

and at time $t_{i}, i \geq 1$: look at values on the nodes at depth i

- $\mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}^{(\mathrm{k}+1)}\right] \approx$ weighted average of values on the two next branches
- Starting from some x_{0}, doing N_{t} steps: $2^{N_{t}}$ paths
- $N_{x_{0}}$ starting points i.i.d. $\sim \mu_{0}: N_{x_{0}} \times 2^{N_{t}}$ paths !
- Save space thanks to recombinations? Not really but ...

Grid-Based Algorithm: Time \& Space Discretization

- Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$
Y_{t}=u\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right), \quad Z_{t}=v\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)
$$

\rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $\left(Y_{t}, Z_{t}\right)_{t \in[0, T]}$

Grid-Based Algorithm: Time \& Space Discretization

- Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$
Y_{t}=u\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right), \quad Z_{t}=v\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)
$$

\rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $\left(Y_{t}, Z_{t}\right)_{t \in[0, T]}$

- Difficulty: space of $\mathcal{L}\left(X_{t}\right)$ is infinite dimensional \rightarrow Freeze it during each Picard iteration:

$$
Y_{t}^{(\mathrm{k}+1)}=u^{(\mathrm{k}+1)}\left(t, X_{t}^{(\mathrm{k}+1)}\right), \quad Z_{t}^{(\mathrm{k}+1)}=v^{(\mathrm{k}+1)}\left(t, X_{t}^{(\mathrm{k}+1)}\right)
$$

Grid-Based Algorithm: Time \& Space Discretization

- Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$
Y_{t}=u\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right), \quad Z_{t}=v\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)
$$

\rightarrow Approximate $u(\cdot, \cdot, \cdot), v(\cdot, \cdot, \cdot)$ instead of $\left(Y_{t}, Z_{t}\right)_{t \in[0, T]}$

- Difficulty: space of $\mathcal{L}\left(X_{t}\right)$ is infinite dimensional \rightarrow Freeze it during each Picard iteration:

$$
Y_{t}^{(\mathrm{k}+1)}=u^{(\mathrm{k}+1)}\left(t, X_{t}^{(\mathrm{k}+1)}\right), \quad Z_{t}^{(\mathrm{k}+1)}=v^{(\mathrm{k}+1)}\left(t, X_{t}^{(\mathrm{k}+1)}\right)
$$

- Picard iterations for distribution \& decoupling functions:
- Step 1: Given $\left(\mu^{(\mathrm{k})}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right)$, compute $\mu_{t}^{(\mathrm{k}+1)}=\mathcal{L}\left(X_{t}^{(\mathrm{k}+1)}\right), 0 \leq t \leq T$, where

$$
d X_{t}^{(\mathrm{k}+1)}=B\left(X_{t}^{(\mathrm{k}+1)}, \mu_{t}^{(\mathrm{k})}, u^{(\mathrm{k})}\left(t, X_{t}^{(\mathrm{k}+1)}\right), v^{(\mathrm{k})}\left(t, X_{t}^{(\mathrm{k}+1)}\right)\right) d t+\sigma d W_{t}
$$

- Step 2: Given $\left(X^{(\mathrm{k})}, \mu^{(\mathrm{k}+1)}\right)$, compute $\left(u^{(\mathrm{k}+1)}, v^{(\mathrm{k}+1)}\right)$ such that (\star) holds, where

$$
d Y_{t}^{(\mathrm{k}+1)}=-F\left(X_{t}^{(\mathrm{k}+1)}, \mu_{t}^{(\mathrm{k}+1)}, Y_{t}^{(\mathrm{k}+1)}, Z_{t}^{(\mathrm{k}+1)}\right) d t+Z_{t}^{(\mathrm{k}+1)} d W_{t}
$$

- Return $\left(\mu^{(\mathrm{k}+1)}, u^{(\mathrm{k}+1)}, v^{(\mathrm{k}+1)}\right)$

Grid-Based Algorithm: Forward Equation

- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Space discretization $(d=1)$: Grid Γ : $x_{0}<x_{1}<\cdots<x_{N_{x}}, x_{j+1}-x_{j}=\Delta x$
- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Space discretization $(d=1)$: Grid Γ : $x_{0}<x_{1}<\cdots<x_{N_{x}}, x_{j+1}-x_{j}=\Delta x$
- Use projection Π to stay on Γ at every $t_{i}: \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ vector of weights
- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Space discretization $(d=1)$: Grid Γ : $x_{0}<x_{1}<\cdots<x_{N_{x}}, x_{j+1}-x_{j}=\Delta x$
- Use projection Π to stay on Γ at every $t_{i}: \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ vector of weights
- Picard iterations for distribution \& decoupling functions:
- Step 1: Given $\left(\mu^{(\mathrm{k})}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right)$, compute $\mu_{t_{i}}^{(\mathrm{k}+1)}=\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), i=0, \ldots, N_{t}$, where

$$
X_{t_{i+1}}^{(\mathrm{k}+1)}=\Pi\left[X_{t_{i}}^{(\mathrm{k}+1)}+B\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mu_{t_{i}}^{(\mathrm{k})}, u_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), v_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right) d t+\sigma \Delta W_{t_{i+1}}\right]
$$

Grid-Based Algorithm: Forward Equation

- Focus on an interval $[0, T]$ with small enough T (otherwise: call recursive solver)
- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- Space discretization $(d=1)$: Grid Γ : $x_{0}<x_{1}<\cdots<x_{N_{x}}, x_{j+1}-x_{j}=\Delta x$
- Use projection Π to stay on Γ at every $t_{i}: \mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \approx$ vector of weights
- Picard iterations for distribution \& decoupling functions:
- Step 1: Given $\left(\mu^{(\mathrm{k})}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right)$, compute $\mu_{t_{i}}^{(\mathrm{k}+1)}=\mathcal{L}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), i=0, \ldots, N_{t}$, where

$$
X_{t_{i+1}}^{(\mathrm{k}+1)}=\Pi\left[X_{t_{i}}^{(\mathrm{k}+1)}+B\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mu_{t_{i}}^{(\mathrm{k})}, u_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), v_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right) d t+\sigma \Delta W_{t_{i+1}}\right]
$$

- In fact $\mu_{t_{i+1}}^{(\mathrm{k}+1)}$ can be expressed in terms of $\mu_{t_{i}}^{(\mathrm{k}+1)}$ and a transition kernel
- Ex: binomial approx. of $W \rightarrow$ efficient computation using quantization

Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution \& decoupling functions (continued):
- Step 2: Update u, v : for all $0 \leq i \leq N_{t}, x \in \Gamma$,

$$
\left\{\begin{aligned}
u_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right. \\
\quad+ & \left.F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mu_{t_{i}}^{(\mathrm{k}+1)}, u_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), v_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right) \Delta t \mid X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
u_{T}^{(\mathrm{k}+1)}(x) & =G\left(x, \mu_{t_{i}}^{(\mathrm{k}+1)}\right) \\
v_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[\left.\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \right\rvert\, X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
v_{T}^{(\mathrm{k}+1)}(x) & =0
\end{aligned}\right.
$$

- Ex.: binomial approximation of $W \rightarrow$ more explicit formulas

Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution \& decoupling functions (continued):
- Step 2: Update u, v : for all $0 \leq i \leq N_{t}, x \in \Gamma$,

$$
\left\{\begin{aligned}
u_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right. \\
\quad+ & \left.F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mu_{t_{i}}^{(\mathrm{k}+1)}, u_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), v_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right) \Delta t \mid X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
u_{T}^{(\mathrm{k}+1)}(x) & =G\left(x, \mu_{t_{i}}^{(\mathrm{k}+1)}\right) \\
v_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[\left.\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \right\rvert\, X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
v_{T}^{(\mathrm{k}+1)}(x) & =0
\end{aligned}\right.
$$

- Ex.: binomial approximation of $W \rightarrow$ more explicit formulas
- Summary:
- Forward: $\left(\mu^{(\mathrm{k})}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right) \mapsto \mu^{(\mathrm{k}+1)}=\mathcal{L}\left(X^{(\mathrm{k}+1)}\right)$
- Backward: $\left(\mu^{(\mathrm{k}+1)}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right) \mapsto\left(u^{(\mathrm{k}+1)}, v^{(\mathrm{k}+1)}\right)$

Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution \& decoupling functions (continued):
- Step 2: Update u, v : for all $0 \leq i \leq N_{t}, x \in \Gamma$,

$$
\left\{\begin{aligned}
u_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right. \\
\quad+ & \left.F\left(X_{t_{i}}^{(\mathrm{k}+1)}, \mu_{t_{i}}^{(\mathrm{k}+1)}, u_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right), v_{t_{i}}^{(\mathrm{k})}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right)\right) \Delta t \mid X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
u_{T}^{(\mathrm{k}+1)}(x) & =G\left(x, \mu_{t_{i}}^{(\mathrm{k}+1)}\right) \\
v_{t_{i}}^{(\mathrm{k}+1)}(x) & =\mathbb{E}\left[\left.\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathrm{k}+1)}\left(X_{t_{i}}^{(\mathrm{k}+1)}\right) \right\rvert\, X_{t_{i}}^{(\mathrm{k}+1)}=x\right] \\
v_{T}^{(\mathrm{k}+1)}(x) & =0
\end{aligned}\right.
$$

- Ex.: binomial approximation of $W \rightarrow$ more explicit formulas
- Summary:
- Forward: $\left(\mu^{(\mathrm{k})}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right) \mapsto \mu^{(\mathrm{k}+1)}=\mathcal{L}\left(X^{(\mathrm{k}+1)}\right)$
- Backward: $\left(\mu^{(\mathrm{k}+1)}, u^{(\mathrm{k})}, v^{(\mathrm{k})}\right) \mapsto\left(u^{(\mathrm{k}+1)}, v^{(\mathrm{k}+1)}\right)$

Details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

1. Introduction
2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE

- A Picard Scheme for MKV FBSDE
- Stochastic Methods for some Finite-Dimensional MFC Problems

5. Conclusion

Dependence on the Moments

- In general: b, f, g involve the whole distribution $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ (infinite dim.)
- What if they involve only the first moment $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$?

Dependence on the Moments

- In general: b, f, g involve the whole distribution $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ (infinite dim.)
- What if they involve only the first moment $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$?
- Ex. 1: LQ (see lecture 2)
- optimal control is a function of X_{t} and $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$
- ODE for $\bar{\mu}_{t}$ of the form $\frac{d}{d t} \bar{\mu}_{t}=\varphi\left(t, \bar{\mu}_{t}\right)$

Dependence on the Moments

- In general: b, f, g involve the whole distribution $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ (infinite dim.)
- What if they involve only the first moment $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$?
- Ex. 1: LQ (see lecture 2)
- optimal control is a function of X_{t} and $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$
- ODE for $\bar{\mu}_{t}$ of the form $\frac{d}{d t} \bar{\mu}_{t}=\varphi\left(t, \bar{\mu}_{t}\right)$
- Ex. 2:

$$
\left\{\begin{array}{l}
b(x, \mu, \alpha)=b(x, \bar{\mu}, \alpha)=(\cos (x)+\cos (\bar{\mu})) \alpha \\
f(x, \mu, \alpha)=|\alpha|^{2}, \quad g(x, \mu)=0
\end{array}\right.
$$

- Can the optimal control be expressed as a function of $X_{t}, \mathbb{E}\left[X_{t}\right]$ only?
- ODE for $\bar{\mu}_{t}$?

Dependence on the Moments

- In general: b, f, g involve the whole distribution $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ (infinite dim.)
- What if they involve only the first moment $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$?
- Ex. 1: LQ (see lecture 2)
- optimal control is a function of X_{t} and $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$
- ODE for $\bar{\mu}_{t}$ of the form $\frac{d}{d t} \bar{\mu}_{t}=\varphi\left(t, \bar{\mu}_{t}\right)$
- Ex. 2:

$$
\left\{\begin{array}{l}
b(x, \mu, \alpha)=b(x, \bar{\mu}, \alpha)=(\cos (x)+\cos (\bar{\mu})) \alpha \\
f(x, \mu, \alpha)=|\alpha|^{2}, \quad g(x, \mu)=0
\end{array}\right.
$$

- Can the optimal control be expressed as a function of $X_{t}, \mathbb{E}\left[X_{t}\right]$ only?
- ODE for $\bar{\mu}_{t}$?

$$
\frac{d}{d t} \bar{\mu}_{t}=\mathbb{E}\left[\left(\cos \left(X_{t}\right)+\cos \left(\bar{\mu}_{t}\right)\right) \alpha\left(t, X_{t}\right)\right]
$$

It involves not only $\mathbb{E}\left[X_{t}\right]=\bar{\mu}_{t}$ but also $\mathbb{E}\left[\cos \left(X_{t}\right)\right]$

Dependence on the Moments

- In general: b, f, g involve the whole distribution $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ (infinite dim.)
- What if they involve only the first moment $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$?
- Ex. 1: LQ (see lecture 2)
- optimal control is a function of X_{t} and $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}\right]$
- ODE for $\bar{\mu}_{t}$ of the form $\frac{d}{d t} \bar{\mu}_{t}=\varphi\left(t, \bar{\mu}_{t}\right)$
- Ex. 2:

$$
\left\{\begin{array}{l}
b(x, \mu, \alpha)=b(x, \bar{\mu}, \alpha)=(\cos (x)+\cos (\bar{\mu})) \alpha \\
f(x, \mu, \alpha)=|\alpha|^{2}, \quad g(x, \mu)=0
\end{array}\right.
$$

- Can the optimal control be expressed as a function of $X_{t}, \mathbb{E}\left[X_{t}\right]$ only?
- ODE for $\bar{\mu}_{t}$?

$$
\frac{d}{d t} \bar{\mu}_{t}=\mathbb{E}\left[\left(\cos \left(X_{t}\right)+\cos \left(\bar{\mu}_{t}\right)\right) \alpha\left(t, X_{t}\right)\right]
$$

It involves not only $\mathbb{E}\left[X_{t}\right]=\bar{\mu}_{t}$ but also $\mathbb{E}\left[\cos \left(X_{t}\right)\right]$

- Class of MFC s.t. the problem can be solved with a finite number of moments?

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

- In some cases, MFC problems can be written as:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} \mathcal{F}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\mathcal{G}\left(\underline{X}_{T}\right)\right]
$$

subject to:

$$
d \underline{X}_{t}=\mathcal{B}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\Sigma d \mathbb{W}_{t}
$$

where the state is: $\underline{X}_{t}=\left(\mathbb{E}\left[X_{t}\right], \mathbb{E}\left[\left|X_{t}\right|^{2}\right], \ldots, \mathbb{E}\left[\left|X_{t}\right|^{p}\right]\right) \in\left(\mathbb{R}^{d}\right)^{p}$

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

- In some cases, MFC problems can be written as:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} \mathcal{F}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\mathcal{G}\left(\underline{X}_{T}\right)\right]
$$

subject to:

$$
d \underline{X}_{t}=\mathcal{B}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\Sigma d \mathbb{W}_{t}
$$

where the state is: $\underline{X}_{t}=\left(\mathbb{E}\left[X_{t}\right], \mathbb{E}\left[\left|X_{t}\right|^{2}\right], \ldots, \mathbb{E}\left[\left|X_{t}\right|^{p}\right]\right) \in\left(\mathbb{R}^{d}\right)^{p}$

- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

- In some cases, MFC problems can be written as:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} \mathcal{F}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\mathcal{G}\left(\underline{X}_{T}\right)\right]
$$

subject to:

$$
d \underline{X}_{t}=\mathcal{B}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\Sigma d \mathbb{W}_{t}
$$

where the state is: $\underline{X}_{t}=\left(\mathbb{E}\left[X_{t}\right], \mathbb{E}\left[\left|X_{t}\right|^{2}\right], \ldots, \mathbb{E}\left[\left|X_{t}\right|^{p}\right]\right) \in\left(\mathbb{R}^{d}\right)^{p}$

- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- DPP for $V:[0, T] \times\left(\mathbb{R}^{d}\right)^{p} \rightarrow \mathbb{R}$ or rather $V_{\Delta t}:\left\{t_{0}, \ldots, t_{N_{t}}\right\} \times\left(\mathbb{R}^{d}\right)^{p} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{\Delta t}(T, \underline{x})=\mathcal{G}(\underline{x}) \\
V_{\Delta t}\left(t_{n}, \underline{x}\right)=\sup _{\alpha}\left\{\mathcal{F}(\underline{x}, \alpha) \Delta t+\mathbb{E}^{t_{n}, \underline{x}, \alpha}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}\right)\right]\right\}, n=N_{t}-1, \ldots, 1,0
\end{array}\right. \\
& \quad \text { where } \mathbb{E}^{t_{n}, \underline{x}, \alpha}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}\right)\right]=\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}=\underline{x}\right]
\end{aligned}
$$

Finite-Dimensional Reformulation

Following [Balata et al., 2019]

- In some cases, MFC problems can be written as:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} \mathcal{F}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\mathcal{G}\left(\underline{X}_{T}\right)\right]
$$

subject to:

$$
d \underline{X}_{t}=\mathcal{B}\left(\underline{X}_{t}, \alpha_{t}\right) d t+\Sigma d \mathbb{W}_{t}
$$

where the state is: $\underline{X}_{t}=\left(\mathbb{E}\left[X_{t}\right], \mathbb{E}\left[\left|X_{t}\right|^{2}\right], \ldots, \mathbb{E}\left[\left|X_{t}\right|^{p}\right]\right) \in\left(\mathbb{R}^{d}\right)^{p}$

- Time discretization: $0=t_{0}<t_{1}<\cdots<t_{N_{t}}=T, t_{i+1}-t_{i}=\Delta t$
- DPP for $V:[0, T] \times\left(\mathbb{R}^{d}\right)^{p} \rightarrow \mathbb{R}$ or rather $V_{\Delta t}:\left\{t_{0}, \ldots, t_{N_{t}}\right\} \times\left(\mathbb{R}^{d}\right)^{p} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{\Delta t}(T, \underline{x})=\mathcal{G}(\underline{x}) \\
V_{\Delta t}\left(t_{n}, \underline{x}\right)=\sup _{\alpha}\left\{\mathcal{F}(\underline{x}, \alpha) \Delta t+\mathbb{E}^{t_{n}, \underline{x}, \alpha}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}\right)\right]\right\}, n=N_{t}-1, \ldots, 1,0
\end{array}\right. \\
& \quad \text { where } \mathbb{E}^{t_{n}, \underline{x}, \alpha}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}\right)\right]=\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}=\underline{x}\right]
\end{aligned}
$$

\rightarrow Key difficulty: estimation of the conditional expectation

Estimation Method 1: Regression Monte Carlo

- Family of basis functions $\phi=\left(\phi^{m}\right)_{m=1, \ldots, M}$
- Projection:

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)
$$

where

$$
\beta_{t_{n}}^{m}=\underset{\beta \in \mathbb{R}^{M}}{\operatorname{argmin}} \mathbb{E}\left[\left|V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right)-\sum_{m=1}^{M} \beta^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)\right|^{2}\right]
$$

Estimation Method 1: Regression Monte Carlo

- Family of basis functions $\phi=\left(\phi^{m}\right)_{m=1, \ldots, M}$
- Projection:

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)
$$

where

$$
\beta_{t_{n}}^{m}=\underset{\beta \in \mathbb{R}^{M}}{\operatorname{argmin}} \mathbb{E}\left[\left|V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right)-\sum_{m=1}^{M} \beta^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)\right|^{2}\right]
$$

- Explicit expression:

$$
\beta_{t_{n}}^{m}=\mathbb{E}\left[\phi\left(\underline{X}_{t_{n}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)^{\top}\right]^{-1} \mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)\right]
$$

Estimation Method 1: Regression Monte Carlo

- Family of basis functions $\phi=\left(\phi^{m}\right)_{m=1, \ldots, M}$
- Projection:

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)
$$

where

$$
\beta_{t_{n}}^{m}=\underset{\beta \in \mathbb{R}^{M}}{\operatorname{argmin}} \mathbb{E}\left[\left|V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right)-\sum_{m=1}^{M} \beta^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)\right|^{2}\right]
$$

- Explicit expression:

$$
\beta_{t_{n}}^{m}=\mathbb{E}\left[\phi\left(\underline{X}_{t_{n}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)^{\top}\right]^{-1} \mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)\right]
$$

- Estimation with $N_{M C}$ Monte Carlo samples:

$$
\mathbb{E}\left[\phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)^{\top}\right] \approx \frac{1}{N_{M C}} \sum_{\ell=1}^{N_{M C}} \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)^{\top}
$$

and

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)\right] \approx \frac{1}{N_{M C}} \sum_{\ell=1}^{N_{M C}} V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)
$$

with training set $\left\{\left(\underline{X}_{t_{n}}^{\ell, \alpha}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) ; \ell=1, \ldots, N_{M C}\right\}$

Estimation Method 1: Regression Monte Carlo

- Family of basis functions $\phi=\left(\phi^{m}\right)_{m=1, \ldots, M}$ Not always easy to choose!
- Projection:

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)
$$

where

$$
\beta_{t_{n}}^{m}=\underset{\beta \in \mathbb{R}^{M}}{\operatorname{argmin}} \mathbb{E}\left[\left|V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right)-\sum_{m=1}^{M} \beta^{m} \phi^{m}\left(\underline{X}_{t_{n}}^{\alpha}\right)\right|^{2}\right]
$$

- Explicit expression:

$$
\beta_{t_{n}}^{m}=\mathbb{E}\left[\phi\left(\underline{X}_{t_{n}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)^{\top}\right]^{-1} \mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\alpha}\right)\right]
$$

- Estimation with $N_{M C}$ Monte Carlo samples:

$$
\mathbb{E}\left[\phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)^{\top}\right] \approx \frac{1}{N_{M C}} \sum_{\ell=1}^{N_{M C}} \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)^{\top}
$$

and

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)\right] \approx \frac{1}{N_{M C}} \sum_{\ell=1}^{N_{M C}} V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) \phi\left(\underline{X}_{t_{n}}^{\ell, \alpha}\right)
$$

with training set $\left\{\left(\underline{X}_{t_{n}}^{\ell, \alpha}, \underline{X}_{t_{n+1}}^{\ell, \alpha}\right) ; \ell=1, \ldots, N_{M C}\right\}$

Estimation Method 2: Quantization

- Two space discretizations:
- Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
- Quantization of noise (see e.g. [Pagès, 2018]):
\star Set of cells $\mathcal{C}_{Q}=\left\{C_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Associated grid points $\mathcal{G}_{Q}=\left\{\zeta_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t): p_{j}=\mathbb{P}\left(\Delta \mathbb{W} \in C_{j}\right)$
\star Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_{Q}: \mathbb{P}\left(\Delta \widehat{\mathbb{W}}=\zeta_{j}\right)=p_{j}$
\star Can be optimized ${ }^{1}$; particularly helpful when $d>1$

Estimation Method 2: Quantization

- Two space discretizations:
- Set of points Γ on which we want to approximate $V_{\Delta t}$; projection Π_{Γ}
- Quantization of noise (see e.g. [Pagès, 2018]):
\star Set of cells $\mathcal{C}_{Q}=\left\{C_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Associated grid points $\mathcal{G}_{Q}=\left\{\zeta_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t): p_{j}=\mathbb{P}\left(\Delta \mathbb{W} \in C_{j}\right)$
\star Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_{Q}: \mathbb{P}\left(\Delta \widehat{\mathbb{W}}=\zeta_{j}\right)=p_{j}$
\star Can be optimized ${ }^{1}$; particularly helpful when $d>1$
- Estimation with piecewise constant interpolation: $\bar{V}_{\Delta t}:\left\{t_{0}, \ldots, t_{N_{t}}\right\} \times \Gamma \rightarrow \mathbb{R}$

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}=\underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}\left(\underline{x}, \alpha_{t_{n}}\right) \Delta t+\Sigma \zeta_{j}\right)\right)
$$

for all $\underline{x} \in \Gamma$

Estimation Method 2: Quantization

- Two space discretizations:
- Set of points Γ on which we want to approximate $V_{\Delta t} ;$ projection Π_{Γ}
- Quantization of noise (see e.g. [Pagès, 2018]):
\star Set of cells $\mathcal{C}_{Q}=\left\{C_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Associated grid points $\mathcal{G}_{Q}=\left\{\zeta_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t): p_{j}=\mathbb{P}\left(\Delta \mathbb{W} \in C_{j}\right)$
\star Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_{Q}: \mathbb{P}\left(\Delta \widehat{\mathbb{W}}=\zeta_{j}\right)=p_{j}$
\star Can be optimized ${ }^{1}$; particularly helpful when $d>1$
- Estimation with piecewise constant interpolation: $\bar{V}_{\Delta t}:\left\{t_{0}, \ldots, t_{N_{t}}\right\} \times \Gamma \rightarrow \mathbb{R}$

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}=\underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}\left(\underline{x}, \alpha_{t_{n}}\right) \Delta t+\Sigma \zeta_{j}\right)\right)
$$

for all $\underline{x} \in \Gamma$

- Other interpolations are possible

Estimation Method 2: Quantization

- Two space discretizations:
- Set of points Γ on which we want to approximate $V_{\Delta t} ;$ projection Π_{Γ}
- Quantization of noise (see e.g. [Pagès, 2018]):
\star Set of cells $\mathcal{C}_{Q}=\left\{C_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Associated grid points $\mathcal{G}_{Q}=\left\{\zeta_{j} ; j=1, \ldots, J_{Q}\right\}$
\star Weights for Gaussian r.v. $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t): p_{j}=\mathbb{P}\left(\Delta \mathbb{W} \in C_{j}\right)$
\star Discrete version: $\Delta \hat{\mathbb{W}} \in \mathcal{G}_{Q}: \mathbb{P}\left(\Delta \widehat{\mathbb{W}}=\zeta_{j}\right)=p_{j}$
\star Can be optimized ${ }^{1}$; particularly helpful when $d>1$
- Estimation with piecewise constant interpolation: $\bar{V}_{\Delta t}:\left\{t_{0}, \ldots, t_{N_{t}}\right\} \times \Gamma \rightarrow \mathbb{R}$

$$
\mathbb{E}\left[V_{\Delta t}\left(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}\right) \mid \underline{X}_{t_{n}}^{\alpha}=\underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}\left(\underline{x}, \alpha_{t_{n}}\right) \Delta t+\Sigma \zeta_{j}\right)\right)
$$

for all $\underline{x} \in \Gamma$

- Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

Outline

1. Introduction

2. Methods for the PDE system
3. Optimization Methods for MFC and Variational MFG
4. Methods for MKV FBSDE
5. Conclusion

- Two schemes for FB PDEs of MFG
- Optimization methods for MFC and variational MFGs
- Two methods based on the probabilistic approach

Other numerical methods

The previous presentation is not exhaustive!
Some other references:

- Gradient descent based methods [Laurière and Pironneau, 2016], [Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
- Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018], [Gomes and Yang, 2020]
- Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021], [Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
- Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
- Cubature [de Raynal and Trillos, 2015]
- Gaussian processes [Mou et al., 2022]
- Kernel-based representation [Liu et al., 2021]
- Fourier approximation [Nurbekyan et al., 2019]
- ...

Other numerical methods

The previous presentation is not exhaustive!
Some other references:

- Gradient descent based methods [Laurière and Pironneau, 2016], [Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
- Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018], [Gomes and Yang, 2020]
- Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021], [Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
- Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
- Cubature [de Raynal and Trillos, 2015]
- Gaussian processes [Mou et al., 2022]
- Kernel-based representation [Liu et al., 2021]
- Fourier approximation [Nurbekyan et al., 2019]
- ...

However efficient, these methods are usually limited to problems with:

- (relatively) small dimension
- (relatively) simple structure
\Rightarrow motivations to develop machine learning methods (see next lectures)

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

References I

[Achdou, 2013] Achdou, Y. (2013).
Finite difference methods for mean field games.
In Hamilton-Jacobi equations: approximations, numerical analysis and applications, volume 2074 of Lecture Notes in Math., pages 1-47. Springer, Heidelberg.
[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77-109.
[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136-1162.
[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmäki, P., Periaux, J., and Pironneau, O., editors, Contributions to Partial Differential Equations and Applications, chapter 4, pages 17-42. Springer International Publishing.
[Achdou and Laurière, 2015] Achdou, Y. and Laurière, M. (2015).
On the system of partial differential equations arising in mean field type control.
Discrete Contin. Dyn. Syst., 35(9):3879-3900.

References II

[Achdou and Laurière, 2016a] Achdou, Y. and Laurière, M. (2016a).
Mean Field Type Control with Congestion.
Appl. Math. Optim., 73(3):393-418.
[Achdou and Laurière, 2016b] Achdou, Y. and Laurière, M. (2016b).
Mean Field Type Control with Congestion (II): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535-578.
[Achdou and Laurière, 2020] Achdou, Y. and Laurière, M. (2020).
Mean field games and applications: Numerical aspects.
Mean Field Games: Cetraro, Italy 2019, 2281:249-307.
[Achdou et al., 2021] Achdou, Y., Lauriere, M., and Lions, P.-L. (2021).
Optimal control of conditioned processes with feedback controls.
Journal de Mathématiques Pures et Appliquées, 148:308-341.
[Achdou and Perez, 2012] Achdou, Y. and Perez, V. (2012).
Iterative strategies for solving linearized discrete mean field games systems.
Netw. Heterog. Media, 7(2):197-217.
[Achdou and Porretta, 2016] Achdou, Y. and Porretta, A. (2016).
Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games.
SIAM J. Numer. Anal., 54(1):161-186.

References III

[Achdou and Porretta, 2018] Achdou, Y. and Porretta, A. (2018).
Mean field games with congestion.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 35(2):443-480.
[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657-682.
[Andreev, 2017] Andreev, R. (2017).
Preconditioning the augmented lagrangian method for instationary mean field games with diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763-A2783.
[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84-113.
[Aurell and Djehiche, 2018] Aurell, A. and Djehiche, B. (2018).
Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics.
SIAM Journal on Control and Optimization, 56(1):434-455.
[Balata et al., 2019] Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114-144.

References IV

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023). Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.
[Benamou and Carlier, 2015a] Benamou, J.-D. and Carlier, G. (2015a).
Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.
J. Optim. Theory Appl., 167(1):1-26.
[Benamou and Carlier, 2015b] Benamou, J.-D. and Carlier, G. (2015b).
Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1-26.
[Benamou et al., 2017] Benamou, J.-D., Carlier, G., and Santambrogio, F. (2017).
Variational mean field games.
In Active Particles, Volume 1, pages 141-171. Springer.
[Briceño Arias et al., 2019] Briceño Arias, L. M., Kalise, D., Kobeissi, Z., Laurière, M.,
Mateos González, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings.
ESAIM: ProcS, 65:330-348.

References V

[Briceño Arias et al., 2018] Briceño Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801-836.
[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.
[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.
[Cardaliaguet, 2015] Cardaliaguet, P. (2015).
Weak solutions for first order mean field games with local coupling.
In Analysis and geometry in control theory and its applications, pages 111-158. Springer.
[Cardaliaguet and Graber, 2015] Cardaliaguet, P. and Graber, P. J. (2015).
Mean field games systems of first order.
ESAIM Control Optim. Calc. Var., 21 (3):690-722.
[Cardaliaguet et al., 2015] Cardaliaguet, P., Graber, P. J., Porretta, A., and Tonon, D. (2015).
Second order mean field games with degenerate diffusion and local coupling.
NoDEA Nonlinear Differential Equations Appl., 22(5):1287-1317.

References VI

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45-67.
[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269-4292.
[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.
[Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011).
A first-order primal-dual algorithm for convex problems with applications to imaging.
J. Math. Imaging Vision, 40(1):120-145.
[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640-1684.
[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909-1917. PMLR.

References VII

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).
A cubature based algorithm to solve decoupled mckean-vlasov forward-backward stochastic differential equations.
Stochastic Processes and their Applications, 125(6):2206-2255.
[Fortin and Glowinski, 1983] Fortin, M. and Glowinski, R. (1983).
Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems.
North-Holland.
[Gomes and Saúde, 2018] Gomes, D. A. and Saúde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition.
Applied Mathematics \& Optimization.
[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton's method for effective hamiltonians and mather measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883-1915.
[Lachapelle and Wolfram, 2011] Lachapelle, A. and Wolfram, M.-T. (2011).
On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transportation research part B: methodological, 45(10):1572-1589.

References VIII

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P.-L. (2007).
Mean field games.
Jpn. J. Math., 2(1):229-260.
[Laurière, 2021] Laurière, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.
[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902-924.
[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable hamiltonians.
Applied Mathematics \& Optimization, 87(2):17.
[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.
[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639-2668.

References IX

[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.
[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367-396.
[Pagès, 2018] Pagès, G. (2018).
Numerical probability.
In Universitext. Springer.
[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629-655.
[Porretta and Zuazua, 2013] Porretta, A. and Zuazua, E. (2013).
Long time versus steady state optimal control.
SIAM J. Control Optim., 51(6):4242-4273.
[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms. arXiv preprint arXiv:2212.04791.

