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1. Introduction



Summary so far

Numerical methods discussed so far:

@ ODE system for LQ setting

@ FBPDE system

@ FBSDE system
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

Finite difference & Newton method: [Achdou and Capuzzo-Dolcetta, 2010],
[Achdou et al., 2012], ...

(Semi-)Lagrangian approach: [Carlini and Silva, 2014, Carlini and Silva, 2015],
[Carlini and Silva, 2018], [Calzola et al., 2022], ...

Augmented Lagrangian & ADMM: [Benamou and Carlier, 2015],
[Andreev, 2017a], [Achdou and Lauriére, 2016], ...

Primal-dual algo.: [Briceno Arias et al., 2018], [Bricenio Arias et al., 2019], ...

Gradient descent based methods [Lauriére and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022], ...

Monotone operators [Almulla et al., 2017], [Gomes and Saulde, 2018],
[Gomes and Yang, 2020], ...

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriere et al., 2023], ...

Finite elements [Benamou and Carlier, 2015], [Andreev, 2017b], ...
Cubature [de Raynal and Trillos, 2015], ...
Gaussian processes [Mou et al., 2022], ...
Kernel-based representation [Liu et al., 2021], ...
Fourier approximation [Nurbekyan et al., 2019], ...
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“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

@ Cubature [de Raynal and Trillos, 2015], ...
@ Markov chain approximation: [Bayraktar et al., 2018], ...

@ Probabilistic approach and Picard: [Chassagneux et al., 2019],
[Angiuli et al., 2019], ...

@ Probabilistic approach and regression: [Balata et al., 2019], . ..

3/40



“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:
@ (relatively) small dimension

@ (relatively) simple structure

= motivations to develop machine learning methods (see lectures 4, 5, 6)

4/40



Deep learning

@ In this lecture and the following one, we will use deep learning to solve MFGs
@ At a high level, there are two main ingredients:

» Approximation using deep neural networks

» Minimization of a loss function using stochastic gradient descent

@ Many variants and refinements, ...

@ See e.g. [LeCun et al., 2015, Goodfellow et al., 2016], ...
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Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]

@ Example: Regression: ¢ = (z, f(z)) for some f, L(y, ¢) = |lo(z) — f(z)|?
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Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
@ Example: Regression: ¢ = (z, f(x)) for some f, L(p, &) = |l¢(x) — f(z)||?
@ Idea: Instead of min. over all ©(-), min. over parameters 6 of g (-)

@ Example: Feedforward fully-connected neural network:

> o)
» with weights & biases 0 = (3%, w*)) 1. 4
» activation functions w(”: sigmoid, tanh, ReLU, ... ; applied coordinate-wise

vo(z) = p® (ﬁm Fw®@ . @ (ﬁm +w® Mg +w<1>x)) )
~—— N —
o0, ) one hidden layer

» Depth = number of layers; width of a layer = dimension of bias vector
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Ingredient 1: Neural Networks — Comments

@ Many other architectures (convolutional neural networks, recurrent neural
networks, . ..), see e.g. [Leijnen and Veen, 2020]

@ Successes of deep learning in many fields: natural language processing,
computer vision, drug design, ...and even games!

@ Combination with reinforcement learning (see lecture 6)

@ Universal approximation theorems [Cybenko, 1989], [Hornik, 1991], ...

@ Connections with numerical analysis, see e.g. [Després, 2022]
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Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(6, x)
Vﬁu)ga(ﬁ,m) = ..., Vw(z)cp(&x) =...

= can perform gradient descent on these parameters
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Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(6, x)
VW)@(H,:U) = ..., Vw(z)cp(&x) =...

= can perform gradient descent on these parameters

@ With respect to state variable: V¢ (0, z) can be computed by AD too
Oz, 0(0,) = ...

=- can be used in PDEs (see lecture 5)
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Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over o(-), J(¢) := E¢[L(¢p, £)]

@ Parameterization: J(0) := E¢[L(0, )], where L(0, €) := L(s, €)
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@ Parameterization: J(0) := E¢[L(0, )], where L(0, €) := L(s, €)

@ Setting: the distribution of ¢ is unknown so we cannot compute E¢, but

» we have some samples (i.e. random realizations) of £
> we know L
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Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over ¢(-), J(p) := E¢[L(p, £)]
@ Parameterization: J(0) := E¢[L(0, )], where L(0, €) := L(s, €)

@ Setting: the distribution of ¢ is unknown so we cannot compute E¢, but

» we have some samples (i.e. random realizations) of £
> we know L

@ Example: Regression: ¢ = (z, f(z)), J(0) := Ee[ ||po(z) — f()]|?]

Algorithm: Stochastic Gradient Descent

Input: Initial param. 6,; data S = (&)=1,...,|s); Nb of steps K; learning rates (7™ )
Output: Parameter 6* s.t. ¢y~ (approximately) minimizes J

Initialize 6 = g,

fork =0,1,2,...,K—1do

L Pick s € S randomly

Compute the gradient VoL(0* %, &) = LL(py1),Es)
Set 0% = 9= — g, LO% Y ¢,)
6 return 0™

a B W N =
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Ingredient 2: Stochastic Gradient Descent — Comments

@ Many variants:

» Learning rate: ADAM (Adaptive Moment Estimation)
[Kingma and Ba, 2014], ...

» Samples: Mini-batches, ...

@ Proofs of convergence e.g. using stochastic approximation
[Robbins and Monro, 1951], [Borkar, 2009]

@ In practice: many details to be discussed, see e.g.[Bottou, 2012]; choice of
hyperparameters

» architecture
» initialization
> learning rate
» loss function
> ..
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Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(¢) = Eay[L(p(2),y)]

with z ~ pand y = f(z) + € for some noise e where f is unknown
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Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(¢) = Eay[L(p(2),y)]

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

» minimize over a hypothesis class F of ¢

» finite number of samples, S = (Zm, Ym )m=1,...,m: empirical risk:

Rs(e) = 37 D Llplan)ym)  (+ requ

» finite number of optimization steps, say k
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Analysis: Error Types

We are interested in:

@ Approximation error: Letting ¢* = argmin, ¢ » dist(¢, f),
€approx = dist(¢™, f)

@ Estimation error: Letting ¢s = argmin . » Rs(e)
€estim = dist(Ps, ¢")

@ Optimization error: After k steps, we get wg{);

€optim = diSt(@g{)7 @5)
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Analysis: Error Types

We are interested in:

@ Approximation error: Letting ¢* = argmin, ¢ » dist(¢, f),
€approx = dist(¢™, f)

@ Estimation error: Letting ¢s = argmin . » Rs(e)
€estim = dist(Ps, ¢")

@ Optimization error: After k steps, we get wg{);

€optim = diSt(@g{)7 @5)

@ Generalization error of the learnt <pg‘):

€gene = €approx + €estim T €optim
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2. Deep Learning for MFC



Outline

2. Deep Learning for MFC
@ Deep learning for stochastic optimal control



From optimal control to optimization

@ An optimal control is a “temporally extended” optimization problem

@ Numerically, we cannot minimize over all possible controls

@ We can parameterize the control function

@ and then optimize over the parameters

@ See e.g. [Gobet and Munos, 2005], [Han and E, 2016], ...
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over af(-, )
J(a(-, ) :E[/ F( Xy, at, Xy))dt + g(X7)|,

with
X() ~ Mo, dXt = b(Xt,Oé(f/,Xt)) dt+ O‘th
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y,

Minimize over neural network parameters 0

50 =5 [ [ 1 (Xupate, X0) de g () |
0

with
X() ~ Mo, dXt :b(Xt,QO(y(t,Xt)) dt+0’th

14/40



Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y, (2) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[ Y f (X oltas X)) At £ g (Xovg) |

n=0

with
Xo~mo, Xn+1—Xn :b(Xn,ipe(tn,7Xn))At+0'AWn
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Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y, (2) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =B D F (X poltn: X)) At + g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn :b(Xna\pG(tn7Xn))At+UAWn

— neural network induces an approximation error

— time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ¢ = (Xo, AW, ..., AWn,—1)
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2. Deep Learning for MFC

@ Adaptation to MFC



MFC: Approximate Problem

MFC problem:

Minimize over af(-, -)
Ko ) =E[ [ 100t X0+ 9(Xr,ar)].

where p, = L(X¢) with
X() ~ mo, dXt :b(Xt,,U/t,Oé(tXt)) dt+ O'th

15/40



MFC: Approximate Problem

MFC problem: (1) Finite pop.,

Minimize over decentralized controls «(-, -) with N agents
1o [T
N i N i i N
TV () = E[ﬁ Z/ F(XE ot X)) dt+g (XT,MT)}

where plY = L Zjil 0. with

X ~mo, dX] =b(X],pi,alt, X)) dt + odW]
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢,

Minimize over neural network parameters ¢ with NV agents
1o [T
N i N i i N
J (Q)ZE[N;/O F (Xt eo(t, X1)) dt+g(XT7NT)i|7

where pl¥ = L Zjil 0. with

X ~mo, dX{ =b(X], ni s po(t, X7)) dt + od W]
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

INN(0) =B D0 T (Xt X)) At g (Xivpiihy) ]

i=1 n=0
N .
where i = 5 3707, 0,5, with

X(% ~ mo ) XZH»l - X;yl = b(X'iu H‘g7 Wg(t’”w X,JI))AT + JAVV'JL

15/40



MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

TV 0) = B[ 30D (X0l X0)) At + g (Xieg i) |

i1=1 n=0
where p) = + Zj\'zl 37, with

J J
)(O ~ Mo, )(n+4

— neural network induces an approximation error

— finite population and time discretization induce extra errors
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MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

INN(0) =B D0 T (Xt X)) At g (Xivpiihy) ]

i1=1 n=0
where p) = + Zj\'zl 37, with

J J
)(0 ~ Mo, )(n—%l

— neural network induces an approximation error

— finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N-agent control
problem, the optimal control is not always of this type
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Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

Jnf J(a()) = inf TN (0)| < e1(N) + e2(dim(6)) + ea(Nr)

16/40



Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

Jnf J(a()) = inf TN (0)| < e1(N) + e2(dim(6)) + ea(Nr)

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Lauriere, 2021]
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Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

al(nf) J(e(-) — inf TV (0)] < e1(N) + e2(dim(6)) + es(Nr)

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Lauriere, 2021]

@ The optimization error remains to be studied

@ Many extensions and refinements to be investigated

16/40



Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X )

‘ggg J(a() - JN(&*(-))’ <a(N) €O (N/T).

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X )

‘ggg J(a() - JN<a*<->)’ <a(N) €O (N/T).

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(a*(-)) — JN(gég(-))\ < ez(dim(0)) € O (dim(@)_‘*(d“) )

Proof: Key difficulty: approximate v*(-) by @¢(+) while controlling ||[V@g ()| by [[Vo*()]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]
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Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X )

nf J(a()) - J%f(-))’ <e(N)eO (N9,

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(oz*(-)) — JN(L,B(;(-))\ < ez(dim(0)) € O (dim(@)_“(d“) >

Proof: Key difficulty: approximate v*(-) by @¢(+) while controlling ||[V@g ()| by [[Vo*()]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]
Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ¢ (+),
[ o)) = SNV (2o ()] < o) € O (N5 72))

Key point: O (-) independent of N and dim(6)

Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
» Loss function = cost: J™V7 () = E[L(s, £)]
» One sample: £ = (Xg (AW’,{)n:(]MNT,l)

j=1,...,N

— can use Stochastic Gradient Descent
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)j:l .

— can use Stochastic Gradient Descent

@ Structure:
(7"(1

N
Mo

I
\;/
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)j:l .

— can use Stochastic Gradient Descent

@ Structure:

Co C; CNp—1 Cny
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Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)ji

=1,...,N
— can use Stochastic Gradient Descent
@ Structure:
o+ ...+ Cn;
®—> Po,00 - '7539.3\'1-71 —>X1,.. . ,XNT
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Numerical lllustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

fapn= @=af + 2. a= [u@w, o =a
distance to  cost of ——
mean position  MoOvIng mean position

Numerical example with d = 10 (see [Carmona and Lauriere, 2022]):

5.1 LY N=32,Nr=100 N=32,Nr=100
N =128, Nr=100 N =128,Nr=100
5.0 —— N=1024,N; =100 100 —— N=1024, Ny =100
49 === N=1024,Nr=20 === N=1024,N;=20
" ~-= N=1024,Nr=10 -== N=1024,Nr=10
4.8
3 5
247 o
107t
4.6
4.5
4.4
4.3 10-2
0 10000 20000 30000 40000 0 10000 20000 30000 40000
SGD iterations SGD iterations
— 1 2
total cost (= loss function) L*-error on the control
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Numerical lllustration 2: min-LQ MFC with common noise

The following model is inspired by [Salhab et al., 2015] and [Achdou and Lasry, 2019].

MFC with simple CN:
Dynamics: dX; = ¢¢(Xy, €))dt +adWy, ¢ = 0 until t = T'/2, and then &; or & w.p. 1/2

Running cost |¢: (X, €7)|?, final cost (X7 — ¢7)? + Qr(mr — X1)?

Parameter values: 0 = 0.1, T =1, & = —1.5, & = +1.5

Numerical results:
@ neural network oy (t, X, €}), taking as an input the common noise

@ benchmark solution computed by solving a system of 6 PDEs (see
[Achdou and Lasry, 2019, Bourany, 2018])
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Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

More details in [Carmona and Lauriere, 2022]
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mm DS,£0=0
e DS, £9=0
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21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40



Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, %= -15
—— PDE &%= +15
o= _
175 W DS, €= -15
e DS, %= +15

1.50 A

5 5

g8 B
-

T

Until T'/2: concentrate around mid-point = 0

After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]
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Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, %= -15
—— PDE &%= +15
o= _
175 W DS, €= -15
e DS, %= +15

t=0.7

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]
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Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, €= -15
—= PDE = +15
= DS, %= -15
e DS, %= +15

t=20.8

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]
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Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, €= -15
—= PDE = +15
= DS, %= -15
e DS, %= +15

t=1

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]
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Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS
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Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS

Objective: minimize
T
J(a) = E[/ ex (X)dt + g(X7) — Vq?}
0
Equivalent problem:

J(@) =E| / ' (ca(aa +ex (Xf) — X7 / adu3<a>) dt + 9(X7)]

We take: ca(v) = 3cav’, cx(z) = sexa® and g(z) = Legz

2
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Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

o . t=0.000
Lo = t=0.100
t=0.200
t=0.300
-2 0.8 t=0.400
t=0.500
t=0.600
3 -4 206 t=0.700
‘E 3 t=0.800
g 2 t=0.900
= t=1.000
04
-6
02
-8
0.0

T=1cx=2,ca=1¢=03,0=057=02

See Section 2 in [Carmona and Lauriere, 2023] for more details.
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Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

e t=0.000
- £=0.100
=0.200

t=0.300
=0.400
t=0.500
t=0.600
=0.700
t=0.800
t=0.900
— t=1.000

control
|

T=1cx=2,ca=1¢=03,0=05y=1

See Section 2 in [Carmona and Lauriere, 2023] for more details.
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Sample code

Code
Sample code to illustrate: |Python notebook

https://colab.research.google.com/drive/1QYWz4Sclw9goRzsbd0uB6wR6a0Uula3k?usp=sharing

@ Deep learning for MFC using a direct approach where the control is
parameterized as a neural network

@ Applied to the price impact model discussed above
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https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing
https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

Related works

@ DL for stochastic control [Gobet and Munos, 2005], [Han and E, 2016], ...

@ Various possible implementations; example: 1 NN per time step instead of a
single 1 NN as a function of time

@ Extensions to finite-player games [Hu, 2021]

@ Extension to MFC presented here [Carmona and Lauriere, 2022]; see also
[Carmona and Lauriere, 2023]

@ Related works with mean field: [Fouque and Zhang, 2020] (MFC with delay),
[Germain et al., 2019], [Agram et al., 2020], [Dayanikli et al., 2023] (with
population-dependent controls), .. .
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Outline

3. Deep Learning for MKV FBSDE



Shooting Method for FBSDE

Goal: solve an FBSDE system
@ The backward process has a value Yy at time 0, but it is not known

@ Try to guess the correct initial condition so that the terminal condition is satisfied

This yields a new optimal control problem

See e.g. [Kohlmann and Zhou, 2000], [Sannikov, 2008], ...

@ For the new optimal control problem, use deep learning [E et al., 2017]
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DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, X, V3)dt + dW, Xo ~ mo — state
dY, = —F(t, Xy, V2)dt + Z, - dWs, Yr = G(X71) —+ control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

27/40



DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr =G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z,),
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

27/40



DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[ e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dX; = B(t, X, Y:)dt + dWi, Xo ~ mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

27/40



DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[ e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dX; = B(t, X, Y:)dt + dWi, Xo ~ mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

27/40



DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, X, Y})dt + dW, Xo ~ mo — state
AY, = —F(t, Xy, V)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[ e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dXt :B(t,Xt,}/t)dt-i-th, Xo ~ Mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

Note: This problem is not the original stochastic control problem !
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Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
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This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 x)dt + O'th

(Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z, = 00, u(t, Xt)

@ Connection also works with dX; = dW; and a different Y; ...

@ Application: solve a PDE by solving the corresponding (F)BSDE
@ Ex. HJB equation. Many variations/extensions
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Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost
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under the constraint that (X0*,Y¥°-*) solve: Vt € [0, T

dX, = B(t, X¢, £L(Xy),Yy)dt + dWe, Xo ~ mo,
dYt = —F(t, Xt, ;C(Xt), }/t)dt —|— Z(t7 X,) . th, Yo = y[)(X[)).

— New MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

NB: This problem is not the original MFG or MFC
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Implementation

@ Inputs: initial positions X, = (X{):, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = Cy,, = terminal penalty; state = (X, Yy)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () ~ ,7/0(')’ 20 ( ) ~ Z( )
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Implementation

@ Inputs: initial positions X, = (X{):, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = Cy,, = terminal penalty; state = (X, Yy)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () ~ ],J(J('), 202('? ) ~ Z( )

@ Alternative implementation: 1 + N NNs for yo(+), z0(), ..., z2np—1(+)
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Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{* = «a:dt + dW; and

T
J(a;u) =E |:G(X%) +/ <%o¢? + X/ 'atan (/ ac,ut(dx)>> dt:|
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dX; = —thdt + odWy, X0 = xo
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—— Y, (Algorithm 2)
= Y, (benchmark)

-0.225

-0.250

-0.275

Yo

- —0.300
2
-0.325
-0.350

-0.375

~0.400

Coupling P

[Chassagneux et al., 2019] NN (FBSDE system)

More details in [Carmona and Lauriere, 2022]
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Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
X = log-monetary reserve, « = rate of borrowing/lending to central bank, cost:

T
J(a;m) =E [/ [_a? — qou (e — X)) + %(mt - Xt)2] dt + g(mT - XT)Z}
0
where m = (m;):>0 = conditional mean of the population states given 77°, and
dXt = [a(’ﬁ’lt — Xt) —+ Olt]dt + o (\/ 1-— deWt + det0>

32/40



Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
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Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
X = log-monetary reserve, a = rate of borrowing/lending to central bank, cost:

T
1
J(a;m) =E [/ [505 — qau(my — X1) + %(mt - Xﬂ dt + g(mT - XT)Q}
0
where m = (m:):>0 = conditional mean of the population states given 17°, and
dX, = [a(e — X2) + ad]dt + & (\/1 —RdW, + de,P)

NN for FBSDE system VS (semi) analytical solution (LQ structure)
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More details in [Carmona and Lauriere, 2022]
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Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/lwSpMwMxvOVRXFZ1ly71-zecyctBTdV1372usp=sharing

@ Deep learning for MKV FBSDEs

@ Applied to the systemic risk model discussed above
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https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing
https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing

Comments

Convergence of the DeepBSDE method [Han and Long, 2020]
Extension to finite-player games [Han et al., 2022]

Analysis of the different types of errors to be done for MKV case
The new MFC problem is not standard

Deep learning of MKV FBSDEs as presented here
[Carmona and Lauriere, 2022]; see also [Carmona and Lauriere, 2023]

Related works on deep learning for MKV FBSDEs: [Fouque and Zhang, 2020]
(MFC with delay), [Germain et al., 2019], [Aurell et al., 2022b], ...

Similar “shooting” strategy can be applied to (infinite-dimensional) ODE systems
obtained in graphon games [Aurell et al., 2022a]. Code (Gokge Dayanikli):

https://github.com/gokce-d/GraphonEpidemics
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4. Two Examples of Extensions
@ Solving Stackelberg MFG with Deep MKV FBSDE



Stackelberg MFG

MFG with a Stackelberg (leader-follower) structure:
@ A Principal chooses a policy A

@ A population of agents react and form a Nash equilibrium:

I (e, ) :—E[/ F( Xes a0, pe; A1)t + g(Xr, pr; A(T)) |

@ This is an MFG parameterized by A

@ The resulting mean field flow j1* incurs a cost to the principal

P = / folt N At - go (b A(T))

Related works: Holmstrém-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitani¢ et al (2018), Carmona-Wang (2018), Elie et al (2019)
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DL for Stackelberg MFG

Reminder:
@ MFG solution can be characterized using a MKV FBSDE system
@ This MKV FBSDE can be rewritten as a control problem
» 2 forward equations
» terminal cost
Stackelberg MFG:
@ The above terminal cost can be combined with the principal’s cost
@ We obtain an MFC problem [Elie et al., 2019]

@ From here we can apply the methods discussed previously
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DL for Stackelberg MFG

Reminder:
@ MFG solution can be characterized using a MKV FBSDE system
@ This MKV FBSDE can be rewritten as a control problem
» 2 forward equations
» terminal cost
Stackelberg MFG:
@ The above terminal cost can be combined with the principal’s cost

@ We obtain an MFC problem [Elie et al., 2019]

@ From here we can apply the methods discussed previously

For more details, see:

@ [Aurell et al., 2022b] with application to epidemics management (finite state
MFG): principal gives guidelines (social distancing, etc.) and population reacts

@ Code available ((Gokce Dayaniklr)):
https://github.com/gokce-d/StackelbergMFG
@ Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]

@ Similarities with DA for mean field optimal transport [Baudelet et al., 2023]
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@ Computing MFC Value Function with DBDP



Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
o is a solution to the MFC problem if it minimizes

T
JMFC(a) =E [/ F(XE, ar, m)dt + g( X, m7)
0

Main difference with MFG: here not only X but m too is controlled by a.
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Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
o is a solution to the MFC problem if it minimizes

T
JMFC(a) =K [/ F(XE, ar, m)dt + g( X, m7)
0

Main difference with MFG: here not only X but m too is controlled by a.

Optimality conditions? Several approaches:

@ Dynamic programming value function depending on m; value function V/

@ Calculus of variations taking m as a state; adjoint state u

@ Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y
Dynamic programming for MFC [Lauriere and Pironneau, 2014],
[Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], . ..

— Algorithm?
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DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:
@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:
@ Version 1: Let (V;,, Z,,) = minimizer over (Y,,, Z,,) of:

E [1¥n11(Xnt1) = Yn(Xn) = £(tn, Xo, Yo (Xn), Z0 (X)) At = Zn(Xn) - AWpp1]
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For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:
@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:
@ Version 1: Let (V;,, Z,,) = minimizer over (Y,,, Z,,) of:

E [1¥n11(Xnt1) = Yn(Xn) = £(tn, Xo, Yo (Xn), Z0 (X)) At = Zn(Xn) - AWpp1]

@ or Version 2: Let (Y, Z,,) = minimizer over (Yy, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = £(tn, Xn, Yo (Xn), 0| DaYn(Xn )AL = Do Yo (X0) T oAW1l

For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]
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DBDP for MFC

@ Can we apply the same idea to MFC, replacing V' by a neural network?
@ Main challenge: the value function V takes m € P(R?) as an input

@ We need to approximate m
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DBDP for MFC

Can we apply the same idea to MFC, replacing V' by a neural network?
Main challenge: the value function V takes m € P(R?) as an input
We need to approximate m

One possibility:
V(t,me) = V(t,my )~ Velt, X}, ..., X))

where Vj is a neural network which is symmetric with respect to the inputs
See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)

39/40



Outline

5. Conclusion



Summary

@ Two algorithms based on the stochastic approach

@ Direct approach without any optimality condition

@ DeepBSDE: recasting (MKV) FBSDEs as control problems

@ Many possible extensions and variations

@ Many open questions for mathematicians (proofs of approximation, rates of
convergence, ...)

@ Some surveys on DL for control/games:
[Germain et al., 2021b, Carmona and Lauriére, 2023, Hu and Lauriére, 2023]

Next lecture: deep learning methods for the PDE approach
40/40



Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu


mathieu.lauriere@nyu.edu
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