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Summary so far

Numerical methods discussed so far:

ODE system for LQ setting

FBPDE system

FBSDE system
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

Finite difference & Newton method: [Achdou and Capuzzo-Dolcetta, 2010],
[Achdou et al., 2012], . . .
(Semi-)Lagrangian approach: [Carlini and Silva, 2014, Carlini and Silva, 2015],
[Carlini and Silva, 2018], [Calzola et al., 2022], . . .
Augmented Lagrangian & ADMM: [Benamou and Carlier, 2015],
[Andreev, 2017a], [Achdou and Laurière, 2016], . . .
Primal-dual algo.: [Briceño Arias et al., 2018], [Briceño Arias et al., 2019], . . .
Gradient descent based methods [Laurière and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022], . . .
Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018],
[Gomes and Yang, 2020], . . .
Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023], . . .
Finite elements [Benamou and Carlier, 2015], [Andreev, 2017b], . . .
Cubature [de Raynal and Trillos, 2015], . . .
Gaussian processes [Mou et al., 2022], . . .
Kernel-based representation [Liu et al., 2021], . . .
Fourier approximation [Nurbekyan et al., 2019], . . .
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

Cubature [de Raynal and Trillos, 2015], . . .

Markov chain approximation: [Bayraktar et al., 2018], . . .

Probabilistic approach and Picard: [Chassagneux et al., 2019],
[Angiuli et al., 2019], . . .

Probabilistic approach and regression: [Balata et al., 2019], . . .

. . .
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“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:

(relatively) small dimension

(relatively) simple structure

⇒ motivations to develop machine learning methods (see lectures 4, 5, 6)
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Deep learning

In this lecture and the following one, we will use deep learning to solve MFGs

At a high level, there are two main ingredients:

▶ Approximation using deep neural networks

▶ Minimization of a loss function using stochastic gradient descent

Many variants and refinements, . . .

See e.g. [LeCun et al., 2015, Goodfellow et al., 2016], . . .

5 / 40



Ingredient 1: Neural Networks

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Example: Regression: ξ = (x, f(x)) for some f , L(φ, ξ) = ∥φ(x) − f(x)∥2

Idea: Instead of min. over all φ(·), min. over parameters θ of φθ(·)

Example: Feedforward fully-connected neural network:

▶ φθ(·)
▶ with weights & biases θ = (β(k), w(k))k=1,...,ℓ

▶ activation functions ψ(i): sigmoid, tanh, ReLU, . . . ; applied coordinate-wise

φθ(x)︸ ︷︷ ︸
φ(θ, x)

= ψ(ℓ)
(
β(ℓ) + w(ℓ) . . . ψ(2)

(
β(2) + w(2) ψ(1)(β(1) + w(1)x)︸ ︷︷ ︸

one hidden layer

)
. . .

)
▶ Depth = number of layers; width of a layer = dimension of bias vector
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Ingredient 1: Neural Networks – Comments

Many other architectures (convolutional neural networks, recurrent neural
networks, . . . ), see e.g. [Leijnen and Veen, 2020]

Successes of deep learning in many fields: natural language processing,
computer vision, drug design, . . . and even games!

Combination with reinforcement learning (see lecture 6)

Universal approximation theorems [Cybenko, 1989], [Hornik, 1991], . . .

Connections with numerical analysis, see e.g. [Després, 2022]
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Ingredient 1: Neural Networks – Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (θ, x):

With respect to parameters: ∇θφ(θ, x)

∇β(ℓ)φ(θ, x) = . . . , ∇w(2)φ(θ, x) = . . .

⇒ can perform gradient descent on these parameters

With respect to state variable: ∇xφ(θ, x) can be computed by AD too

∂x1φ(θ, x) = . . .

⇒ can be used in PDEs (see lecture 5)

8 / 40



Ingredient 1: Neural Networks – Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (θ, x):

With respect to parameters: ∇θφ(θ, x)

∇β(ℓ)φ(θ, x) = . . . , ∇w(2)φ(θ, x) = . . .

⇒ can perform gradient descent on these parameters

With respect to state variable: ∇xφ(θ, x) can be computed by AD too

∂x1φ(θ, x) = . . .

⇒ can be used in PDEs (see lecture 5)

8 / 40



Ingredient 2: Stochastic Gradient Descent

Goal: Minimize over φ(·), J(φ) := Eξ[L(φ, ξ)]

Parameterization: J̃(θ) := Eξ[L̃(θ, ξ)], where L̃(θ, ξ) := L(φθ, ξ)

Setting: the distribution of ξ is unknown so we cannot compute Eξ, but
▶ we have some samples (i.e. random realizations) of ξ
▶ we know L

Example: Regression: ξ = (x, f(x)), J̃(θ) := Eξ[ ∥φθ(x) − f(x)∥2 ]

Algorithm: Stochastic Gradient Descent
Input: Initial param. θ0; data S = (ξs)s=1,...,|S|; nb of steps K; learning rates (η(k))k

Output: Parameter θ⋆ s.t. φθ⋆ (approximately) minimizes J̃
1 Initialize θ(0) = θ0
2 for k = 0, 1, 2, . . . , K − 1 do
3 Pick s ∈ S randomly
4 Compute the gradient ∇θL̃(θ(k−1), ξs) = d

dθ
L(φθ(k−1) , ξs)

5 Set θ(k) = θ(k−1) − η(k)∇θL̃(θ(k−1), ξs)

6 return θ(K)
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Ingredient 2: Stochastic Gradient Descent – Comments

Many variants:

▶ Learning rate: ADAM (Adaptive Moment Estimation)
[Kingma and Ba, 2014], . . .

▶ Samples: Mini-batches, . . .

Proofs of convergence e.g. using stochastic approximation
[Robbins and Monro, 1951], [Borkar, 2009]

In practice: many details to be discussed, see e.g.[Bottou, 2012]; choice of
hyperparameters

▶ architecture
▶ initialization
▶ learning rate
▶ loss function
▶ . . .
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Analysis: Error Types

Consider the task: minimize over φ the population risk:

R(φ) = Ex,y[L(φ(x), y)]

with x ∼ µ and y = f(x) + ϵ for some noise ϵ where f is unknown

In practice:

▶ minimize over a hypothesis class F of φ

▶ finite number of samples, S = (xm, ym)m=1,...,M : empirical risk:

R̂S(φ) = 1
M

M∑
m=1

L(φ(xm), ym) (+ regu)

▶ finite number of optimization steps, say k
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Analysis: Error Types

We are interested in:

Approximation error: Letting φ∗ = argminφ∈F dist(φ, f),

ϵapprox = dist(φ∗, f)

Estimation error: Letting φ̂S = argminφ∈F R̂S(φ)

ϵestim = dist(φ̂S , φ
∗)

Optimization error: After k steps, we get φ(k)
S ;

ϵoptim = dist(φ(k)
S , φ̂S)

Generalization error of the learnt φ(k)
S :

ϵgene = ϵapprox + ϵestim + ϵoptim
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From optimal control to optimization

An optimal control is a “temporally extended” optimization problem

Numerically, we cannot minimize over all possible controls

We can parameterize the control function

and then optimize over the parameters

See e.g. [Gobet and Munos, 2005], [Han and E, 2016], . . .
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

(1) neural network φθ, (2) time discretization

Minimize over α(·, ·)

J(α(·, ·)) = E
[ ∫ T

0
f(Xt, α(t,Xt)) dt+ g(XT )

]
,

with
X0 ∼ m0 , dXt = b(Xt, α(t,Xt)) dt+ σdWt

→ neural network induces an approximation error

→ time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ξ = (X0,∆W0, . . . ,∆WNT −1)
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MFC: Approximate Problem

MFC problem:

(1) Finite pop., (2) neural network φθ, (3) time discretization

Minimize over α(·, ·)

J(α(·, ·)) = E
[ ∫ T

0
f(Xt, µt, α(t,Xt)) dt+ g(XT , µT )

]
,

where µt = L(Xt) with

X0 ∼ m0 , dXt = b(Xt, µt, α(t,Xt)) dt+ σdWt

→ neural network induces an approximation error

→ finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N -agent control
problem, the optimal control is not always of this type
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Convergence Analysis

The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf

α(·,·)
J(α(·, ·)) − inf

θ∈Θ
JN,NT (θ)

∣∣∣∣ ≤ ϵ1(N) + ϵ2(dim(θ)) + ϵ3(NT )

The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Laurière, 2021]

The optimization error remains to be studied

Many extensions and refinements to be investigated
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control α∗ s.t. (d = dimension of Xt)∣∣∣∣ inf
α(·)

J(α(·)) − JN (α∗(·))

∣∣∣∣ ≤ ϵ1(N) ∈ Õ
(

N−1/d
)

.

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ ∈ Θ for a one-hidden layer φ̂θ s.t.∣∣JN (α∗(·)) − JN (φ̂θ(·))
∣∣ ≤ ϵ2(dim(θ)) ∈ O

(
dim(θ)− 1

3(d+1)
)

.

Proof: Key difficulty: approximate v∗(·) by φ̂θ(·) while controlling ∥∇φ̂θ(·)∥ by ∥∇v∗(·)∥
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network φ̂θ(·),∣∣JN (φ̂θ(·)) − JN,NT (φ̂θ(·))
∣∣ ≤ ϵ3(NT ) ∈ O

(
N

−1/2
T

)
.

Key point: O (·) independent of N and dim(θ)
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])
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Implementation

Key idea: replace optimal control problem by (finite dim.) optimization problem:

▶ Loss function = cost: JN,NT (θ) = E[L(φθ, ξ)]
▶ One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT −1

)
j=1,...,N

→ can use Stochastic Gradient Descent

Structure:
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Numerical Illustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫
µ(ξ)dξ︸ ︷︷ ︸

mean position

, g(x) = x2

Numerical example with d = 10 (see [Carmona and Laurière, 2022]):

0 10000 20000 30000 40000
SGD iterations
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4.5
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5.1

lo
ss

N=32,NT=100
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N=1024,NT=100
N=1024,NT=20
N=1024,NT=10

total cost (= loss function)

0 10000 20000 30000 40000
SGD iterations
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10−1

100

er
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r

N=32,NT=100
N=128,NT=100
N=1024,NT=100
N=1024,NT=20
N=1024,NT=10

L2-error on the control
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Numerical Illustration 2: min-LQ MFC with common noise

The following model is inspired by [Salhab et al., 2015] and [Achdou and Lasry, 2019].

MFC with simple CN:

Dynamics: dXt = ϕt(Xt, ϵ
0
t )dt+ σdWt, ϵ0

t = 0 until t = T/2, and then ξ1 or ξ2 w.p. 1/2

Running cost |ϕt(Xt, ϵ
0
t )|2, final cost (XT − ϵ0

T )2 + Q̄T (m̄T −XT )2

Parameter values: σ = 0.1, T = 1, ξ1 = −1.5, ξ2 = +1.5

Numerical results:

neural network φθ(t,Xt, ϵ
0
t ), taking as an input the common noise

benchmark solution computed by solving a system of 6 PDEs (see
[Achdou and Lasry, 2019, Bourany, 2018])
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Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.

Until T/2: concentrate around mid-point = 0

After T/2: move towards the target selected by common noise

More details in [Carmona and Laurière, 2022]
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Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.
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Numerical Illustration 2: min-LQ MFC with common noise
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Numerical Illustration 2: min-LQ MFC with common noise
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Numerical Illustration 2: min-LQ MFC with common noise
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Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time T/2.
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Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

Price process: with να = population’s distribution over actions,

dSα
t = γ

∫
R
adνα

t (a)dt+ σ0dW
0
t

Typical agent’s inventory: dXα
t = αtdt+ σdWt

Typical agent’s wealth: dKα
t = −

(
αtS

α
t + cα(αt)

)
dt

Typical agent’s portfolio value: V α
t = Kα

t +Xα
t S

α
t

Objective: minimize

J(α) = E
[ ∫ T

0
cX(Xα

t )dt+ g(Xα
T ) − V α

T

]
Equivalent problem:

J(α) = E
[ ∫ T

0

(
cα(αt) + cX(Xα

t ) − γXα
t

∫
R
adνα

t (a)
)
dt+ g(Xα

T )
]

We take: cα(v) = 1
2cαv

2, cX(x) = 1
2cXx

2 and g(x) = 1
2cgx

2
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Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)
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T = 1, cX = 2, cα = 1, cg = 0.3, σ = 0.5, γ = 0.2

See Section 2 in [Carmona and Laurière, 2023] for more details.
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T = 1, cX = 2, cα = 1, cg = 0.3, σ = 0.5, γ = 1

See Section 2 in [Carmona and Laurière, 2023] for more details.
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

Deep learning for MFC using a direct approach where the control is
parameterized as a neural network

Applied to the price impact model discussed above

24 / 40
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Related works

DL for stochastic control [Gobet and Munos, 2005], [Han and E, 2016], . . .

Various possible implementations; example: 1 NN per time step instead of a
single 1 NN as a function of time

Extensions to finite-player games [Hu, 2021]

Extension to MFC presented here [Carmona and Laurière, 2022]; see also
[Carmona and Laurière, 2023]

Related works with mean field: [Fouque and Zhang, 2020] (MFC with delay),
[Germain et al., 2019], [Agram et al., 2020], [Dayanikli et al., 2023] (with
population-dependent controls), . . .
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Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion



Shooting Method for FBSDE

Goal: solve an FBSDE system

The backward process has a value Y0 at time 0, but it is not known

Try to guess the correct initial condition so that the terminal condition is satisfied

This yields a new optimal control problem

See e.g. [Kohlmann and Zhou, 2000], [Sannikov, 2008], . . .

For the new optimal control problem, use deep learning [E et al., 2017]
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DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt, Yt)dt+ Zt · dWt, YT = G(XT ) → control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F = f or F = ∂xH)

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T )∥2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T ]{
dXt = B(t,Xt, Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt, Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New optimal control problem: apply previous method, replacing y0(·), z(·, ·) by NN

Note: This problem is not the original stochastic control problem !
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Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence u(t,Xt) = Yt where

u solves the PDE{
u(T, x) = G(x)
∂u
∂t

(t, x) +B(t, x) ∂u
∂x

(t, x) + 1
2σ

2 ∂2u
∂x∂x

(t, x) + F (t, x) = 0

X solves the SDE:
dXt = B(t, x)dt+ σdWt

(Y,Z) solves the BSDE:{
YT = G(XT )
dYt = −F (t,Xt)dt+ ZtdWt

In fact Zt = σ∂xu(t,Xt)
Connection also works with dXt = dWt and a different Yt . . .

Application: solve a PDE by solving the corresponding (F)BSDE

Ex. HJB equation. Many variations/extensions
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Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT )) → control/cost

Shooting: Guess Y0 and (Zt)t

→ recover sol. (X,Y , Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[

∥Y y0,z
T −G(Xy0,z

T ,L(Xy0,z
T ))∥2

]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T ]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ z(t,Xt) · dWt, Y0 = y0(X0).

→ New MFC problem: apply previous method, replacing y0(·), z(·, ·) by NN

NB: This problem is not the original MFG or MFC
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Implementation

z0X0

∆W0

X1
z1 zNT−1

∆WNT−1

µN
0 µN

1
µN
NT

XNT
b b b b b

CNT

y0 YNTY1Y0

Inputs: initial positions X0 = (Xi
0)i, BM increments: ∆Wn = (∆W i

n)i, for all n

Loss function: total cost = CNT = terminal penalty; state = (Xn, Yn)

SGD to optimize over the param. θy, θz of 2 NN for
yθy (·) ≈ y0(·), zθz (·, ·) ≈ z(·, ·)

Alternative implementation: 1 +NT NNs for y0(·), z0(·), . . . , zNT −1(·)

30 / 40



Implementation

z0X0

∆W0

X1
z1 zNT−1

∆WNT−1

µN
0 µN

1
µN
NT

XNT
b b b b b

CNT

y0 YNTY1Y0

Inputs: initial positions X0 = (Xi
0)i, BM increments: ∆Wn = (∆W i

n)i, for all n

Loss function: total cost = CNT = terminal penalty; state = (Xn, Yn)

SGD to optimize over the param. θy, θz of 2 NN for
yθy (·) ≈ y0(·), zθz (·, ·) ≈ z(·, ·)

Alternative implementation: 1 +NT NNs for y0(·), z0(·), . . . , zNT −1(·)

30 / 40



Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (ρ = coupling parameter)

dXt = −ρYtdt+ σdWt, X0 = x0

dYt = atan(E[Xt])dt+ ZtdWt, YT = G′(XT ) := atan(XT )

Comes from the MFG defined by dXα
t = αtdt+ dWt and

J(α;µ) = E
[
G(Xα

T ) +
∫ T

0

(
1

2ρ
α2

t +Xα
t atan

(∫
xµt(dx)

))
dt

]

[Chassagneux et al., 2019]

1 2 3 4 5 6
0.400

0.375

0.350

0.325

0.300

0.275

0.250

0.225

Y 0

Y0 (Algorithm 2)
Y0 (benchmark)

NN (FBSDE system)
More details in [Carmona and Laurière, 2022]
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Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]

X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ϵ

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT )2
]

where m̄ = (m̄t)t≥0 = conditional mean of the population states given W 0, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1 − ρ2dWt + ρ dW 0
t

)

More details in [Carmona and Laurière, 2022]
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing

Deep learning for MKV FBSDEs

Applied to the systemic risk model discussed above
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Comments

Convergence of the DeepBSDE method [Han and Long, 2020]

Extension to finite-player games [Han et al., 2022]

Analysis of the different types of errors to be done for MKV case

The new MFC problem is not standard

Deep learning of MKV FBSDEs as presented here
[Carmona and Laurière, 2022]; see also [Carmona and Laurière, 2023]

Related works on deep learning for MKV FBSDEs: [Fouque and Zhang, 2020]
(MFC with delay), [Germain et al., 2019], [Aurell et al., 2022b], . . .

Similar “shooting” strategy can be applied to (infinite-dimensional) ODE systems
obtained in graphon games [Aurell et al., 2022a]. Code (Gökçe Dayanıklı):

https://github.com/gokce-d/GraphonEpidemics
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Stackelberg MFG

MFG with a Stackelberg (leader-follower) structure:

A Principal chooses a policy λ

A population of agents react and form a Nash equilibrium:

Jλ(α,µ) := E
[∫ T

0
f(t,Xt, αt, µt;λ(t))dt+ g(XT , µT ;λ(T ))

]
,

This is an MFG parameterized by λ

The resulting mean field flow µ̂λ incurs a cost to the principal

J0(λ) :=
∫ T

0
f0(t, µ̂λ

t , λ(t))dt+ g0(µ̂λ
T , λ(T ))

Related works: Holmström-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitanić et al (2018), Carmona-Wang (2018), Elie et al (2019)
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DL for Stackelberg MFG

Reminder:

MFG solution can be characterized using a MKV FBSDE system

This MKV FBSDE can be rewritten as a control problem
▶ 2 forward equations
▶ terminal cost

Stackelberg MFG:

The above terminal cost can be combined with the principal’s cost

We obtain an MFC problem [Elie et al., 2019]

From here we can apply the methods discussed previously

For more details, see:

[Aurell et al., 2022b] with application to epidemics management (finite state
MFG): principal gives guidelines (social distancing, etc.) and population reacts

Code available ((Gökçe Dayanıklı)):

https://github.com/gokce-d/StackelbergMFG

Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]

Similarities with DA for mean field optimal transport [Baudelet et al., 2023]
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Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions
Solving Stackelberg MFG with Deep MKV FBSDE
Computing MFC Value Function with DBDP

5. Conclusion



Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
α∗ is a solution to the MFC problem if it minimizes

JMF C(α) = E
[∫ T

0
f(Xα

t , αt,m
α
t )dt+ g(Xα

T ,m
α
T )

]
.

Main difference with MFG: here not only X but m too is controlled by α.

Optimality conditions? Several approaches:

Dynamic programming value function depending on m; value function V

Calculus of variations taking m as a state; adjoint state u

Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y

Dynamic programming for MFC [Laurière and Pironneau, 2014],
[Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], . . .

→ Algorithm?
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DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Yn and Zn at each n as functions of Xn, backward in time:

Initialize ŶNT = g and then, for n = NT − 1, . . . , 0, either:

Version 1: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), Zn(Xn))∆t − Zn(Xn) · ∆Wn+1|
]

or Version 2: Let (Ŷn, Ẑn) = minimizer over (Yn, Zn) of:

E
[

|Ŷn+1(Xn+1) − Yn(Xn) − f(tn, Xn, Yn(Xn), σ
⊤

DxYn(Xn))∆t − DxYn(Xn)⊤
σ∆Wn+1|

]
For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]
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Initialize ŶNT = g and then, for n = NT − 1, . . . , 0, either:
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DBDP for MFC

Can we apply the same idea to MFC, replacing V by a neural network?

Main challenge: the value function V takes m ∈ P(Rd) as an input

We need to approximate m

One possibility:

V (t,mt) ≈ Ṽ (t,mN
t ) ≈ Ṽθ(t,X1

t , . . . , X
N
t )

where Ṽθ is a neural network which is symmetric with respect to the inputs

See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)
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where Ṽθ is a neural network which is symmetric with respect to the inputs

See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)

39 / 40



Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion



Summary

Two algorithms based on the stochastic approach

Direct approach without any optimality condition

DeepBSDE: recasting (MKV) FBSDEs as control problems

Many possible extensions and variations

Many open questions for mathematicians (proofs of approximation, rates of
convergence, . . . )

Some surveys on DL for control/games:
[Germain et al., 2021b, Carmona and Laurière, 2023, Hu and Laurière, 2023]

Next lecture: deep learning methods for the PDE approach
40 / 40



Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu
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