
Numerical Methods for
Mean Field Games

Lecture 4
Deep Learning Methods: Part I

MFC and MKV FBSDE

Mathieu LAURIÈRE

New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD,
University Côte d’Azur, & GE2MI

Open Doctoral Lectures
July 5 – 7, 2023

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

Summary so far

Numerical methods discussed so far:

ODE system for LQ setting

FBPDE system

FBSDE system

1 / 40

“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

Finite difference & Newton method: [Achdou and Capuzzo-Dolcetta, 2010],
[Achdou et al., 2012], . . .
(Semi-)Lagrangian approach: [Carlini and Silva, 2014, Carlini and Silva, 2015],
[Carlini and Silva, 2018], [Calzola et al., 2022], . . .
Augmented Lagrangian & ADMM: [Benamou and Carlier, 2015],
[Andreev, 2017a], [Achdou and Laurière, 2016], . . .
Primal-dual algo.: [Briceño Arias et al., 2018], [Briceño Arias et al., 2019], . . .
Gradient descent based methods [Laurière and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022], . . .
Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018],
[Gomes and Yang, 2020], . . .
Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023], . . .
Finite elements [Benamou and Carlier, 2015], [Andreev, 2017b], . . .
Cubature [de Raynal and Trillos, 2015], . . .
Gaussian processes [Mou et al., 2022], . . .
Kernel-based representation [Liu et al., 2021], . . .
Fourier approximation [Nurbekyan et al., 2019], . . .

2 / 40

“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

Cubature [de Raynal and Trillos, 2015], . . .

Markov chain approximation: [Bayraktar et al., 2018], . . .

Probabilistic approach and Picard: [Chassagneux et al., 2019],
[Angiuli et al., 2019], . . .

Probabilistic approach and regression: [Balata et al., 2019], . . .

. . .

3 / 40

“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:

(relatively) small dimension

(relatively) simple structure

⇒ motivations to develop machine learning methods (see lectures 4, 5, 6)

4 / 40

Deep learning

In this lecture and the following one, we will use deep learning to solve MFGs

At a high level, there are two main ingredients:

▶ Approximation using deep neural networks

▶ Minimization of a loss function using stochastic gradient descent

Many variants and refinements, . . .

See e.g. [LeCun et al., 2015, Goodfellow et al., 2016], . . .

5 / 40

Ingredient 1: Neural Networks

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Example: Regression: ξ = (x, f(x)) for some f , L(φ, ξ) = ∥φ(x) − f(x)∥2

Idea: Instead of min. over all φ(·), min. over parameters θ of φθ(·)

Example: Feedforward fully-connected neural network:

▶ φθ(·)
▶ with weights & biases θ = (β(k), w(k))k=1,...,ℓ

▶ activation functions ψ(i): sigmoid, tanh, ReLU, . . . ; applied coordinate-wise

φθ(x)︸ ︷︷ ︸
φ(θ, x)

= ψ(ℓ)
(
β(ℓ) + w(ℓ) . . . ψ(2)

(
β(2) + w(2) ψ(1)(β(1) + w(1)x)︸ ︷︷ ︸

one hidden layer

)
. . .

)
▶ Depth = number of layers; width of a layer = dimension of bias vector

6 / 40

Ingredient 1: Neural Networks

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Example: Regression: ξ = (x, f(x)) for some f , L(φ, ξ) = ∥φ(x) − f(x)∥2

Idea: Instead of min. over all φ(·), min. over parameters θ of φθ(·)

Example: Feedforward fully-connected neural network:

▶ φθ(·)
▶ with weights & biases θ = (β(k), w(k))k=1,...,ℓ

▶ activation functions ψ(i): sigmoid, tanh, ReLU, . . . ; applied coordinate-wise

φθ(x)︸ ︷︷ ︸
φ(θ, x)

= ψ(ℓ)
(
β(ℓ) + w(ℓ) . . . ψ(2)

(
β(2) + w(2) ψ(1)(β(1) + w(1)x)︸ ︷︷ ︸

one hidden layer

)
. . .

)
▶ Depth = number of layers; width of a layer = dimension of bias vector

6 / 40

Ingredient 1: Neural Networks – Comments

Many other architectures (convolutional neural networks, recurrent neural
networks, . . .), see e.g. [Leijnen and Veen, 2020]

Successes of deep learning in many fields: natural language processing,
computer vision, drug design, . . . and even games!

Combination with reinforcement learning (see lecture 6)

Universal approximation theorems [Cybenko, 1989], [Hornik, 1991], . . .

Connections with numerical analysis, see e.g. [Després, 2022]

7 / 40

Ingredient 1: Neural Networks – Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (θ, x):

With respect to parameters: ∇θφ(θ, x)

∇β(ℓ)φ(θ, x) = . . . , ∇w(2)φ(θ, x) = . . .

⇒ can perform gradient descent on these parameters

With respect to state variable: ∇xφ(θ, x) can be computed by AD too

∂x1φ(θ, x) = . . .

⇒ can be used in PDEs (see lecture 5)

8 / 40

Ingredient 1: Neural Networks – Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (θ, x):

With respect to parameters: ∇θφ(θ, x)

∇β(ℓ)φ(θ, x) = . . . , ∇w(2)φ(θ, x) = . . .

⇒ can perform gradient descent on these parameters

With respect to state variable: ∇xφ(θ, x) can be computed by AD too

∂x1φ(θ, x) = . . .

⇒ can be used in PDEs (see lecture 5)

8 / 40

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Parameterization: J̃(θ) := Eξ[L̃(θ, ξ)], where L̃(θ, ξ) := L(φθ, ξ)

Setting: the distribution of ξ is unknown so we cannot compute Eξ, but
▶ we have some samples (i.e. random realizations) of ξ
▶ we know L

Example: Regression: ξ = (x, f(x)), J̃(θ) := Eξ[∥φθ(x) − f(x)∥2]

Algorithm: Stochastic Gradient Descent
Input: Initial param. θ0; data S = (ξs)s=1,...,|S|; nb of steps K; learning rates (η(k))k

Output: Parameter θ⋆ s.t. φθ⋆ (approximately) minimizes J̃
1 Initialize θ(0) = θ0
2 for k = 0, 1, 2, . . . , K − 1 do
3 Pick s ∈ S randomly
4 Compute the gradient ∇θL̃(θ(k−1), ξs) = d

dθ
L(φθ(k−1) , ξs)

5 Set θ(k) = θ(k−1) − η(k)∇θL̃(θ(k−1), ξs)

6 return θ(K)

9 / 40

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Parameterization: J̃(θ) := Eξ[L̃(θ, ξ)], where L̃(θ, ξ) := L(φθ, ξ)

Setting: the distribution of ξ is unknown so we cannot compute Eξ, but
▶ we have some samples (i.e. random realizations) of ξ
▶ we know L

Example: Regression: ξ = (x, f(x)), J̃(θ) := Eξ[∥φθ(x) − f(x)∥2]

Algorithm: Stochastic Gradient Descent
Input: Initial param. θ0; data S = (ξs)s=1,...,|S|; nb of steps K; learning rates (η(k))k

Output: Parameter θ⋆ s.t. φθ⋆ (approximately) minimizes J̃
1 Initialize θ(0) = θ0
2 for k = 0, 1, 2, . . . , K − 1 do
3 Pick s ∈ S randomly
4 Compute the gradient ∇θL̃(θ(k−1), ξs) = d

dθ
L(φθ(k−1) , ξs)

5 Set θ(k) = θ(k−1) − η(k)∇θL̃(θ(k−1), ξs)

6 return θ(K)

9 / 40

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Parameterization: J̃(θ) := Eξ[L̃(θ, ξ)], where L̃(θ, ξ) := L(φθ, ξ)

Setting: the distribution of ξ is unknown so we cannot compute Eξ, but
▶ we have some samples (i.e. random realizations) of ξ
▶ we know L

Example: Regression: ξ = (x, f(x)), J̃(θ) := Eξ[∥φθ(x) − f(x)∥2]

Algorithm: Stochastic Gradient Descent
Input: Initial param. θ0; data S = (ξs)s=1,...,|S|; nb of steps K; learning rates (η(k))k

Output: Parameter θ⋆ s.t. φθ⋆ (approximately) minimizes J̃
1 Initialize θ(0) = θ0
2 for k = 0, 1, 2, . . . , K − 1 do
3 Pick s ∈ S randomly
4 Compute the gradient ∇θL̃(θ(k−1), ξs) = d

dθ
L(φθ(k−1) , ξs)

5 Set θ(k) = θ(k−1) − η(k)∇θL̃(θ(k−1), ξs)

6 return θ(K)

9 / 40

Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Parameterization: J̃(θ) := Eξ[L̃(θ, ξ)], where L̃(θ, ξ) := L(φθ, ξ)

Setting: the distribution of ξ is unknown so we cannot compute Eξ, but
▶ we have some samples (i.e. random realizations) of ξ
▶ we know L

Example: Regression: ξ = (x, f(x)), J̃(θ) := Eξ[∥φθ(x) − f(x)∥2]

Algorithm: Stochastic Gradient Descent
Input: Initial param. θ0; data S = (ξs)s=1,...,|S|; nb of steps K; learning rates (η(k))k

Output: Parameter θ⋆ s.t. φθ⋆ (approximately) minimizes J̃
1 Initialize θ(0) = θ0
2 for k = 0, 1, 2, . . . , K − 1 do
3 Pick s ∈ S randomly
4 Compute the gradient ∇θL̃(θ(k−1), ξs) = d

dθ
L(φθ(k−1) , ξs)

5 Set θ(k) = θ(k−1) − η(k)∇θL̃(θ(k−1), ξs)

6 return θ(K)

9 / 40

Ingredient 2: Stochastic Gradient Descent – Comments

Many variants:

▶ Learning rate: ADAM (Adaptive Moment Estimation)
[Kingma and Ba, 2014], . . .

▶ Samples: Mini-batches, . . .

Proofs of convergence e.g. using stochastic approximation
[Robbins and Monro, 1951], [Borkar, 2009]

In practice: many details to be discussed, see e.g.[Bottou, 2012]; choice of
hyperparameters

▶ architecture
▶ initialization
▶ learning rate
▶ loss function
▶ . . .

10 / 40

Analysis: Error Types

Consider the task: minimize over φ the population risk:

R(φ) = Ex,y[L(φ(x), y)]

with x ∼ µ and y = f(x) + ϵ for some noise ϵ where f is unknown

In practice:

▶ minimize over a hypothesis class F of φ

▶ finite number of samples, S = (xm, ym)m=1,...,M : empirical risk:

R̂S(φ) = 1
M

M∑
m=1

L(φ(xm), ym) (+ regu)

▶ finite number of optimization steps, say k

11 / 40

Analysis: Error Types

Consider the task: minimize over φ the population risk:

R(φ) = Ex,y[L(φ(x), y)]

with x ∼ µ and y = f(x) + ϵ for some noise ϵ where f is unknown

In practice:

▶ minimize over a hypothesis class F of φ

▶ finite number of samples, S = (xm, ym)m=1,...,M : empirical risk:

R̂S(φ) = 1
M

M∑
m=1

L(φ(xm), ym) (+ regu)

▶ finite number of optimization steps, say k

11 / 40

Analysis: Error Types

We are interested in:

Approximation error: Letting φ∗ = argminφ∈F dist(φ, f),

ϵapprox = dist(φ∗, f)

Estimation error: Letting φ̂S = argminφ∈F R̂S(φ)

ϵestim = dist(φ̂S , φ
∗)

Optimization error: After k steps, we get φ(k)
S ;

ϵoptim = dist(φ(k)
S , φ̂S)

Generalization error of the learnt φ(k)
S :

ϵgene = ϵapprox + ϵestim + ϵoptim

12 / 40

Analysis: Error Types

We are interested in:

Approximation error: Letting φ∗ = argminφ∈F dist(φ, f),

ϵapprox = dist(φ∗, f)

Estimation error: Letting φ̂S = argminφ∈F R̂S(φ)

ϵestim = dist(φ̂S , φ
∗)

Optimization error: After k steps, we get φ(k)
S ;

ϵoptim = dist(φ(k)
S , φ̂S)

Generalization error of the learnt φ(k)
S :

ϵgene = ϵapprox + ϵestim + ϵoptim

12 / 40

Outline

1. Introduction

2. Deep Learning for MFC
Deep learning for stochastic optimal control
Adaptation to MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

Outline

1. Introduction

2. Deep Learning for MFC
Deep learning for stochastic optimal control
Adaptation to MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

From optimal control to optimization

An optimal control is a “temporally extended” optimization problem

Numerically, we cannot minimize over all possible controls

We can parameterize the control function

and then optimize over the parameters

See e.g. [Gobet and Munos, 2005], [Han and E, 2016], . . .

13 / 40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

(1) neural network φθ, (2) time discretization

Minimize over α(·, ·)

J(α(·, ·)) = E
[∫ T

0
f(Xt, α(t,Xt)) dt+ g(XT)

]
,

with
X0 ∼ m0 , dXt = b(Xt, α(t,Xt)) dt+ σdWt

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)

14 / 40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φθ,

(2) time discretization

Minimize over neural network parameters θ

J(θ) = E
[∫ T

0
f (Xt, φθ(t,Xt)) dt+ g (XT)

]
,

with
X0 ∼ m0 , dXt = b(Xt, φθ(t,Xt)) dt+ σdWt

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)

14 / 40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φθ, (2) time discretization

Minimize over neural network parameters θ and NT time steps

JNT (θ) = E
[NT −1∑

n=0

f (Xn, φθ(tn, Xn)) ∆t+ g (XNT)
]
,

with
X0 ∼ m0 , Xn+1 −Xn = b(Xn, φθ(tn, Xn))∆t+ σ∆Wn

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)

14 / 40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φθ, (2) time discretization

Minimize over neural network parameters θ and NT time steps

JNT (θ) = E
[NT −1∑

n=0

f (Xn, φθ(tn, Xn)) ∆t+ g (XNT)
]
,

with
X0 ∼ m0 , Xn+1 −Xn = b(Xn, φθ(tn, Xn))∆t+ σ∆Wn

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)

14 / 40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φθ, (2) time discretization

Minimize over neural network parameters θ and NT time steps

JNT (θ) = E
[NT −1∑

n=0

f (Xn, φθ(tn, Xn)) ∆t+ g (XNT)
]
,

with
X0 ∼ m0 , Xn+1 −Xn = b(Xn, φθ(tn, Xn))∆t+ σ∆Wn

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)

14 / 40

Outline

1. Introduction

2. Deep Learning for MFC
Deep learning for stochastic optimal control
Adaptation to MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

MFC: Approximate Problem

MFC problem:

(1) Finite pop., (2) neural network φθ, (3) time discretization

Minimize over α(·, ·)

J(α(·, ·)) = E
[∫ T

0
f(Xt, µt, α(t,Xt)) dt+ g(XT , µT)

]
,

where µt = L(Xt) with

X0 ∼ m0 , dXt = b(Xt, µt, α(t,Xt)) dt+ σdWt

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

MFC: Approximate Problem

MFC problem: (1) Finite pop.,

(2) neural network φθ, (3) time discretization

Minimize over decentralized controls α(·, ·) with N agents

JN (α(·, ·)) = E
[1
N

N∑
i=1

∫ T

0
f

(
Xi

t , µ
N
t , α(t,Xi

t)
)
dt+ g

(
Xi

T , µ
N
T

)]
,

where µN
t = 1

N

∑N

j=1 δX
j
t
, with

Xj
0 ∼ m0 , dXj

t = b(Xj
t , µ

N
t , α(t,Xj

t)) dt+ σdW j
t

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φθ,

(3) time discretization

Minimize over neural network parameters θ with N agents

JN (θ) = E
[1
N

N∑
i=1

∫ T

0
f

(
Xi

t , µ
N
t , φθ(t,Xi

t)
)
dt+ g

(
Xi

T , µ
N
T

)]
,

where µN
t = 1

N

∑N

j=1 δX
j
t
, with

Xj
0 ∼ m0 , dXj

t = b(Xj
t , µ

N
t , φθ(t,Xj

t)) dt+ σdW j
t

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φθ, (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT −1∑
n=0

f
(
Xi

n, µ
N
n , φθ(tn, Xi

n)
)

∆t+ g
(
Xi

NT
, µN

NT

)]
,

where µN
n = 1

N

∑N

j=1 δX
j
n

, with

Xj
0 ∼ m0 , Xj

n+1 −Xj
n = b(Xj

n, µ
N
n , φθ(tn, Xj

n))∆t+ σ∆W j
n

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φθ, (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT −1∑
n=0

f
(
Xi

n, µ
N
n , φθ(tn, Xi

n)
)

∆t+ g
(
Xi

NT
, µN

NT

)]
,

where µN
n = 1

N

∑N

j=1 δX
j
n

, with

Xj
0 ∼ m0 , Xj

n+1 −Xj
n = b(Xj

n, µ
N
n , φθ(tn, Xj

n))∆t+ σ∆W j
n

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φθ, (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT −1∑
n=0

f
(
Xi

n, µ
N
n , φθ(tn, Xi

n)
)

∆t+ g
(
Xi

NT
, µN

NT

)]
,

where µN
n = 1

N

∑N

j=1 δX
j
n

, with

Xj
0 ∼ m0 , Xj

n+1 −Xj
n = b(Xj

n, µ
N
n , φθ(tn, Xj

n))∆t+ σ∆W j
n

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type

15 / 40

Convergence Analysis

The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf

α(·,·)
J(α(·, ·)) − inf

θ∈Θ
JN,NT (θ)

∣∣∣∣ ≤ ϵ1(N) + ϵ2(dim(θ)) + ϵ3(NT)

The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Laurière, 2021]

The optimization error remains to be studied

Many extensions and refinements to be investigated

16 / 40

Convergence Analysis

The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf

α(·,·)
J(α(·, ·)) − inf

θ∈Θ
JN,NT (θ)

∣∣∣∣ ≤ ϵ1(N) + ϵ2(dim(θ)) + ϵ3(NT)

The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Laurière, 2021]

The optimization error remains to be studied

Many extensions and refinements to be investigated

16 / 40

Convergence Analysis

The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf

α(·,·)
J(α(·, ·)) − inf

θ∈Θ
JN,NT (θ)

∣∣∣∣ ≤ ϵ1(N) + ϵ2(dim(θ)) + ϵ3(NT)

The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Laurière, 2021]

The optimization error remains to be studied

Many extensions and refinements to be investigated

16 / 40

Convergence Analysis

The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf

α(·,·)
J(α(·, ·)) − inf

θ∈Θ
JN,NT (θ)

∣∣∣∣ ≤ ϵ1(N) + ϵ2(dim(θ)) + ϵ3(NT)

The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Laurière, 2021]

The optimization error remains to be studied

Many extensions and refinements to be investigated

16 / 40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control α∗ s.t. (d = dimension of Xt)∣∣∣∣ inf
α(·)

J(α(·)) − JN (α∗(·))

∣∣∣∣ ≤ ϵ1(N) ∈ Õ
(

N−1/d
)

.

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ ∈ Θ for a one-hidden layer φ̂θ s.t.∣∣JN (α∗(·)) − JN (φ̂θ(·))
∣∣ ≤ ϵ2(dim(θ)) ∈ O

(
dim(θ)− 1

3(d+1)
)

.

Proof: Key difficulty: approximate v∗(·) by φ̂θ(·) while controlling ∥∇φ̂θ(·)∥ by ∥∇v∗(·)∥
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network φ̂θ(·),∣∣JN (φ̂θ(·)) − JN,NT (φ̂θ(·))
∣∣ ≤ ϵ3(NT) ∈ O

(
N

−1/2
T

)
.

Key point: O (·) independent of N and dim(θ)
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])

17 / 40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control α∗ s.t. (d = dimension of Xt)∣∣∣∣ inf
α(·)

J(α(·)) − JN (α∗(·))

∣∣∣∣ ≤ ϵ1(N) ∈ Õ
(

N−1/d
)

.

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ ∈ Θ for a one-hidden layer φ̂θ s.t.∣∣JN (α∗(·)) − JN (φ̂θ(·))
∣∣ ≤ ϵ2(dim(θ)) ∈ O

(
dim(θ)− 1

3(d+1)
)

.

Proof: Key difficulty: approximate v∗(·) by φ̂θ(·) while controlling ∥∇φ̂θ(·)∥ by ∥∇v∗(·)∥
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network φ̂θ(·),∣∣JN (φ̂θ(·)) − JN,NT (φ̂θ(·))
∣∣ ≤ ϵ3(NT) ∈ O

(
N

−1/2
T

)
.

Key point: O (·) independent of N and dim(θ)
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])

17 / 40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control α∗ s.t. (d = dimension of Xt)∣∣∣∣ inf
α(·)

J(α(·)) − JN (α∗(·))

∣∣∣∣ ≤ ϵ1(N) ∈ Õ
(

N−1/d
)

.

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ ∈ Θ for a one-hidden layer φ̂θ s.t.∣∣JN (α∗(·)) − JN (φ̂θ(·))
∣∣ ≤ ϵ2(dim(θ)) ∈ O

(
dim(θ)− 1

3(d+1)
)

.

Proof: Key difficulty: approximate v∗(·) by φ̂θ(·) while controlling ∥∇φ̂θ(·)∥ by ∥∇v∗(·)∥
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network φ̂θ(·),∣∣JN (φ̂θ(·)) − JN,NT (φ̂θ(·))
∣∣ ≤ ϵ3(NT) ∈ O

(
N

−1/2
T

)
.

Key point: O (·) independent of N and dim(θ)
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])

17 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

18 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

18 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

X0

µN
0

18 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

ϕ
θ
(0, ·)X0

∆W0

C0

X1

µN
0 µN

1

18 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

ϕ
θ
(0, ·)X0

∆W0

C0

X1 ϕ
θ
(t1, ·) ϕ

θ
(tNT−1, ·)

C1 CNT−1

∆WNT−1

µN
0 µN

1
µN
NT

XNT
b b b b

CNT

18 / 40

Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:

ϕ
θ,0

, . . . , ϕ
θ,NT −1X0

∆W0, . . . ,∆WNT−1

C0 + . . .+ CNT

X1, . . . ,XNT

18 / 40

Numerical Illustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫
µ(ξ)dξ︸ ︷︷ ︸

mean position

, g(x) = x2

Numerical example with d = 10 (see [Carmona and Laurière, 2022]):

0 10000 20000 30000 40000
SGD iterations

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

lo
ss

N=32,NT=100
N=128,NT=100
N=1024,NT=100
N=1024,NT=20
N=1024,NT=10

total cost (= loss function)

0 10000 20000 30000 40000
SGD iterations

10−2

10−1

100

er
ro
r

N=32,NT=100
N=128,NT=100
N=1024,NT=100
N=1024,NT=20
N=1024,NT=10

L2-error on the control
19 / 40

Numerical Illustration 2: min-LQ MFC with common noise

The following model is inspired by [Salhab et al., 2015] and [Achdou and Lasry, 2019].

MFC with simple CN:

Dynamics: dXt = ϕt(Xt, ϵ
0
t)dt+ σdWt, ϵ0

t = 0 until t = T/2, and then ξ1 or ξ2 w.p. 1/2

Running cost |ϕt(Xt, ϵ
0
t)|2, final cost (XT − ϵ0

T)2 + Q̄T (m̄T −XT)2

Parameter values: σ = 0.1, T = 1, ξ1 = −1.5, ξ2 = +1.5

Numerical results:

neural network φθ(t,Xt, ϵ
0
t), taking as an input the common noise

benchmark solution computed by solving a system of 6 PDEs (see
[Achdou and Lasry, 2019, Bourany, 2018])

20 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0.1

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0.2

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0.3

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0.4

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 0
PDE, 0 = 0
DS, 0 = 0
DS, 0 = 0

t = 0.5

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 1.5
PDE, 0 = + 1.5
DS, 0 = 1.5
DS, 0 = + 1.5

t = 0.6

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 1.5
PDE, 0 = + 1.5
DS, 0 = 1.5
DS, 0 = + 1.5

t = 0.7

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 1.5
PDE, 0 = + 1.5
DS, 0 = 1.5
DS, 0 = + 1.5

t = 0.8

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 1.5
PDE, 0 = + 1.5
DS, 0 = 1.5
DS, 0 = + 1.5

t = 0.9

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
PDE, 0 = 1.5
PDE, 0 = + 1.5
DS, 0 = 1.5
DS, 0 = + 1.5

t = 1

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]

21 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

Price process: with να = population’s distribution over actions,

dSα
t = γ

∫
R
adνα

t (a)dt+ σ0dW
0
t

Typical agent’s inventory: dXα
t = αtdt+ σdWt

Typical agent’s wealth: dKα
t = −

(
αtS

α
t + cα(αt)

)
dt

Typical agent’s portfolio value: V α
t = Kα

t +Xα
t S

α
t

Objective: minimize

J(α) = E
[∫ T

0
cX(Xα

t)dt+ g(Xα
T) − V α

T

]
Equivalent problem:

J(α) = E
[∫ T

0

(
cα(αt) + cX(Xα

t) − γXα
t

∫
R
adνα

t (a)
)
dt+ g(Xα

T)
]

We take: cα(v) = 1
2cαv

2, cX(x) = 1
2cXx

2 and g(x) = 1
2cgx

2

22 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

Price process: with να = population’s distribution over actions,

dSα
t = γ

∫
R
adνα

t (a)dt+ σ0dW
0
t

Typical agent’s inventory: dXα
t = αtdt+ σdWt

Typical agent’s wealth: dKα
t = −

(
αtS

α
t + cα(αt)

)
dt

Typical agent’s portfolio value: V α
t = Kα

t +Xα
t S

α
t

Objective: minimize

J(α) = E
[∫ T

0
cX(Xα

t)dt+ g(Xα
T) − V α

T

]

Equivalent problem:

J(α) = E
[∫ T

0

(
cα(αt) + cX(Xα

t) − γXα
t

∫
R
adνα

t (a)
)
dt+ g(Xα

T)
]

We take: cα(v) = 1
2cαv

2, cX(x) = 1
2cXx

2 and g(x) = 1
2cgx

2

22 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

Price process: with να = population’s distribution over actions,

dSα
t = γ

∫
R
adνα

t (a)dt+ σ0dW
0
t

Typical agent’s inventory: dXα
t = αtdt+ σdWt

Typical agent’s wealth: dKα
t = −

(
αtS

α
t + cα(αt)

)
dt

Typical agent’s portfolio value: V α
t = Kα

t +Xα
t S

α
t

Objective: minimize

J(α) = E
[∫ T

0
cX(Xα

t)dt+ g(Xα
T) − V α

T

]
Equivalent problem:

J(α) = E
[∫ T

0

(
cα(αt) + cX(Xα

t) − γXα
t

∫
R
adνα

t (a)
)
dt+ g(Xα

T)
]

We take: cα(v) = 1
2cαv

2, cX(x) = 1
2cXx

2 and g(x) = 1
2cgx

2

22 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

Price process: with να = population’s distribution over actions,

dSα
t = γ

∫
R
adνα

t (a)dt+ σ0dW
0
t

Typical agent’s inventory: dXα
t = αtdt+ σdWt

Typical agent’s wealth: dKα
t = −

(
αtS

α
t + cα(αt)

)
dt

Typical agent’s portfolio value: V α
t = Kα

t +Xα
t S

α
t

Objective: minimize

J(α) = E
[∫ T

0
cX(Xα

t)dt+ g(Xα
T) − V α

T

]
Equivalent problem:

J(α) = E
[∫ T

0

(
cα(αt) + cX(Xα

t) − γXα
t

∫
R
adνα

t (a)
)
dt+ g(Xα

T)
]

We take: cα(v) = 1
2cαv

2, cX(x) = 1
2cXx

2 and g(x) = 1
2cgx

2

22 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

1 2 3 4 5 6 7
x

8

6

4

2

0

co
nt

ro
l t=0.000

t=0.100
t=0.200
t=0.300
t=0.400
t=0.500
t=0.600
t=0.700
t=0.800
t=0.900

1 2 3 4 5 6 7
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

t=0.000
t=0.100
t=0.200
t=0.300
t=0.400
t=0.500
t=0.600
t=0.700
t=0.800
t=0.900
t=1.000

T = 1, cX = 2, cα = 1, cg = 0.3, σ = 0.5, γ = 0.2

See Section 2 in [Carmona and Laurière, 2023] for more details.

23 / 40

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

1 2 3 4 5 6 7
x

8

6

4

2

0

2

4

co
nt

ro
l t=0.000

t=0.100
t=0.200
t=0.300
t=0.400
t=0.500
t=0.600
t=0.700
t=0.800
t=0.900

2 3 4 5 6 7
x

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

t=0.000
t=0.100
t=0.200
t=0.300
t=0.400
t=0.500
t=0.600
t=0.700
t=0.800
t=0.900
t=1.000

T = 1, cX = 2, cα = 1, cg = 0.3, σ = 0.5, γ = 1

See Section 2 in [Carmona and Laurière, 2023] for more details.

23 / 40

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

Deep learning for MFC using a direct approach where the control is
parameterized as a neural network

Applied to the price impact model discussed above

24 / 40

https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing
https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

Related works

DL for stochastic control [Gobet and Munos, 2005], [Han and E, 2016], . . .

Various possible implementations; example: 1 NN per time step instead of a
single 1 NN as a function of time

Extensions to finite-player games [Hu, 2021]

Extension to MFC presented here [Carmona and Laurière, 2022]; see also
[Carmona and Laurière, 2023]

Related works with mean field: [Fouque and Zhang, 2020] (MFC with delay),
[Germain et al., 2019], [Agram et al., 2020], [Dayanikli et al., 2023] (with
population-dependent controls), . . .

25 / 40

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

Shooting Method for FBSDE

Goal: solve an FBSDE system

The backward process has a value Y0 at time 0, but it is not known

Try to guess the correct initial condition so that the terminal condition is satisfied

This yields a new optimal control problem

See e.g. [Kohlmann and Zhou, 2000], [Sannikov, 2008], . . .

For the new optimal control problem, use deep learning [E et al., 2017]

26 / 40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T)∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !

27 / 40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T)∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !

27 / 40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T)∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !

27 / 40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T)∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !

27 / 40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T)∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !

27 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)

Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT)
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions

28 / 40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC

29 / 40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC

29 / 40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC

29 / 40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC

29 / 40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC
29 / 40

Implementation

z0X0

∆W0

X1
z1 zNT−1

∆WNT−1

µN
0 µN

1
µN
NT

XNT
b b b b b

CNT

y0 YNTY1Y0

Inputs: initial positions X0 = (Xi
0)i, BM increments: ∆Wn = (∆W i

n)i, for all n

Loss function: total cost = CNT = terminal penalty; state = (Xn, Yn)

SGD to optimize over the param. θy, θz of 2 NN for
yθy (·) ≈ y0(·), zθz (·, ·) ≈ z(·, ·)

Alternative implementation: 1 +NT NNs for y0(·), z0(·), . . . , zNT −1(·)

30 / 40

Implementation

z0X0

∆W0

X1
z1 zNT−1

∆WNT−1

µN
0 µN

1
µN
NT

XNT
b b b b b

CNT

y0 YNTY1Y0

Inputs: initial positions X0 = (Xi
0)i, BM increments: ∆Wn = (∆W i

n)i, for all n

Loss function: total cost = CNT = terminal penalty; state = (Xn, Yn)

SGD to optimize over the param. θy, θz of 2 NN for
yθy (·) ≈ y0(·), zθz (·, ·) ≈ z(·, ·)

Alternative implementation: 1 +NT NNs for y0(·), z0(·), . . . , zNT −1(·)

30 / 40

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (ρ = coupling parameter)

dXt = −ρYtdt+ σdWt, X0 = x0

dYt = atan(E[Xt])dt+ ZtdWt, YT = G′(XT) := atan(XT)

Comes from the MFG defined by dXα
t = αtdt+ dWt and

J(α;µ) = E
[
G(Xα

T) +
∫ T

0

(
1

2ρ
α2

t +Xα
t atan

(∫
xµt(dx)

))
dt

]

[Chassagneux et al., 2019]

1 2 3 4 5 6
0.400

0.375

0.350

0.325

0.300

0.275

0.250

0.225

Y 0

Y0 (Algorithm 2)
Y0 (benchmark)

NN (FBSDE system)
More details in [Carmona and Laurière, 2022]

31 / 40

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (ρ = coupling parameter)

dXt = −ρYtdt+ σdWt, X0 = x0

dYt = atan(E[Xt])dt+ ZtdWt, YT = G′(XT) := atan(XT)

Comes from the MFG defined by dXα
t = αtdt+ dWt and

J(α;µ) = E
[
G(Xα

T) +
∫ T

0

(
1

2ρ
α2

t +Xα
t atan

(∫
xµt(dx)

))
dt

]

[Chassagneux et al., 2019]

1 2 3 4 5 6
0.400

0.375

0.350

0.325

0.300

0.275

0.250

0.225

Y 0

Y0 (Algorithm 2)
Y0 (benchmark)

NN (FBSDE system)
More details in [Carmona and Laurière, 2022]

31 / 40

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]

X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ϵ

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT)2
]

where m̄ = (m̄t)t≥0 = conditional mean of the population states given W 0, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1 − ρ2dWt + ρ dW 0
t

)

More details in [Carmona and Laurière, 2022]

32 / 40

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]

X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ϵ

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT)2
]

where m̄ = (m̄t)t≥0 = conditional mean of the population states given W 0, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1 − ρ2dWt + ρ dW 0
t

)
NN for FBSDE system VS (semi) analytical solution (LQ structure)

0.0 0.1 0.2 0.3 0.4 0.5
time t

−0.6

−0.4

−0.2

0.0

0.2

X1 (Algorithm 2)
X1 (benchmark)

X2 (Algorithm 2)
X2 (benchmark)

Samples of X

0.0 0.1 0.2 0.3 0.4 0.5
time t

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Y1 (Algorithm 2)
Y1 (benchmark)

Y2 (Algorithm 2)
Y2 (benchmark)

Samples of Y

More details in [Carmona and Laurière, 2022]
32 / 40

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]

X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ϵ

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT)2
]

where m̄ = (m̄t)t≥0 = conditional mean of the population states given W 0, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1 − ρ2dWt + ρ dW 0
t

)
NN for FBSDE system VS (semi) analytical solution (LQ structure)

0 10000 20000 30000 40000 50000
iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

NT = 100, N = 104 NT = 50, N = 104 NT = 100, N = 102

L2 error on X

0 10000 20000 30000 40000 50000
iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

NT = 100, N = 104 NT = 50, N = 104 NT = 100, N = 102

L2 error on Y

More details in [Carmona and Laurière, 2022]
32 / 40

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing

Deep learning for MKV FBSDEs

Applied to the systemic risk model discussed above

33 / 40

https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing
https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing

Comments

Convergence of the DeepBSDE method [Han and Long, 2020]

Extension to finite-player games [Han et al., 2022]

Analysis of the different types of errors to be done for MKV case

The new MFC problem is not standard

Deep learning of MKV FBSDEs as presented here
[Carmona and Laurière, 2022]; see also [Carmona and Laurière, 2023]

Related works on deep learning for MKV FBSDEs: [Fouque and Zhang, 2020]
(MFC with delay), [Germain et al., 2019], [Aurell et al., 2022b], . . .

Similar “shooting” strategy can be applied to (infinite-dimensional) ODE systems
obtained in graphon games [Aurell et al., 2022a]. Code (Gökçe Dayanıklı):

https://github.com/gokce-d/GraphonEpidemics

34 / 40

https://github.com/gokce-d/GraphonEpidemics

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions
Solving Stackelberg MFG with Deep MKV FBSDE
Computing MFC Value Function with DBDP

5. Conclusion

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions
Solving Stackelberg MFG with Deep MKV FBSDE
Computing MFC Value Function with DBDP

5. Conclusion

Stackelberg MFG

MFG with a Stackelberg (leader-follower) structure:

A Principal chooses a policy λ

A population of agents react and form a Nash equilibrium:

Jλ(α,µ) := E
[∫ T

0
f(t,Xt, αt, µt;λ(t))dt+ g(XT , µT ;λ(T))

]
,

This is an MFG parameterized by λ

The resulting mean field flow µ̂λ incurs a cost to the principal

J0(λ) :=
∫ T

0
f0(t, µ̂λ

t , λ(t))dt+ g0(µ̂λ
T , λ(T))

Related works: Holmström-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitanić et al (2018), Carmona-Wang (2018), Elie et al (2019)

35 / 40

DL for Stackelberg MFG

Reminder:

MFG solution can be characterized using a MKV FBSDE system

This MKV FBSDE can be rewritten as a control problem
▶ 2 forward equations
▶ terminal cost

Stackelberg MFG:

The above terminal cost can be combined with the principal’s cost

We obtain an MFC problem [Elie et al., 2019]

From here we can apply the methods discussed previously

For more details, see:

[Aurell et al., 2022b] with application to epidemics management (finite state
MFG): principal gives guidelines (social distancing, etc.) and population reacts

Code available ((Gökçe Dayanıklı)):

https://github.com/gokce-d/StackelbergMFG

Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]

Similarities with DA for mean field optimal transport [Baudelet et al., 2023]

36 / 40

https://github.com/gokce-d/StackelbergMFG

DL for Stackelberg MFG

Reminder:

MFG solution can be characterized using a MKV FBSDE system

This MKV FBSDE can be rewritten as a control problem
▶ 2 forward equations
▶ terminal cost

Stackelberg MFG:

The above terminal cost can be combined with the principal’s cost

We obtain an MFC problem [Elie et al., 2019]

From here we can apply the methods discussed previously

For more details, see:

[Aurell et al., 2022b] with application to epidemics management (finite state
MFG): principal gives guidelines (social distancing, etc.) and population reacts

Code available ((Gökçe Dayanıklı)):

https://github.com/gokce-d/StackelbergMFG

Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]

Similarities with DA for mean field optimal transport [Baudelet et al., 2023]
36 / 40

https://github.com/gokce-d/StackelbergMFG

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions
Solving Stackelberg MFG with Deep MKV FBSDE
Computing MFC Value Function with DBDP

5. Conclusion

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
α∗ is a solution to the MFC problem if it minimizes

JMF C(α) = E
[∫ T

0
f(Xα

t , αt,m
α
t)dt+ g(Xα

T ,m
α
T)

]
.

Main difference with MFG: here not only X but m too is controlled by α.

Optimality conditions? Several approaches:

Dynamic programming value function depending on m; value function V

Calculus of variations taking m as a state; adjoint state u

Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y

Dynamic programming for MFC [Laurière and Pironneau, 2014],
[Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], . . .

→ Algorithm?

37 / 40

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
α∗ is a solution to the MFC problem if it minimizes

JMF C(α) = E
[∫ T

0
f(Xα

t , αt,m
α
t)dt+ g(Xα

T ,m
α
T)

]
.

Main difference with MFG: here not only X but m too is controlled by α.

Optimality conditions? Several approaches:

Dynamic programming value function depending on m; value function V

Calculus of variations taking m as a state; adjoint state u

Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y

Dynamic programming for MFC [Laurière and Pironneau, 2014],
[Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], . . .

→ Algorithm?
37 / 40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Yn and Zn at each n as functions of Xn, backward in time:

Initialize ŶNT = g and then, for n = NT − 1, . . . , 0, either:

Version 1: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), Zn(Xn))∆t − Zn(Xn) · ∆Wn+1|
]

or Version 2: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), σ
⊤

DxYn(Xn))∆t − DxYn(Xn)⊤
σ∆Wn+1|

]
For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]

38 / 40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Yn and Zn at each n as functions of Xn, backward in time:

Initialize ŶNT = g and then, for n = NT − 1, . . . , 0, either:

Version 1: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), Zn(Xn))∆t − Zn(Xn) · ∆Wn+1|
]

or Version 2: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), σ
⊤

DxYn(Xn))∆t − DxYn(Xn)⊤
σ∆Wn+1|

]

For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]

38 / 40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Yn and Zn at each n as functions of Xn, backward in time:

Initialize ŶNT = g and then, for n = NT − 1, . . . , 0, either:

Version 1: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), Zn(Xn))∆t − Zn(Xn) · ∆Wn+1|
]

or Version 2: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), σ
⊤

DxYn(Xn))∆t − DxYn(Xn)⊤
σ∆Wn+1|

]
For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]

38 / 40

DBDP for MFC

Can we apply the same idea to MFC, replacing V by a neural network?

Main challenge: the value function V takes m ∈ P(Rd) as an input

We need to approximate m

One possibility:

V (t,mt) ≈ Ṽ (t,mN
t) ≈ Ṽθ(t,X1

t , . . . , X
N
t)

where Ṽθ is a neural network which is symmetric with respect to the inputs

See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)

39 / 40

DBDP for MFC

Can we apply the same idea to MFC, replacing V by a neural network?

Main challenge: the value function V takes m ∈ P(Rd) as an input

We need to approximate m

One possibility:

V (t,mt) ≈ Ṽ (t,mN
t) ≈ Ṽθ(t,X1

t , . . . , X
N
t)

where Ṽθ is a neural network which is symmetric with respect to the inputs

See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)

39 / 40

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

Summary

Two algorithms based on the stochastic approach

Direct approach without any optimality condition

DeepBSDE: recasting (MKV) FBSDEs as control problems

Many possible extensions and variations

Many open questions for mathematicians (proofs of approximation, rates of
convergence, . . .)

Some surveys on DL for control/games:
[Germain et al., 2021b, Carmona and Laurière, 2023, Hu and Laurière, 2023]

Next lecture: deep learning methods for the PDE approach
40 / 40

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References I

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77–109.

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136–1162.

[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmäki, P., Periaux, J., and
Pironneau, O., editors, Contributions to Partial Differential Equations and Applications,
chapter 4, pages 17–42. Springer International Publishing.

[Achdou and Laurière, 2016] Achdou, Y. and Laurière, M. (2016).
Mean Field Type Control with Congestion (II): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535–578.

[Agram et al., 2020] Agram, N., Bakdi, A., and Oksendal, B. (2020).
Deep learning and stochastic mean-field control for a neural network model.
Available at SSRN 3639022.

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657–682.

1 / 14

References II

[Andreev, 2017a] Andreev, R. (2017a).
Preconditioning the augmented Lagrangian method for instationary mean field games with
diffusion.
SIAM J. Sci. Comput., 39(6):A2763–A2783.

[Andreev, 2017b] Andreev, R. (2017b).
Preconditioning the augmented lagrangian method for instationary mean field games with
diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763–A2783.

[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and
Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84–113.

[Aurell et al., 2022a] Aurell, A., Carmona, R., Dayanıklı, G., and Laurière, M. (2022a).
Finite state graphon games with applications to epidemics.
Dynamic Games and Applications, 12(1):49–81.

[Aurell et al., 2022b] Aurell, A., Carmona, R., Dayanikli, G., and Lauriere, M. (2022b).
Optimal incentives to mitigate epidemics: a stackelberg mean field game approach.
SIAM Journal on Control and Optimization, 60(2):S294–S322.

2 / 14

References III

[Balata et al., 2019] Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114–144.

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023).
Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.

[Bayraktar et al., 2018] Bayraktar, E., Budhiraja, A., and Cohen, A. (2018).
A numerical scheme for a mean field game in some queueing systems based on markov chain
approximation method.
SIAM Journal on Control and Optimization, 56(6):4017–4044.

[Benamou and Carlier, 2015] Benamou, J.-D. and Carlier, G. (2015).
Augmented lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1–26.

[Bensoussan et al., 2015] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2015).
The master equation in mean field theory.
J. Math. Pures Appl. (9), 103(6):1441–1474.

[Borkar, 2009] Borkar, V. S. (2009).
Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer.

3 / 14

References IV

[Bossy and Talay, 1997] Bossy, M. and Talay, D. (1997).
A stochastic particle method for the McKean-Vlasov and the Burgers equation.
Math. Comp., 66(217):157–192.

[Bottou, 2012] Bottou, L. (2012).
Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade: Second Edition, pages 421–436. Springer.

[Bourany, 2018] Bourany, T. (2018).
The wealth distribution over the business cycle, a mean field game with common noise.
Technical report, Technical report, Technical report, Paris Diderot University.

[Briceño Arias et al., 2019] Briceño Arias, L. M., Kalise, D., Kobeissi, Z., Laurière, M.,
Mateos González, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field
games with local couplings.
ESAIM: ProcS, 65:330–348.

[Briceño Arias et al., 2018] Briceño Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801–836.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

4 / 14

References V

[Calzola et al., 2022] Calzola, E., Carlini, E., and Silva, F. J. (2022).
A high-order lagrange-galerkin scheme for a class of fokker-planck equations and applications
to mean field games.
arXiv preprint arXiv:2207.08463.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45–67.

[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269–4292.

[Carlini and Silva, 2018] Carlini, E. and Silva, F. J. (2018).
On the discretization of some nonlinear fokker–planck–kolmogorov equations and
applications.
SIAM Journal on Numerical Analysis, 56(4):2148–2177.

5 / 14

References VI

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Carmona et al., 2015] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk.
Commun. Math. Sci., 13(4):911–933.

[Carmona and Lacker, 2015] Carmona, R. and Lacker, D. (2015).
A probabilistic weak formulation of mean field games and applications.
Ann. Appl. Probab., 25(3):1189–1231.

[Carmona and Laurière, 2021] Carmona, R. and Laurière, M. (2021).
Convergence analysis of machine learning algorithms for the numerical solution of mean field
control and games i: The ergodic case.
SIAM Journal on Numerical Analysis, 59(3):1455–1485.

[Carmona and Laurière, 2022] Carmona, R. and Laurière, M. (2022).
Convergence analysis of machine learning algorithms for the numerical solution of mean field
control and games: Ii—the finite horizon case.
The Annals of Applied Probability, 32(6):4065–4105.

6 / 14

References VII

[Carmona and Laurière, 2023] Carmona, R. and Laurière, M. (2023).
Deep learning for mean field games and mean field control with applications to finance.
Machine Learning and Data Sciences for Financial Markets: A Guide to Contemporary
Practices, page 369.

[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640–1684.

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909–1917. PMLR.

[Cybenko, 1989] Cybenko, G. (1989).
Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314.

[Dayanikli and Lauriere, 2023] Dayanikli, G. and Lauriere, M. (2023).
A machine learning method for stackelberg mean field games.
arXiv preprint arXiv:2302.10440.

[Dayanikli et al., 2023] Dayanikli, G., Lauriere, M., and Zhang, J. (2023).
Deep learning for population-dependent controls in mean field control problems.
arXiv preprint arXiv:2306.04788.

7 / 14

References VIII

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).
A cubature based algorithm to solve decoupled mckean–vlasov forward–backward stochastic
differential equations.
Stochastic Processes and their Applications, 125(6):2206–2255.

[Després, 2022] Després, B. (2022).
Neural Networks and Numerical Analysis, volume 6.
Walter de Gruyter GmbH & Co KG.

[Djete et al., 2022] Djete, M. F., Possamaï, D., and Tan, X. (2022).
Mckean–vlasov optimal control: the dynamic programming principle.
The Annals of Probability, 50(2):791–833.

[E et al., 2017] E, W., Han, J., and Jentzen, A. (2017).
Deep learning-based numerical methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations.
Commun. Math. Stat., 5(4):349–380.

[Elie et al., 2019] Elie, R., Mastrolia, T., and Possamaï, D. (2019).
A tale of a principal and many, many agents.
Mathematics of Operations Research, 44(2):440–467.

[Fouque and Zhang, 2020] Fouque, J.-P. and Zhang, Z. (2020).
Deep learning methods for mean field control problems with delay.
Frontiers in Applied Mathematics and Statistics, 6:11.

8 / 14

References IX

[Germain et al., 2021a] Germain, M., Laurière, M., Pham, H., and Warin, X. (2021a).
Deepsets and their derivative networks for solving symmetric pdes.
arXiv preprint arXiv:2103.00838.

[Germain et al., 2019] Germain, M., Mikael, J., and Warin, X. (2019).
Numerical resolution of mckean-vlasov fbsdes using neural networks.
arXiv preprint arXiv:1909.12678.

[Germain et al., 2021b] Germain, M., Pham, H., and Warin, X. (2021b).
Neural networks-based algorithms for stochastic control and pdes in finance.
arXiv preprint arXiv:2101.08068.

[Germain et al., 2022] Germain, M., Pham, H., and Warin, X. (2022).
Rate of convergence for particle approximation of pdes in wasserstein space.
Journal of Applied Probability, 59(4):992–1008.

[Gobet and Munos, 2005] Gobet, E. and Munos, R. (2005).
Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic
optimal control.
SIAM J. Control Optim., 43(5):1676–1713.

[Gomes and Saúde, 2018] Gomes, D. A. and Saúde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition.
Applied Mathematics & Optimization.

9 / 14

References X

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton’s method for effective hamiltonians and mather
measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883–1915.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep learning.
MIT press.

[Han and E, 2016] Han, J. and E, W. (2016).
Deep learning approximation for stochastic control problems.
Deep Reinforcement Learning Workshop, NIPS, arXiv preprint arXiv:1611.07422.

[Han et al., 2022] Han, J., Hu, R., and Long, J. (2022).
Convergence of deep fictitious play for stochastic differential games.
Frontiers of Mathematical Finance, 1(2):279–311.

[Han and Long, 2020] Han, J. and Long, J. (2020).
Convergence of the deep bsde method for coupled fbsdes.
Probability, Uncertainty and Quantitative Risk, 5:1–33.

[Hornik, 1991] Hornik, K. (1991).
Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257.

10 / 14

References XI

[Hu, 2021] Hu, R. (2021).
Deep fictitious play for stochastic differential games.
Communications in Mathematical Sciences, 19(2):325–353.

[Hu and Laurière, 2023] Hu, R. and Laurière, M. (2023).
Recent developments in machine learning methods for stochastic control and games.
arXiv preprint arXiv:2303.10257.

[Huré et al., 2019] Huré, C., Pham, H., and Warin, X. (2019).
Some machine learning schemes for high-dimensional nonlinear pdes.
arXiv preprint arXiv:1902.01599, page 2.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[Kohlmann and Zhou, 2000] Kohlmann, M. and Zhou, X. Y. (2000).
Relationship between backward stochastic differential equations and stochastic controls: a
linear-quadratic approach.
SIAM Journal on Control and Optimization, 38(5):1392–1407.

[Laurière and Pironneau, 2014] Laurière, M. and Pironneau, O. (2014).
Dynamic programming for mean-field type control.
C. R. Math. Acad. Sci. Paris, 352(9):707–713.

11 / 14

References XII

[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902–924.

[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable
hamiltonians.
Applied Mathematics & Optimization, 87(2):17.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015).
Deep learning.
nature, 521(7553):436–444.

[Leijnen and Veen, 2020] Leijnen, S. and Veen, F. v. (2020).
The neural network zoo.
In Proceedings, volume 47, page 9. MDPI.

[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639–2668.

12 / 14

References XIII

[Mhaskar and Micchelli, 1995] Mhaskar, H. N. and Micchelli, C. A. (1995).
Degree of approximation by neural and translation networks with a single hidden layer.
Advances in Applied Mathematics, 16:151–183.

[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.

[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367–396.

[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629–655.

[Pham and Wei, 2017] Pham, H. and Wei, X. (2017).
Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics.
SIAM J. Control Optim., 55(2):1069–1101.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951).
A stochastic approximation method.
The annals of mathematical statistics, pages 400–407.

13 / 14

References XIV

[Salhab et al., 2015] Salhab, R., Malhamé, R. P., and Le Ny, J. (2015).
A dynamic game model of collective choice in multi-agent systems.
In 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pages 4444–4449,
Osaka, Japon.

[Sannikov, 2008] Sannikov, Y. (2008).
A continuous-time version of the principal-agent problem.
The Review of Economic Studies, 75(3):957–984.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

14 / 14

	Introduction
	Deep Learning for MFC
	Deep learning for stochastic optimal control
	Adaptation to MFC

	Deep Learning for MKV FBSDE
	Two Examples of Extensions
	Solving Stackelberg MFG with Deep MKV FBSDE
	Computing MFC Value Function with DBDP

	Conclusion
	Appendix

