Numerical Methods for

 Mean Field Games
Lecture 4
 Deep Learning Methods: Part I MFC and MKV FBSDE

Mathieu LaURIÈRE
New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD, University Côte d'Azur, \& GE2MI

Open Doctoral Lectures
July 5-7, 2023

Outline

1. Introduction
2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions
5. Conclusion

Numerical methods discussed so far:

- ODE system for LQ setting
- FBPDE system
- FBSDE system

Some methods based on the deterministic approach to MFG/MFC:

- Finite difference \& Newton method: [Achdou and Capuzzo-Dolcetta, 2010], [Achdou et al., 2012], ...
- (Semi-)Lagrangian approach: [Carlini and Silva, 2014, Carlini and Silva, 2015], [Carlini and Silva, 2018], [Calzola et al., 2022], ...
- Augmented Lagrangian \& ADMM: [Benamou and Carlier, 2015], [Andreev, 2017a], [Achdou and Laurière, 2016], ...
- Primal-dual algo.: [Briceño Arias et al., 2018], [Briceño Arias et al., 2019], ...
- Gradient descent based methods [Laurière and Pironneau, 2016], [Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022], ...
- Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018], [Gomes and Yang, 2020], ...
- Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021], [Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023], ...
- Finite elements [Benamou and Carlier, 2015], [Andreev, 2017b], ...
- Cubature [de Raynal and Trillos, 2015], ...
- Gaussian processes [Mou et al., 2022], ...
- Kernel-based representation [Liu et al., 2021], ...
- Fourier approximation [Nurbekyan et al., 2019], ...

Some methods based on the probabilistic approach to MFG/MFC:

- Cubature [de Raynal and Trillos, 2015], ...
- Markov chain approximation: [Bayraktar et al., 2018], ...
- Probabilistic approach and Picard: [Chassagneux et al., 2019], [Angiuli et al., 2019], ...
- Probabilistic approach and regression: [Balata et al., 2019], ...
- ...

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:

- (relatively) small dimension
- (relatively) simple structure
\Rightarrow motivations to develop machine learning methods (see lectures $4,5,6$)
- In this lecture and the following one, we will use deep learning to solve MFGs
- At a high level, there are two main ingredients:
- Approximation using deep neural networks
- Minimization of a loss function using stochastic gradient descent
- Many variants and refinements, ...
- See e.g. [LeCun et al., 2015, Goodfellow et al., 2016], ...
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Example: Regression: $\xi=(x, f(x))$ for some $f, \mathbb{L}(\varphi, \xi)=\|\varphi(x)-f(x)\|^{2}$
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Example: Regression: $\xi=(x, f(x))$ for some $f, \mathbb{L}(\varphi, \xi)=\|\varphi(x)-f(x)\|^{2}$
- Idea: Instead of min. over all $\varphi(\cdot)$, min. over parameters θ of $\varphi_{\theta}(\cdot)$
- Example: Feedforward fully-connected neural network:
- $\varphi_{\theta}(\cdot)$
- with weights \& biases $\theta=\left(\beta^{(k)}, w^{(k)}\right)_{k=1, \ldots, \ell}$
- activation functions $\psi^{(i)}$: sigmoid, tanh, ReLU, ...; applied coordinate-wise

$$
\underbrace{\varphi_{\theta}(x)}_{\varphi(\theta, x)}=\psi^{(\ell)}(\beta^{(\ell)}+w^{(\ell)} \ldots \psi^{(2)}(\beta^{(2)}+w^{(2)} \underbrace{\psi^{(1)}\left(\beta^{(1)}+w^{(1)} x\right)}_{\text {one hidden layer }}) \ldots)
$$

- Depth = number of layers; width of a layer = dimension of bias vector
- Many other architectures (convolutional neural networks, recurrent neural networks, ...), see e.g. [Leijnen and Veen, 2020]
- Successes of deep learning in many fields: natural language processing, computer vision, drug design, ... and even games!
- Combination with reinforcement learning (see lecture 6)
- Universal approximation theorems [Cybenko, 1989], [Hornik, 1991], ...
- Connections with numerical analysis, see e.g. [Després, 2022]

Differentiation: can compute partial derivatives by automatic differentiation (AD) at every (θ, x) :

- With respect to parameters: $\nabla_{\theta \varphi}(\theta, x)$

$$
\nabla_{\beta^{(\ell)}} \varphi(\theta, x)=\ldots, \quad \nabla_{w^{(2)}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can perform gradient descent on these parameters

Differentiation: can compute partial derivatives by automatic differentiation (AD) at every (θ, x) :

- With respect to parameters: $\nabla_{\theta \varphi}(\theta, x)$

$$
\nabla_{\beta^{(\ell)}} \varphi(\theta, x)=\ldots, \quad \nabla_{w^{(2)}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can perform gradient descent on these parameters

- With respect to state variable: $\nabla_{x} \varphi(\theta, x)$ can be computed by AD too

$$
\partial_{x_{1}} \varphi(\theta, x)=\ldots
$$

\Rightarrow can be used in PDEs (see lecture 5)

- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
- Setting: the distribution of ξ is unknown so we cannot compute \mathbb{E}_{ξ}, but
- we have some samples (i.e. random realizations) of ξ
- we know \mathbb{L}
- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
- Setting: the distribution of ξ is unknown so we cannot compute \mathbb{E}_{ξ}, but
- we have some samples (i.e. random realizations) of ξ
- we know \mathbb{L}
- Example: Regression: $\xi=(x, f(x)), \widetilde{J}(\theta):=\mathbb{E}_{\xi}\left[\left\|\varphi_{\theta}(x)-f(x)\right\|^{2}\right]$

Ingredient 2: Stochastic Gradient Descent

- Goal: Minimize over $\varphi(\cdot), \mathbb{J}(\varphi):=\mathbb{E}_{\xi}[\mathbb{L}(\varphi, \xi)]$
- Parameterization: $\widetilde{\mathbb{J}}(\theta):=\mathbb{E}_{\xi}[\widetilde{\mathbb{L}}(\theta, \xi)]$, where $\widetilde{\mathbb{L}}(\theta, \xi):=\mathbb{L}\left(\varphi_{\theta}, \xi\right)$
- Setting: the distribution of ξ is unknown so we cannot compute \mathbb{E}_{ξ}, but
- we have some samples (i.e. random realizations) of ξ
- we know \mathbb{L}
- Example: Regression: $\xi=(x, f(x)), \widetilde{J}(\theta):=\mathbb{E}_{\xi}\left[\left\|\varphi_{\theta}(x)-f(x)\right\|^{2}\right]$

```
Algorithm: Stochastic Gradient Descent
Input: Initial param. 的; data S=(\mp@subsup{\xi}{s}{}\mp@subsup{)}{s=1,\ldots,|S|}{\prime};\mathrm{ nb of steps K; learning rates }(\mp@subsup{\eta}{}{(k)}\mp@subsup{)}{\textrm{k}}{}
Output: Parameter 齐 s.t. }\mp@subsup{\varphi}{\mp@subsup{0}{}{*}}{}\mathrm{ (approximately) minimizes }\mathbb{J
Initialize }\mp@subsup{0}{}{(0)}=\mp@subsup{0}{0}{
for }\textrm{k}=0,1,2,\ldots,\textrm{K}-1\mathrm{ do
    Pick s\inS randomly
    Compute the gradient }\mp@subsup{\nabla}{0}{}\widetilde{\mathbb{L}}(\mp@subsup{0}{}{(k-1)},\mp@subsup{\xi}{s}{})=\frac{d}{d0}\mathbb{L}(\mp@subsup{\varphi}{0(k-1)}{(N)},\mp@subsup{\xi}{s}{}
    Set }\mp@subsup{0}{}{(k)}=\mp@subsup{0}{}{(k-1)}-\mp@subsup{\eta}{}{(k)}\mp@subsup{\nabla}{0}{}\widetilde{\mathbb{L}}(\mp@subsup{0}{}{(k-1)},\mp@subsup{\xi}{s}{}
return }\mp@subsup{0}{}{(k)
```

- Many variants:
- Learning rate: ADAM (Adaptive Moment Estimation) [Kingma and $\mathrm{Ba}, 2014], \ldots$
- Samples: Mini-batches, ...
- Proofs of convergence e.g. using stochastic approximation [Robbins and Monro, 1951], [Borkar, 2009]
- In practice: many details to be discussed, see e.g.[Bottou, 2012]; choice of hyperparameters
- architecture
- initialization
- learning rate
- loss function
- ...

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

Analysis: Error Types

- Consider the task: minimize over φ the population risk:

$$
\mathcal{R}(\varphi)=\mathbb{E}_{x, y}[L(\varphi(x), y)]
$$

with $x \sim \mu$ and $y=f(x)+\epsilon$ for some noise ϵ where f is unknown

- In practice:
- minimize over a hypothesis class \mathcal{F} of φ
- finite number of samples, $S=\left(x_{m}, y_{m}\right)_{m=1, \ldots, M}$: empirical risk:

$$
\hat{\mathcal{R}}_{S}(\varphi)=\frac{1}{M} \sum_{m=1}^{M} L\left(\varphi\left(x_{m}\right), y_{m}\right) \quad(+ \text { regu })
$$

- finite number of optimization steps, say k

Analysis: Error Types

We are interested in:

- Approximation error: Letting $\varphi^{*}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \operatorname{dist}(\varphi, f)$,

$$
\epsilon_{\text {approx }}=\operatorname{dist}\left(\varphi^{*}, f\right)
$$

- Estimation error: Letting $\hat{\varphi}_{S}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \hat{\mathcal{R}}_{S}(\varphi)$

$$
\epsilon_{\text {estim }}=\operatorname{dist}\left(\hat{\varphi}_{S}, \varphi^{*}\right)
$$

- Optimization error: After k steps, we get $\varphi_{S}^{(\mathrm{k})}$;

$$
\epsilon_{\mathrm{optim}}=\operatorname{dist}\left(\varphi_{S}^{(\mathrm{k})}, \hat{\varphi}_{S}\right)
$$

Analysis: Error Types

We are interested in:

- Approximation error: Letting $\varphi^{*}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \operatorname{dist}(\varphi, f)$,

$$
\epsilon_{\text {approx }}=\operatorname{dist}\left(\varphi^{*}, f\right)
$$

- Estimation error: Letting $\hat{\varphi}_{S}=\operatorname{argmin}_{\varphi \in \mathcal{F}} \hat{\mathcal{R}}_{S}(\varphi)$

$$
\epsilon_{\text {estim }}=\operatorname{dist}\left(\hat{\varphi}_{S}, \varphi^{*}\right)
$$

- Optimization error: After k steps, we get $\varphi_{S}^{(\mathrm{k})}$;

$$
\epsilon_{\mathrm{optim}}=\operatorname{dist}\left(\varphi_{S}^{(\mathrm{k})}, \hat{\varphi}_{S}\right)
$$

- Generalization error of the learnt $\varphi_{S}^{(\mathrm{k})}$:

$$
\epsilon_{\text {gene }}=\epsilon_{\mathrm{approx}}+\epsilon_{\mathrm{estim}}+\epsilon_{\mathrm{optim}}
$$

Outline

1. Introduction

2. Deep Learning for MFC

- Deep learning for stochastic optimal control
- Adaptation to MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions
5. Conclusion

Outline

1. Introduction

2. Deep Learning for MFC

- Deep learning for stochastic optimal control
- Adaptation to MFC

3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions
5. Conclusion

- An optimal control is a "temporally extended" optimization problem
- Numerically, we cannot minimize over all possible controls
- We can parameterize the control function
- and then optimize over the parameters
- See e.g. [Gobet and Munos, 2005], [Han and E, 2016], ...

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over $\alpha(\cdot, \cdot)$

$$
J(\alpha(\cdot, \cdot))=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \alpha\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, \alpha\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φ_{θ},
Minimize over neural network parameters θ

$$
J(\theta)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \varphi_{\theta}\left(t, X_{t}\right)\right) d t+g\left(X_{T}\right)\right]
$$

with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, \varphi_{\theta}\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φ_{θ}, (2) time discretization
Minimize over neural network parameters θ and N_{T} time steps

$$
J^{N_{T}}(\theta)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+g\left(X_{N_{T}}\right)\right],
$$

with

$$
X_{0} \sim m_{0}, \quad X_{n+1}-X_{n}=b\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+\sigma \Delta W_{n}
$$

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φ_{θ}, (2) time discretization
Minimize over neural network parameters θ and N_{T} time steps

$$
J^{N_{T}}(\theta)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+g\left(X_{N_{T}}\right)\right],
$$

with

$$
X_{0} \sim m_{0}, \quad X_{n+1}-X_{n}=b\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+\sigma \Delta W_{n}
$$

\rightarrow neural network induces an approximation error
\rightarrow time discretization induce extra errors

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network φ_{θ}, (2) time discretization
Minimize over neural network parameters θ and N_{T} time steps

$$
J^{N_{T}}(\theta)=\mathbb{E}\left[\sum_{n=0}^{N_{T}-1} f\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+g\left(X_{N_{T}}\right)\right],
$$

with

$$
X_{0} \sim m_{0}, \quad X_{n+1}-X_{n}=b\left(X_{n}, \varphi_{\theta}\left(t_{n}, X_{n}\right)\right) \Delta t+\sigma \Delta W_{n}
$$

\rightarrow neural network induces an approximation error
\rightarrow time discretization induce extra errors
To implement SGD, at each iteration we pick a sample $\xi=\left(X_{0}, \Delta W_{0}, \ldots, \Delta W_{N_{T}-1}\right)$

Outline

1. Introduction

2. Deep Learning for MFC

- Deep learning for stochastic optimal control
- Adaptation to MFC

3. Deep Learning for MKV FBSDE

4. Two Examples of Extensions

5. Conclusion

MFC: Approximate Problem

MFC problem:

Minimize over $\alpha(\cdot, \cdot)$

$$
J(\alpha(\cdot, \cdot))=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha\left(t, X_{t}\right)\right) d t+g\left(X_{T}, \mu_{T}\right)\right]
$$

where $\mu_{t}=\mathcal{L}\left(X_{t}\right)$ with

$$
X_{0} \sim m_{0}, \quad d X_{t}=b\left(X_{t}, \mu_{t}, \alpha\left(t, X_{t}\right)\right) d t+\sigma d W_{t}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop.,
Minimize over decentralized controls $\alpha(\cdot, \cdot)$ with N agents

$$
J^{N}(\alpha(\cdot, \cdot))=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, \alpha\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}^{i}, \mu_{T}^{N}\right)\right]
$$

where $\mu_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad d X_{t}^{j}=b\left(X_{t}^{j}, \mu_{t}^{N}, \alpha\left(t, X_{t}^{j}\right)\right) d t+\sigma d W_{t}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ},
Minimize over neural network parameters θ with N agents

$$
J^{N}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, \varphi_{\theta}\left(t, X_{t}^{i}\right)\right) d t+g\left(X_{T}^{i}, \mu_{T}^{N}\right)\right],
$$

where $\mu_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad d X_{t}^{j}=b\left(X_{t}^{j}, \mu_{t}^{N}, \varphi_{\theta}\left(t, X_{t}^{j}\right)\right) d t+\sigma d W_{t}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ}, (3) time discretization Minimize over neural network parameters θ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right],
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ}, (3) time discretization Minimize over neural network parameters θ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right]
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

\rightarrow neural network induces an approximation error
\rightarrow finite population and time discretization induce extra errors

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network φ_{θ}, (3) time discretization Minimize over neural network parameters θ with N agents and N_{T} time steps

$$
J^{N, N_{T}}(\theta)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{N_{T}-1} f\left(X_{n}^{i}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{i}\right)\right) \Delta t+g\left(X_{N_{T}}^{i}, \mu_{N_{T}}^{N}\right)\right]
$$

where $\mu_{n}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{n}^{j}}$, with

$$
X_{0}^{j} \sim m_{0}, \quad X_{n+1}^{j}-X_{n}^{j}=b\left(X_{n}^{j}, \mu_{n}^{N}, \varphi_{\theta}\left(t_{n}, X_{n}^{j}\right)\right) \Delta t+\sigma \Delta W_{n}^{j}
$$

\rightarrow neural network induces an approximation error
\rightarrow finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N-agent control problem, the optimal control is not always of this type

Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{\alpha(\cdot, \cdot)} J(\alpha(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{\alpha(\cdot, \cdot)} J(\alpha(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to [Carmona and Laurière, 2021]

Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{\alpha(\cdot, \cdot)} J(\alpha(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to [Carmona and Laurière, 2021]
- The optimization error remains to be studied

Convergence Analysis

- The following kind of convergence result (bound on the approximation error) can be proved, see [Carmona and Laurière, 2022]:

Approximation theorem
Under suitable assumptions (in particular regularity of the value function),

$$
\left|\inf _{\alpha(\cdot, \cdot)} J(\alpha(\cdot, \cdot))-\inf _{\theta \in \Theta} J^{N, N_{T}}(\theta)\right| \leq \epsilon_{1}(N)+\epsilon_{2}(\operatorname{dim}(\theta))+\epsilon_{3}\left(N_{T}\right)
$$

- The estimation error for shallow neural networks can be analyzed using techniques similar to [Carmona and Laurière, 2021]
- The optimization error remains to be studied
- Many extensions and refinements to be investigated

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):

Under suitable assumptions, there exists a decentralized control α^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{\alpha(\cdot)} J(\alpha(\cdot))-J^{N}\left(\alpha^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right)
$$

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):

Under suitable assumptions, there exists a decentralized control α^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{\alpha(\cdot)} J(\alpha(\cdot))-J^{N}\left(\alpha^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right)
$$

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters $\theta \in \Theta$ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$
\left|J^{N}\left(\alpha^{*}(\cdot)\right)-J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{2}(\operatorname{dim}(\theta)) \in O\left(\operatorname{dim}(\theta)^{-\frac{1}{3(d+1)}}\right)
$$

Proof: Key difficulty: approximate $v^{*}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\left\|\nabla \hat{\varphi}_{\theta}(\cdot)\right\|$ by $\left\|\nabla v^{*}(\cdot)\right\|$
\rightarrow universal approximation without rate of convergence is not enough
\rightarrow approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents \& decentralized controls):

Under suitable assumptions, there exists a decentralized control α^{*} s.t. ($d=$ dimension of X_{t})

$$
\left|\inf _{\alpha(\cdot)} J(\alpha(\cdot))-J^{N}\left(\alpha^{*}(\cdot)\right)\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1 / d}\right)
$$

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters $\theta \in \Theta$ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$
\left|J^{N}\left(\alpha^{*}(\cdot)\right)-J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{2}(\operatorname{dim}(\theta)) \in O\left(\operatorname{dim}(\theta)^{-\frac{1}{3(d+1)}}\right) .
$$

Proof: Key difficulty: approximate $v^{*}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\left\|\nabla \hat{\varphi}_{\theta}(\cdot)\right\|$ by $\left\|\nabla v^{*}(\cdot)\right\|$
\rightarrow universal approximation without rate of convergence is not enough
\rightarrow approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network $\hat{\varphi}_{\theta}(\cdot)$,

$$
\left|J^{N}\left(\hat{\varphi}_{\theta}(\cdot)\right)-J^{N, N_{T}}\left(\hat{\varphi}_{\theta}(\cdot)\right)\right| \leq \epsilon_{3}\left(N_{T}\right) \in O\left(N_{T}^{-1 / 2}\right) .
$$

Key point: $O(\cdot)$ independent of N and $\operatorname{dim}(\theta)$
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Structure:
- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Structure:

- Key idea: replace optimal control problem by (finite dim.) optimization problem:
- Loss function $=\operatorname{cost}: J^{N, N_{T}}(\theta)=\mathbb{E}\left[\mathbb{L}\left(\varphi_{\theta}, \xi\right)\right]$
- One sample: $\xi=\left(X_{0}^{j},\left(\Delta W_{n}^{j}\right)_{n=0, \ldots, N_{T}-1}\right)_{j=1, \ldots, N}$
\rightarrow can use Stochastic Gradient Descent
- Structure:

Numerical Illustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

$$
f(x, \mu, v)=\underbrace{(\bar{\mu}-x)^{2}}_{\begin{array}{c}
\text { distance to } \\
\text { mean position }
\end{array}}+\underbrace{v^{2}}_{\begin{array}{c}
\text { cost of } \\
\text { moving }
\end{array}}, \quad \bar{\mu}=\underbrace{\int \mu(\xi) d \xi}_{\text {mean position }}, \quad g(x)=x^{2}
$$

Numerical example with $d=10$ (see [Carmona and Laurière, 2022]):

total cost (= loss function)

L^{2}-error on the control

Numerical Illustration 2: min-LQ MFC with common noise

The following model is inspired by [Salhab et al., 2015] and [Achdou and Lasry, 2019].

MFC with simple CN:

Dynamics: $d X_{t}=\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right) d t+\sigma d W_{t}, \epsilon_{t}^{0}=0$ until $t=T / 2$, and then ξ_{1} or ξ_{2} w.p. $1 / 2$

Running cost $\left|\phi_{t}\left(X_{t}, \epsilon_{t}^{0}\right)\right|^{2}$, final cost $\left(X_{T}-\epsilon_{T}^{0}\right)^{2}+\bar{Q}_{T}\left(\bar{m}_{T}-X_{T}\right)^{2}$

Parameter values: $\sigma=0.1, T=1, \xi_{1}=-1.5, \xi_{2}=+1.5$
Numerical results:

- neural network $\varphi_{\theta}\left(t, X_{t}, \epsilon_{t}^{0}\right)$, taking as an input the common noise
- benchmark solution computed by solving a system of 6 PDEs (see [Achdou and Lasry, 2019, Bourany, 2018])

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$
After $T / 2$: move towards the target selected by common noise
More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$
After $T / 2$: move towards the target selected by common noise
More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$
After $T / 2$: move towards the target selected by common noise
More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$
After $T / 2$: move towards the target selected by common noise
More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time $T / 2$.

Until $T / 2$: concentrate around mid-point $=0$
After $T / 2$: move towards the target selected by common noise
More details in [Carmona and Laurière, 2022]

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

- Price process: with $\nu^{\alpha}=$ population's distribution over actions,

$$
d S_{t}^{\alpha}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a) d t+\sigma_{0} d W_{t}^{0}
$$

- Typical agent's inventory: $d X_{t}^{\alpha}=\alpha_{t} d t+\sigma d W_{t}$
- Typical agent's wealth: $d K_{t}^{\alpha}=-\left(\alpha_{t} S_{t}^{\alpha}+c_{\alpha}\left(\alpha_{t}\right)\right) d t$
- Typical agent's portfolio value: $V_{t}^{\alpha}=K_{t}^{\alpha}+X_{t}^{\alpha} S_{t}^{\alpha}$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

- Price process: with $\nu^{\alpha}=$ population's distribution over actions,

$$
d S_{t}^{\alpha}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a) d t+\sigma_{0} d W_{t}^{0}
$$

- Typical agent's inventory: $d X_{t}^{\alpha}=\alpha_{t} d t+\sigma d W_{t}$
- Typical agent's wealth: $d K_{t}^{\alpha}=-\left(\alpha_{t} S_{t}^{\alpha}+c_{\alpha}\left(\alpha_{t}\right)\right) d t$
- Typical agent's portfolio value: $V_{t}^{\alpha}=K_{t}^{\alpha}+X_{t}^{\alpha} S_{t}^{\alpha}$

Objective: minimize

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{\alpha}\right) d t+g\left(X_{T}^{\alpha}\right)-V_{T}^{\alpha}\right]
$$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

- Price process: with $\nu^{\alpha}=$ population's distribution over actions,

$$
d S_{t}^{\alpha}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a) d t+\sigma_{0} d W_{t}^{0}
$$

- Typical agent's inventory: $d X_{t}^{\alpha}=\alpha_{t} d t+\sigma d W_{t}$
- Typical agent's wealth: $d K_{t}^{\alpha}=-\left(\alpha_{t} S_{t}^{\alpha}+c_{\alpha}\left(\alpha_{t}\right)\right) d t$
- Typical agent's portfolio value: $V_{t}^{\alpha}=K_{t}^{\alpha}+X_{t}^{\alpha} S_{t}^{\alpha}$

Objective: minimize

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{\alpha}\right) d t+g\left(X_{T}^{\alpha}\right)-V_{T}^{\alpha}\right]
$$

Equivalent problem:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T}\left(c_{\alpha}\left(\alpha_{t}\right)+c_{X}\left(X_{t}^{\alpha}\right)-\gamma X_{t}^{\alpha} \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a)\right) d t+g\left(X_{T}^{\alpha}\right)\right]
$$

Numerical Illustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

- Price process: with $\nu^{\alpha}=$ population's distribution over actions,

$$
d S_{t}^{\alpha}=\gamma \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a) d t+\sigma_{0} d W_{t}^{0}
$$

- Typical agent's inventory: $d X_{t}^{\alpha}=\alpha_{t} d t+\sigma d W_{t}$
- Typical agent's wealth: $d K_{t}^{\alpha}=-\left(\alpha_{t} S_{t}^{\alpha}+c_{\alpha}\left(\alpha_{t}\right)\right) d t$
- Typical agent's portfolio value: $V_{t}^{\alpha}=K_{t}^{\alpha}+X_{t}^{\alpha} S_{t}^{\alpha}$

Objective: minimize

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T} c_{X}\left(X_{t}^{\alpha}\right) d t+g\left(X_{T}^{\alpha}\right)-V_{T}^{\alpha}\right]
$$

Equivalent problem:

$$
J(\alpha)=\mathbb{E}\left[\int_{0}^{T}\left(c_{\alpha}\left(\alpha_{t}\right)+c_{X}\left(X_{t}^{\alpha}\right)-\gamma X_{t}^{\alpha} \int_{\mathbb{R}} a d \nu_{t}^{\alpha}(a)\right) d t+g\left(X_{T}^{\alpha}\right)\right]
$$

We take: $c_{\alpha}(v)=\frac{1}{2} c_{\alpha} v^{2}, c_{X}(x)=\frac{1}{2} c_{X} x^{2}$ and $g(x)=\frac{1}{2} c_{g} x^{2}$

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

$$
T=1, c_{X}=2, c_{\alpha}=1, c_{g}=0.3, \sigma=0.5, \gamma=0.2
$$

See Section 2 in [Carmona and Laurière, 2023] for more details.

Numerical Illustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

See Section 2 in [Carmona and Laurière, 2023] for more details.

Sample code

Code

Sample code to illustrate: IPython notebook
https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

- Deep learning for MFC using a direct approach where the control is parameterized as a neural network
- Applied to the price impact model discussed above

Related works

- DL for stochastic control [Gobet and Munos, 2005], [Han and E, 2016], ...
- Various possible implementations; example: 1 NN per time step instead of a single 1 NN as a function of time
- Extensions to finite-player games [Hu, 2021]
- Extension to MFC presented here [Carmona and Laurière, 2022]; see also [Carmona and Laurière, 2023]
- Related works with mean field: [Fouque and Zhang, 2020] (MFC with delay), [Germain et al., 2019], [Agram et al., 2020], [Dayanikli et al., 2023] (with population-dependent controls), ...

Outline

1. Introduction

2. Deep Learning for MFC

3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions
5. Conclusion

- Goal: solve an FBSDE system
- The backward process has a value Y_{0} at time 0 , but it is not known
- Try to guess the correct initial condition so that the terminal condition is satisfied
- This yields a new optimal control problem
- See e.g. [Kohlmann and Zhou, 2000], [Sannikov, 2008], ...
- For the new optimal control problem, use deep learning [E et al., 2017]

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) &
\end{array} \rightarrow\right. \text { control/cost }
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right],
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right],
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right)
\end{array}\right.
$$

\rightarrow New optimal control problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

(stemming from sto. Pontryagin's or Bellman's principle: $F=f$ or $F=\partial_{x} H$)
Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a new optimal control problem

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right\|^{2}\right],
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow New optimal control problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN
Note: This problem is not the original stochastic control problem !

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$
- Application: solve a PDE by solving the corresponding (F)BSDE

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]
Feynman-Kac formula: correspondence $u\left(t, X_{t}\right)=Y_{t}$ where

- u solves the PDE

$$
\left\{\begin{array}{l}
u(T, x)=G(x) \\
\frac{\partial u}{\partial t}(t, x)+B(t, x) \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x \partial x}(t, x)+F(t, x)=0
\end{array}\right.
$$

- X solves the SDE:

$$
d X_{t}=B(t, x) d t+\sigma d W_{t}
$$

- (Y, Z) solves the BSDE:

$$
\left\{\begin{array}{l}
Y_{T}=G\left(X_{T}\right) \\
d Y_{t}=-F\left(t, X_{t}\right) d t+Z_{t} d W_{t}
\end{array}\right.
$$

- In fact $Z_{t}=\sigma \partial_{x} u\left(t, X_{t}\right)$
- Connection also works with $d X_{t}=d W_{t}$ and a different $Y_{t} \ldots$
- Application: solve a PDE by solving the corresponding (F)BSDE
- Ex. HJB equation. Many variations/extensions

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a MFC problem [Carmona and Laurière, 2022]
Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0} \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right)
\end{array}\right.
$$

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow New MFC problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$
\left\{\begin{array}{lll}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, & X_{0} \sim m_{0} & \rightarrow \text { state } \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+Z_{t} \cdot d W_{t}, & Y_{T}=G\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) & \rightarrow \text { control/cost }
\end{array}\right.
$$

Shooting: Guess Y_{0} and $\left(Z_{t}\right)_{t}$
\rightarrow recover sol. (X, Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Laurière, 2022]

Minimize over $y_{0}(\cdot)$ and $\mathbf{z}(\cdot)=\left(z_{t}(\cdot)\right)_{t \geq 0}$

$$
\mathfrak{J}\left(y_{0}(\cdot), \mathbf{z}(\cdot)\right)=\mathbb{E}\left[\left\|Y_{T}^{y_{0}, \mathbf{z}}-G\left(X_{T}^{y_{0}, \mathbf{z}}, \mathcal{L}\left(X_{T}^{y_{0}, \mathbf{z}}\right)\right)\right\|^{2}\right]
$$

under the constraint that $\left(X^{y_{0}, \mathbf{z}}, Y^{y_{0}, \mathbf{z}}\right)$ solve: $\forall t \in[0, T]$

$$
\left\{\begin{array}{l}
d X_{t}=B\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+d W_{t}, \quad X_{0} \sim m_{0}, \\
d Y_{t}=-F\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), Y_{t}\right) d t+z\left(t, X_{t}\right) \cdot d W_{t}, \quad Y_{0}=y_{0}\left(X_{0}\right) .
\end{array}\right.
$$

\rightarrow New MFC problem: apply previous method, replacing $y_{0}(\cdot), z(\cdot, \cdot)$ by NN NB: This problem is not the original MFG or MFC

Implementation

- Inputs: initial positions $\mathbf{X}_{0}=\left(X_{0}^{i}\right)_{i}$, BM increments: $\Delta \mathbf{W}_{n}=\left(\Delta W_{n}^{i}\right)_{i}$, for all n
- Loss function: total cost $=C_{N_{T}}=$ terminal penalty; state $=\left(X_{n}, Y_{n}\right)$
- SGD to optimize over the param. θ_{y}, θ_{z} of 2 NN for $y_{\theta_{y}}(\cdot) \approx y_{0}(\cdot), z_{\theta_{z}}(\cdot, \cdot) \approx z(\cdot, \cdot)$

Implementation

- Inputs: initial positions $\mathbf{X}_{0}=\left(X_{0}^{i}\right)_{i}$, BM increments: $\Delta \mathbf{W}_{n}=\left(\Delta W_{n}^{i}\right)_{i}$, for all n
- Loss function: total cost $=C_{N_{T}}=$ terminal penalty; state $=\left(X_{n}, Y_{n}\right)$
- SGD to optimize over the param. θ_{y}, θ_{z} of 2 NN for $y_{\theta_{y}}(\cdot) \approx y_{0}(\cdot), z_{\theta_{z}}(\cdot, \cdot) \approx z(\cdot, \cdot)$
- Alternative implementation: $1+N_{T}$ NNs for $y_{0}(\cdot), z_{0}(\cdot), \ldots, z_{N_{T}-1}(\cdot)$

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] ($\rho=$ coupling parameter)

$$
\begin{aligned}
& d X_{t}=-\rho Y_{t} d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\
& d Y_{t}=\operatorname{atan}\left(\mathbb{E}\left[X_{t}\right]\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G^{\prime}\left(X_{T}\right):=\operatorname{atan}\left(X_{T}\right)
\end{aligned}
$$

Comes from the MFG defined by $d X_{t}^{\alpha}=\alpha_{t} d t+d W_{t}$ and

$$
J(\alpha ; \mu)=\mathbb{E}\left[G\left(X_{T}^{\alpha}\right)+\int_{0}^{T}\left(\frac{1}{2 \rho} \alpha_{t}^{2}+X_{t}^{\alpha} \operatorname{atan}\left(\int x \mu_{t}(d x)\right)\right) d t\right]
$$

Numerical Illustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] ($\rho=$ coupling parameter)

$$
\begin{aligned}
& d X_{t}=-\rho Y_{t} d t+\sigma d W_{t}, \quad X_{0}=x_{0} \\
& d Y_{t}=\operatorname{atan}\left(\mathbb{E}\left[X_{t}\right]\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G^{\prime}\left(X_{T}\right):=\operatorname{atan}\left(X_{T}\right)
\end{aligned}
$$

Comes from the MFG defined by $d X_{t}^{\alpha}=\alpha_{t} d t+d W_{t}$ and

$$
J(\alpha ; \mu)=\mathbb{E}\left[G\left(X_{T}^{\alpha}\right)+\int_{0}^{T}\left(\frac{1}{2 \rho} \alpha_{t}^{2}+X_{t}^{\alpha} \operatorname{atan}\left(\int x \mu_{t}(d x)\right)\right) d t\right]
$$

[Chassagneux et al., 2019]

NN (FBSDE system)

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending

[Carmona et al., 2015]
$X=\log$-monetary reserve, $\alpha=$ rate of borrowing/lending to central bank, cost:

$$
J(\alpha ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} \alpha_{t}^{2}-q \alpha_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+\alpha_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending

$X=$ log-monetary reserve, $\alpha=$ rate of borrowing/lending to central bank, cost:

$$
J(\alpha ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} \alpha_{t}^{2}-q \alpha_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+\alpha_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

NN for FBSDE system VS (semi) analytical solution (LQ structure)

More details in [Carmona and Laurière, 2022]

Numerical Illustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending

$X=$ log-monetary reserve, $\alpha=$ rate of borrowing/lending to central bank, cost:

$$
J(\alpha ; \bar{m})=\mathbb{E}\left[\int_{0}^{T}\left[\frac{1}{2} \alpha_{t}^{2}-q \alpha_{t}\left(\bar{m}_{t}-X_{t}\right)+\frac{\epsilon}{2}\left(\bar{m}_{t}-X_{t}\right)^{2}\right] d t+\frac{c}{2}\left(\bar{m}_{T}-X_{T}\right)^{2}\right]
$$

where $\bar{m}=\left(\bar{m}_{t}\right)_{t \geq 0}=$ conditional mean of the population states given W^{0}, and

$$
d X_{t}=\left[a\left(\bar{m}_{t}-X_{t}\right)+\alpha_{t}\right] d t+\sigma\left(\sqrt{1-\rho^{2}} d W_{t}+\rho d W_{t}^{0}\right)
$$

NN for FBSDE system VS (semi) analytical solution (LQ structure)

More details in [Carmona and Laurière, 2022]

Sample code

Code

Sample code to illustrate: IPython notebook
https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdV137?usp=sharing

- Deep learning for MKV FBSDEs
- Applied to the systemic risk model discussed above

Comments

- Convergence of the DeepBSDE method [Han and Long, 2020]
- Extension to finite-player games [Han et al., 2022]
- Analysis of the different types of errors to be done for MKV case
- The new MFC problem is not standard
- Deep learning of MKV FBSDEs as presented here [Carmona and Laurière, 2022]; see also [Carmona and Laurière, 2023]
- Related works on deep learning for MKV FBSDEs: [Fouque and Zhang, 2020] (MFC with delay), [Germain et al., 2019], [Aurell et al., 2022b], ...
- Similar "shooting" strategy can be applied to (infinite-dimensional) ODE systems obtained in graphon games [Aurell et al., 2022a]. Code (Gökçe Dayanıklı):

```
https://github.com/gokce-d/GraphonEpidemics
```


Outline

1. Introduction

2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions

- Solving Stackelberg MFG with Deep MKV FBSDE
- Computing MFC Value Function with DBDP

5. Conclusion

1. Introduction

2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions

- Solving Stackelberg MFG with Deep MKV FBSDE
- Computing MFC Value Function with DBDP

5. Conclusion

Stackelberg MFG

MFG with a Stackelberg (leader-follower) structure:

- A Principal chooses a policy λ
- A population of agents react and form a Nash equilibrium:

$$
J^{\lambda}(\boldsymbol{\alpha}, \boldsymbol{\mu}):=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \alpha_{t}, \mu_{t} ; \lambda(t)\right) d t+g\left(X_{T}, \mu_{T} ; \lambda(T)\right)\right]
$$

- This is an MFG parameterized by λ
- The resulting mean field flow $\hat{\mu}^{\lambda}$ incurs a cost to the principal

$$
J^{0}(\lambda):=\int_{0}^{T} f_{0}\left(t, \hat{\mu}_{t}^{\lambda}, \lambda(t)\right) d t+g_{0}\left(\hat{\mu}_{T}^{\lambda}, \lambda(T)\right)
$$

Related works: Holmström-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014), Cvitanić et al (2018), Carmona-Wang (2018), Elie et al (2019)

DL for Stackelberg MFG

Reminder:

- MFG solution can be characterized using a MKV FBSDE system
- This MKV FBSDE can be rewritten as a control problem
- 2 forward equations
- terminal cost

Stackelberg MFG:

- The above terminal cost can be combined with the principal's cost
- We obtain an MFC problem [Elie et al., 2019]
- From here we can apply the methods discussed previously

DL for Stackelberg MFG

Reminder:

- MFG solution can be characterized using a MKV FBSDE system
- This MKV FBSDE can be rewritten as a control problem
- 2 forward equations
- terminal cost

Stackelberg MFG:

- The above terminal cost can be combined with the principal's cost
- We obtain an MFC problem [Elie et al., 2019]
- From here we can apply the methods discussed previously

For more details, see:

- [Aurell et al., 2022b] with application to epidemics management (finite state MFG): principal gives guidelines (social distancing, etc.) and population reacts
- Code available ((Gökçe Dayanıklı)):
https://github.com/gokce-d/StackelbergMFG
- Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]
- Similarities with DA for mean field optimal transport [Baudelet et al., 2023]

Outline

1. Introduction

2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions

- Solving Stackelberg MFG with Deep MKV FBSDE
- Computing MFC Value Function with DBDP

5. Conclusion

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov (MKV) dynamics

Definition (Mean field control (MFC) problem)

α^{*} is a solution to the MFC problem if it minimizes

$$
J^{M F C}(\alpha)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{\alpha}, \alpha_{t}, m_{t}^{\alpha}\right) d t+g\left(X_{T}^{\alpha}, m_{T}^{\alpha}\right)\right]
$$

Main difference with MFG: here not only X but m too is controlled by α.

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov (MKV) dynamics

Definition (Mean field control (MFC) problem)
α^{*} is a solution to the MFC problem if it minimizes

$$
J^{M F C}(\alpha)=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{\alpha}, \alpha_{t}, m_{t}^{\alpha}\right) d t+g\left(X_{T}^{\alpha}, m_{T}^{\alpha}\right)\right]
$$

Main difference with MFG: here not only X but m too is controlled by α.
Optimality conditions? Several approaches:

- Dynamic programming value function depending on m; value function V
- Calculus of variations taking m as a state; adjoint state u
- Pontryagin's maximum principle for the (MKV process) X; adjoint state Y

Dynamic programming for MFC [Laurière and Pironneau, 2014], [Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], ...
\rightarrow Algorithm?

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019] have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1}\right|\right]
$$

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019] have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1}\right|\right]
$$

- or Version 2: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), \sigma^{\top} D_{x} Y_{n}\left(X_{n}\right)\right) \Delta t-D_{x} Y_{n}\left(X_{n}\right)^{\top} \sigma \Delta W_{n+1}\right|\right]
$$

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019] have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y_{n} and Z_{n} at each n as functions of X_{n}, backward in time:

- Initialize $\hat{Y}_{N_{T}}=g$ and then, for $n=N_{T}-1, \ldots, 0$, either:
- Version 1: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), Z_{n}\left(X_{n}\right)\right) \Delta t-Z_{n}\left(X_{n}\right) \cdot \Delta W_{n+1}\right|\right]
$$

- or Version 2: Let $\left(\hat{Y}_{n}, \hat{Z}_{n}\right)=$ minimizer over $\left(Y_{n}, Z_{n}\right)$ of:

$$
\mathbb{E}\left[\left|\hat{Y}_{n+1}\left(X_{n+1}\right)-Y_{n}\left(X_{n}\right)-f\left(t_{n}, X_{n}, Y_{n}\left(X_{n}\right), \sigma^{\top} D_{x} Y_{n}\left(X_{n}\right)\right) \Delta t-D_{x} Y_{n}\left(X_{n}\right)^{\top} \sigma \Delta W_{n+1}\right|\right]
$$

For more details on deep learning methods for (non-mean field) optimal control problems, see e.g. [Germain et al., 2021b]

DBDP for MFC

- Can we apply the same idea to MFC, replacing V by a neural network?
- Main challenge: the value function V takes $m \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ as an input
- We need to approximate m

DBDP for MFC

- Can we apply the same idea to MFC, replacing V by a neural network?
- Main challenge: the value function V takes $m \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ as an input
- We need to approximate m
- One possibility:

$$
V\left(t, m_{t}\right) \approx \tilde{V}\left(t, m_{t}^{N}\right) \approx \tilde{V}_{\theta}\left(t, X_{t}^{1}, \ldots, X_{t}^{N}\right)
$$

where \tilde{V}_{θ} is a neural network which is symmetric with respect to the inputs

- See the lecture 5 for more details
- See [Germain et al., 2021a] for more details about the implementation and [Germain et al., 2022] for the analysis
- See also e.g. [Dayanikli et al., 2023] for different approximations of the population (combined with direct approach instead of DBDP)

Outline

1. Introduction

2. Deep Learning for MFC
3. Deep Learning for MKV FBSDE
4. Two Examples of Extensions
5. Conclusion

- Two algorithms based on the stochastic approach
- Direct approach without any optimality condition
- DeepBSDE: recasting (MKV) FBSDEs as control problems
- Many possible extensions and variations
- Many open questions for mathematicians (proofs of approximation, rates of convergence, ...)
- Some surveys on DL for control/games: [Germain et al., 2021b, Carmona and Laurière, 2023, Hu and Laurière, 2023]

Next lecture: deep learning methods for the PDE approach

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

References I

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77-109.
[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136-1162.
[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmäki, P., Periaux, J., and Pironneau, O., editors, Contributions to Partial Differential Equations and Applications,
chapter 4, pages 17-42. Springer International Publishing.
[Achdou and Laurière, 2016] Achdou, Y. and Laurière, M. (2016).
Mean Field Type Control with Congestion (II): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535-578.
[Agram et al., 2020] Agram, N., Bakdi, A., and Oksendal, B. (2020).
Deep learning and stochastic mean-field control for a neural network model.
Available at SSRN 3639022.
[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657-682.

References II

[Andreev, 2017a] Andreev, R. (2017a).
Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion.
SIAM J. Sci. Comput., 39(6):A2763-A2783.
[Andreev, 2017b] Andreev, R. (2017b).
Preconditioning the augmented lagrangian method for instationary mean field games with diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763-A2783.
[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84-113.
[Aurell et al., 2022a] Aurell, A., Carmona, R., Dayanıklı, G., and Laurière, M. (2022a).
Finite state graphon games with applications to epidemics.
Dynamic Games and Applications, 12(1):49-81.
[Aurell et al., 2022b] Aurell, A., Carmona, R., Dayanikli, G., and Lauriere, M. (2022b). Optimal incentives to mitigate epidemics: a stackelberg mean field game approach.
SIAM Journal on Control and Optimization, 60(2):S294-S322.

References III

[Balata et al., 2019] Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114-144.
[Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023).
Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.
[Bayraktar et al., 2018] Bayraktar, E., Budhiraja, A., and Cohen, A. (2018).
A numerical scheme for a mean field game in some queueing systems based on markov chain approximation method.
SIAM Journal on Control and Optimization, 56(6):4017-4044.
[Benamou and Carlier, 2015] Benamou, J.-D. and Carlier, G. (2015).
Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1-26.
[Bensoussan et al., 2015] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2015).
The master equation in mean field theory.
J. Math. Pures Appl. (9), 103(6):1441-1474.
[Borkar, 2009] Borkar, V. S. (2009).
Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer.

References IV

[Bossy and Talay, 1997] Bossy, M. and Talay, D. (1997).
A stochastic particle method for the McKean-Vlasov and the Burgers equation.
Math. Comp., 66(217):157-192.
[Bottou, 2012] Bottou, L. (2012).
Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade: Second Edition, pages 421-436. Springer.
[Bourany, 2018] Bourany, T. (2018).
The wealth distribution over the business cycle, a mean field game with common noise.
Technical report, Technical report, Technical report, Paris Diderot University.
[Briceño Arias et al., 2019] Briceño Arias, L. M., Kalise, D., Kobeissi, Z., Laurière, M., Mateos González, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings.
ESAIM: ProcS, 65:330-348.
[Briceño Arias et al., 2018] Briceño Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801-836.
[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

References V

[Calzola et al., 2022] Calzola, E., Carlini, E., and Silva, F. J. (2022).
A high-order lagrange-galerkin scheme for a class of fokker-planck equations and applications
to mean field games.
arXiv preprint arXiv:2207.08463.
[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.
[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45-67.
[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269-4292.
[Carlini and Silva, 2018] Carlini, E. and Silva, F. J. (2018).
On the discretization of some nonlinear fokker-planck-kolmogorov equations and applications.
SIAM Journal on Numerical Analysis, 56(4):2148-2177.

References VI

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.
[Carmona et al., 2015] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk.
Commun. Math. Sci., 13(4):911-933.
[Carmona and Lacker, 2015] Carmona, R. and Lacker, D. (2015).
A probabilistic weak formulation of mean field games and applications.
Ann. Appl. Probab., 25(3):1189-1231.
[Carmona and Laurière, 2021] Carmona, R. and Laurière, M. (2021).
Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games i: The ergodic case.
SIAM Journal on Numerical Analysis, 59(3):1455-1485.
[Carmona and Laurière, 2022] Carmona, R. and Laurière, M. (2022).
Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: li-the finite horizon case.
The Annals of Applied Probability, 32(6):4065-4105.

References VII

[Carmona and Laurière, 2023] Carmona, R. and Laurière, M. (2023).
Deep learning for mean field games and mean field control with applications to finance. Machine Learning and Data Sciences for Financial Markets: A Guide to Contemporary Practices, page 369.
[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640-1684.
[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909-1917. PMLR.
[Cybenko, 1989] Cybenko, G. (1989).
Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303-314.
[Dayanikli and Lauriere, 2023] Dayanikli, G. and Lauriere, M. (2023).
A machine learning method for stackelberg mean field games.
arXiv preprint arXiv:2302.10440.
[Dayanikli et al., 2023] Dayanikli, G., Lauriere, M., and Zhang, J. (2023).
Deep learning for population-dependent controls in mean field control problems.
arXiv preprint arXiv:2306.04788.

References VIII

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).
A cubature based algorithm to solve decoupled mckean-vlasov forward-backward stochastic differential equations.
Stochastic Processes and their Applications, 125(6):2206-2255.
[Després, 2022] Després, B. (2022).
Neural Networks and Numerical Analysis, volume 6.
Walter de Gruyter GmbH \& Co KG.
[Djete et al., 2022] Djete, M. F., Possamaï, D., and Tan, X. (2022).
Mckean-vlasov optimal control: the dynamic programming principle.
The Annals of Probability, 50(2):791-833.
[E et al., 2017] E, W., Han, J., and Jentzen, A. (2017).
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations.
Commun. Math. Stat., 5(4):349-380.
[Elie et al., 2019] Elie, R., Mastrolia, T., and Possamaï, D. (2019).
A tale of a principal and many, many agents.
Mathematics of Operations Research, 44(2):440-467.
[Fouque and Zhang, 2020] Fouque, J.-P. and Zhang, Z. (2020).
Deep learning methods for mean field control problems with delay.
Frontiers in Applied Mathematics and Statistics, 6:11.

References IX

[Germain et al., 2021a] Germain, M., Laurière, M., Pham, H., and Warin, X. (2021a).
Deepsets and their derivative networks for solving symmetric pdes.
arXiv preprint arXiv:2103.00838.
[Germain et al., 2019] Germain, M., Mikael, J., and Warin, X. (2019).
Numerical resolution of mckean-vlasov fbsdes using neural networks.
arXiv preprint arXiv:1909.12678.
[Germain et al., 2021b] Germain, M., Pham, H., and Warin, X. (2021b).
Neural networks-based algorithms for stochastic control and pdes in finance.
arXiv preprint arXiv:2101.08068.
[Germain et al., 2022] Germain, M., Pham, H., and Warin, X. (2022).
Rate of convergence for particle approximation of pdes in wasserstein space.
Journal of Applied Probability, 59(4):992-1008.
[Gobet and Munos, 2005] Gobet, E. and Munos, R. (2005).
Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control.
SIAM J. Control Optim., 43(5):1676-1713.
[Gomes and Saúde, 2018] Gomes, D. A. and Saúde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition. Applied Mathematics \& Optimization.

References X

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton's method for effective hamiltonians and mather measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883-1915.
[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep learning.
MIT press.
[Han and E, 2016] Han, J. and E, W. (2016).
Deep learning approximation for stochastic control problems.
Deep Reinforcement Learning Workshop, NIPS, arXiv preprint arXiv:1611.07422.
[Han et al., 2022] Han, J., Hu, R., and Long, J. (2022).
Convergence of deep fictitious play for stochastic differential games.
Frontiers of Mathematical Finance, 1(2):279-311.
[Han and Long, 2020] Han, J. and Long, J. (2020).
Convergence of the deep bsde method for coupled fbsdes.
Probability, Uncertainty and Quantitative Risk, 5:1-33.
[Hornik, 1991] Hornik, K. (1991).
Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251-257.

References XI

[Hu, 2021] Hu, R. (2021).
Deep fictitious play for stochastic differential games.
Communications in Mathematical Sciences, 19(2):325-353.
[Hu and Laurière, 2023] Hu, R. and Laurière, M. (2023).
Recent developments in machine learning methods for stochastic control and games.
arXiv preprint arXiv:2303.10257.
[Huré et al., 2019] Huré, C., Pham, H., and Warin, X. (2019).
Some machine learning schemes for high-dimensional nonlinear pdes.
arXiv preprint arXiv:1902.01599, page 2.
[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.
[Kohlmann and Zhou, 2000] Kohlmann, M. and Zhou, X. Y. (2000).
Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach.
SIAM Journal on Control and Optimization, 38(5):1392-1407.
[Laurière and Pironneau, 2014] Laurière, M. and Pironneau, O. (2014).
Dynamic programming for mean-field type control.
C. R. Math. Acad. Sci. Paris, 352(9):707-713.

References XII

[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902-924.
[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable hamiltonians.
Applied Mathematics \& Optimization, 87(2):17.
[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.
[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015).
Deep learning.
nature, 521(7553):436-444.
[Leijnen and Veen, 2020] Leijnen, S. and Veen, F. v. (2020).
The neural network zoo.
In Proceedings, volume 47, page 9. MDPI.
[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639-2668.

References XIII

[Mhaskar and Micchelli, 1995] Mhaskar, H. N. and Micchelli, C. A. (1995).
Degree of approximation by neural and translation networks with a single hidden layer. Advances in Applied Mathematics, 16:151-183.
[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.
[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367-396.
[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629-655.
[Pham and Wei, 2017] Pham, H. and Wei, X. (2017).
Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics.
SIAM J. Control Optim., 55(2):1069-1101.
[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951).
A stochastic approximation method.
The annals of mathematical statistics, pages 400-407.

References XIV

[Salhab et al., 2015] Salhab, R., Malhamé, R. P., and Le Ny, J. (2015).
A dynamic game model of collective choice in multi-agent systems.
In 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pages 4444-4449,
Osaka, Japon.
[Sannikov, 2008] Sannikov, Y. (2008).
A continuous-time version of the principal-agent problem.
The Review of Economic Studies, 75(3):957-984.
[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

