Numerical Methods for
Mean Field Games

Lecture 4
Deep Learning Methods: Part |
MFC and MKV FBSDE

Mathieu LAURIERE
New York University Shanghai

UMB6P Vanguard Center, Université Cadi AYYAD,
University Cote d’Azur, & GE2MI
Open Doctoral Lectures
July 5-7,2023

Outline

1. Introduction

Summary so far

Numerical methods discussed so far:

@ ODE system for LQ setting

@ FBPDE system

@ FBSDE system

1/40

“Classical” Numerical Methods for MFG: Some references

Some methods based on the deterministic approach to MFG/MFC:

Finite difference & Newton method: [Achdou and Capuzzo-Dolcetta, 2010],
[Achdou et al., 2012], ...

(Semi-)Lagrangian approach: [Carlini and Silva, 2014, Carlini and Silva, 2015],
[Carlini and Silva, 2018], [Calzola et al., 2022], ...

Augmented Lagrangian & ADMM: [Benamou and Carlier, 2015],
[Andreev, 2017a], [Achdou and Lauriére, 2016], ...

Primal-dual algo.: [Briceno Arias et al., 2018], [Bricenio Arias et al., 2019], ...

Gradient descent based methods [Lauriére and Pironneau, 2016],
[Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022], ...

Monotone operators [Almulla et al., 2017], [Gomes and Saulde, 2018],
[Gomes and Yang, 2020], ...

Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021],
[Camilli and Tang, 2022], [Tang and Song, 2022], [Lauriere et al., 2023], ...

Finite elements [Benamou and Carlier, 2015], [Andreev, 2017b], ...
Cubature [de Raynal and Trillos, 2015], ...
Gaussian processes [Mou et al., 2022], ...
Kernel-based representation [Liu et al., 2021], ...
Fourier approximation [Nurbekyan et al., 2019], ...
2/40

“Classical” Numerical Methods for MFG: Some references

Some methods based on the probabilistic approach to MFG/MFC:

@ Cubature [de Raynal and Trillos, 2015], ...
@ Markov chain approximation: [Bayraktar et al., 2018], ...

@ Probabilistic approach and Picard: [Chassagneux et al., 2019],
[Angiuli et al., 2019], ...

@ Probabilistic approach and regression: [Balata et al., 2019], . ..

3/40

“Classical” Numerical Methods for MFG: Shortcomings

Many of these methods are very efficient and have been analyzed in detail

However, they are usually limited to problems with:
@ (relatively) small dimension

@ (relatively) simple structure

= motivations to develop machine learning methods (see lectures 4, 5, 6)

4/40

Deep learning

@ In this lecture and the following one, we will use deep learning to solve MFGs
@ At a high level, there are two main ingredients:

» Approximation using deep neural networks

» Minimization of a loss function using stochastic gradient descent

@ Many variants and refinements, ...

@ See e.g. [LeCun et al., 2015, Goodfellow et al., 2016], ...

5/40

Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]

@ Example: Regression: ¢ = (z, f(z)) for some f, L(y, ¢) = |lo(z) — f(z)|?

6/40

Ingredient 1: Neural Networks

@ Goal: Minimize over ¢(-), J(¢) := E¢[L(p, £)]
@ Example: Regression: ¢ = (z, f(x)) for some f, L(p, &) = |l¢(x) — f(z)||?
@ Idea: Instead of min. over all ©(-), min. over parameters 6 of g (-)

@ Example: Feedforward fully-connected neural network:

> o)
» with weights & biases 0 = (3%, w*)) 1. 4
» activation functions w(”: sigmoid, tanh, ReLU, ... ; applied coordinate-wise

vo(z) = p® (ﬁm Fw®@ . @ (ﬁm +w® Mg +w<1>x)))
~—— N —
o0,) one hidden layer

» Depth = number of layers; width of a layer = dimension of bias vector

6/40

Ingredient 1: Neural Networks — Comments

@ Many other architectures (convolutional neural networks, recurrent neural
networks, . ..), see e.g. [Leijnen and Veen, 2020]

@ Successes of deep learning in many fields: natural language processing,
computer vision, drug design, ...and even games!

@ Combination with reinforcement learning (see lecture 6)

@ Universal approximation theorems [Cybenko, 1989], [Hornik, 1991], ...

@ Connections with numerical analysis, see e.g. [Després, 2022]

7/40

Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(6, x)
Vﬁu)ga(ﬁ,m) = ..., Vw(z)cp(&x) =...

= can perform gradient descent on these parameters

8/40

Ingredient 1: Neural Networks — Gradients

Differentiation: can compute partial derivatives by automatic differentiation (AD) at
every (0, z):

@ With respect to parameters: Vop(6, x)
VW)@(H,:U) = ..., Vw(z)cp(&x) =...

= can perform gradient descent on these parameters

@ With respect to state variable: V¢ (0, z) can be computed by AD too
Oz, 0(0,) = ...

=- can be used in PDEs (see lecture 5)

8/40

Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over o(-), J(¢) := E¢[L(¢p, £)]

@ Parameterization: J(0) := E¢[L(0,)], where L(0, €) := L(s, €)

9/40

Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over ¢(-), J(p) := E¢[L(p, £)]
@ Parameterization: J(0) := E¢[L(0,)], where L(0, €) := L(s, €)

@ Setting: the distribution of ¢ is unknown so we cannot compute E¢, but

» we have some samples (i.e. random realizations) of £
> we know L

9/40

Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over ¢(-), J(p) := E¢[L(p, £)]
@ Parameterization: J(0) := E¢[L(0,)], where L(0, €) := L(s, €)

@ Setting: the distribution of ¢ is unknown so we cannot compute E¢, but

» we have some samples (i.e. random realizations) of £
> we know L

@ Example: Regression: ¢ = (z, f(z)), J(0) := Ee[||po(z) — f()]|?]

9/40

Ingredient 2: Stochastic Gradient Descent

@ Goal: Minimize over ¢(-), J(p) := E¢[L(p, £)]
@ Parameterization: J(0) := E¢[L(0,)], where L(0, €) := L(s, €)

@ Setting: the distribution of ¢ is unknown so we cannot compute E¢, but

» we have some samples (i.e. random realizations) of £
> we know L

@ Example: Regression: ¢ = (z, f(z)), J(0) := Ee[||po(z) — f()]|?]

Algorithm: Stochastic Gradient Descent

Input: Initial param. 6,; data S = (&)=1,...,|s); Nb of steps K; learning rates (7™)
Output: Parameter 6* s.t. ¢y~ (approximately) minimizes J

Initialize 6 = g,

fork =0,1,2,...,K—1do

L Pick s € S randomly

Compute the gradient VoL(0* %, &) = LL(py1),Es)
Set 0% = 9= — g, LO% Y ¢,)
6 return 0™

a B W N =

9/40

Ingredient 2: Stochastic Gradient Descent — Comments

@ Many variants:

» Learning rate: ADAM (Adaptive Moment Estimation)
[Kingma and Ba, 2014], ...

» Samples: Mini-batches, ...

@ Proofs of convergence e.g. using stochastic approximation
[Robbins and Monro, 1951], [Borkar, 2009]

@ In practice: many details to be discussed, see e.g.[Bottou, 2012]; choice of
hyperparameters

» architecture
» initialization
> learning rate
» loss function
> ..

10/40

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(¢) = Eay[L(p(2),y)]

with z ~ pand y = f(z) + € for some noise e where f is unknown

11/40

Analysis: Error Types

@ Consider the task: minimize over ¢ the population risk:

R(¢) = Eay[L(p(2),y)]

with z ~ pand y = f(z) + € for some noise e where f is unknown
@ In practice:

» minimize over a hypothesis class F of ¢

» finite number of samples, S = (Zm, Ym)m=1,...,m: empirical risk:

Rs(e) = 37 D Llplan)ym) (+ requ

» finite number of optimization steps, say k

11/40

Analysis: Error Types

We are interested in:

@ Approximation error: Letting ¢* = argmin, ¢ » dist(¢, f),
€approx = dist(¢™, f)

@ Estimation error: Letting ¢s = argmin . » Rs(e)
€estim = dist(Ps, ¢")

@ Optimization error: After k steps, we get wg{);

€optim = diSt(@g{)7 @5)

12/40

Analysis: Error Types

We are interested in:

@ Approximation error: Letting ¢* = argmin, ¢ » dist(¢, f),
€approx = dist(¢™, f)

@ Estimation error: Letting ¢s = argmin . » Rs(e)
€estim = dist(Ps, ¢")

@ Optimization error: After k steps, we get wg{);

€optim = diSt(@g{)7 @5)

@ Generalization error of the learnt <pg‘):

€gene = €approx + €estim T €optim

12/40

Outline

2. Deep Learning for MFC

Outline

2. Deep Learning for MFC
@ Deep learning for stochastic optimal control

From optimal control to optimization

@ An optimal control is a “temporally extended” optimization problem

@ Numerically, we cannot minimize over all possible controls

@ We can parameterize the control function

@ and then optimize over the parameters

@ See e.g. [Gobet and Munos, 2005], [Han and E, 2016], ...

13/40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem:

Minimize over af(-,)
J(a(-,) :E[/ F(Xy, at, Xy))dt + g(X7)|,

with
X() ~ Mo, dXt = b(Xt,Oé(f/,Xt)) dt+ O‘th

14/40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y,

Minimize over neural network parameters 0

50 =5 [[1 (Xupate, X0) de g () |
0

with
X() ~ Mo, dXt :b(Xt,QO(y(t,Xt)) dt+0’th

14/40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y, (2) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[Y f (X oltas X)) At £ g (Xovg) |

n=0

with
Xo~mo, Xn+1—Xn :b(Xn,ipe(tn,7Xn))At+0'AWn

14/40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y, (2) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =E[Y f (X oltas X)) At £ g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn :b(Xna\pG(tn7Xn))At+UAWn

— neural network induces an approximation error

— time discretization induce extra errors

14/40

Stochastic Optimal Control: Approximate Problem

Stochastic optimal control problem: (1) neural network ¢y, (2) time discretization

Minimize over neural network parameters ¢ and N, time steps

Np—1

IO =B D F (X poltn: X)) At + g (Xovg) |

n=0

with
XO ~ mo, Xn+1 _Xn :b(Xna\pG(tn7Xn))At+UAWn

— neural network induces an approximation error

— time discretization induce extra errors

To implement SGD, at each iteration we pick a sample ¢ = (Xo, AW, ..., AWn,—1)

14/40

Outline

2. Deep Learning for MFC

@ Adaptation to MFC

MFC: Approximate Problem

MFC problem:

Minimize over af(-, -)
Ko) =E[[100t X0+ 9(Xr,ar)].

where p, = L(X¢) with
X() ~ mo, dXt :b(Xt,,U/t,Oé(tXt)) dt+ O'th

15/40

MFC: Approximate Problem

MFC problem: (1) Finite pop.,

Minimize over decentralized controls «(-, -) with N agents
1o [T
N i N i i N
TV () = E[ﬁ Z/ F(XE ot X)) dt+g (XT,MT)}

where plY = L Zjil 0. with

X ~mo, dX] =b(X],pi,alt, X)) dt + odW]

15/40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢,

Minimize over neural network parameters ¢ with NV agents
1o [T
N i N i i N
J (Q)ZE[N;/O F (Xt eo(t, X1)) dt+g(XT7NT)i|7

where pl¥ = L Zjil 0. with

X ~mo, dX{ =b(X], ni s po(t, X7)) dt + od W]

15/40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

INN(0) =B D0 T (Xt X)) At g (Xivpiihy)]

i=1 n=0
N .
where i = 5 3707, 0,5, with

X(% ~ mo) XZH»l - X;yl = b(X'iu H‘g7 Wg(t’”w X,JI))AT + JAVV'JL

15/40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

TV 0) = B[30D (X0l X0)) At + g (Xieg i) |

i1=1 n=0
where p) = + Zj\'zl 37, with

J J
)(O ~ Mo,)(n+4

— neural network induces an approximation error

— finite population and time discretization induce extra errors

15/40

MFC: Approximate Problem

MFC problem: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps

N Np—1

INN(0) =B D0 T (Xt X)) At g (Xivpiihy)]

i1=1 n=0
where p) = + Zj\'zl 37, with

J J
)(0 ~ Mo,)(n—%l

— neural network induces an approximation error

— finite population and time discretization induce extra errors

Note: we aim for a decentralized control, whereas for a general N-agent control
problem, the optimal control is not always of this type

15/40

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

Jnf J(a()) = inf TN (0)| < e1(N) + e2(dim(6)) + ea(Nr)

16/40

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

Jnf J(a()) = inf TN (0)| < e1(N) + e2(dim(6)) + ea(Nr)

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Lauriere, 2021]

16/40

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

al(nf) J(e() — inf TV (0)] < e1(N) + e2(dim(6)) + es(Nr)

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Lauriere, 2021]

@ The optimization error remains to be studied

16/40

Convergence Analysis

@ The following kind of convergence result (bound on the approximation error)
can be proved, see [Carmona and Lauriere, 2022]:

Approximation theorem

Under suitable assumptions (in particular regularity of the value function),

al(nf) J(e(-) — inf TV (0)] < e1(N) + e2(dim(6)) + es(Nr)

@ The estimation error for shallow neural networks can be analyzed using
techniques similar to [Carmona and Lauriere, 2021]

@ The optimization error remains to be studied

@ Many extensions and refinements to be investigated

16/40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X)

‘ggg J(a() - JN(&*(-))’ <a(N) €O (N/T).

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

17/40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X)

‘ggg J(a() - JN<a*<->)’ <a(N) €O (N/T).

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(a*(-)) — JN(gég(-))\ < ez(dim(0)) € O (dim(@)_‘*(d“))

Proof: Key difficulty: approximate v*(-) by @¢(+) while controlling ||[V@g ()| by [[Vo*()]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]

17/40

Approximation Error Analysis: Main Ingredients of the Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control o* s.t. (@ = dimension of X)

nf J(a()) - J%f(-))’ <e(N)eO (N9,

Proof: propagation of chaos type argument [Carmona and Delarue, 2018]

Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 € © for a one-hidden layer ¢y s.t.
1
|JN(oz*(-)) — JN(L,B(;(-))\ < ez(dim(0)) € O (dim(@)_“(d“) >

Proof: Key difficulty: approximate v*(-) by @¢(+) while controlling ||[V@g ()| by [[Vo*()]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar and Micchelli, 1995]
Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ¢ (+),
[o)) = SNV (2o ()] < o) € O (N5 72))

Key point: O (-) independent of N and dim(6)

Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy and Talay, 1997])

17/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
» Loss function = cost: J™V7 () = E[L(s, £)]
» One sample: £ = (Xg (AW’,{)n:(]MNT,l)

j=1,...,N

— can use Stochastic Gradient Descent

18/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:
» Loss function = cost: J™V7 () = E[L(s, £)]
» One sample: £ = (Xg (AW’,{)n:(]MNT,l)

j=1,...,N

— can use Stochastic Gradient Descent

@ Structure:

18/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J¥"7 (0) = E[L(ys, €)]
» One sample: & = (X7, (AW)n=o, .. NTfl)j:l N

— can use Stochastic Gradient Descent
@ Structure:

1

T
®

18/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)j:l .

— can use Stochastic Gradient Descent

@ Structure:
(7"(1

N
Mo

I
\;/

’5—»
— A ———>E;

=~
—> —_—

g

18/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)j:l .

— can use Stochastic Gradient Descent

@ Structure:

Co C; CNp—1 Cny
M}/[“1”\/'J [v
1 \\\I —
G —= |0 0| ==Xy [(11 oo [(10— Koy

18/40

Implementation

@ Key idea: replace optimal control problem by (finite dim.) optimization problem:

» Loss function = cost: J™ V7 (0) = E[L(wy, €)]
> One sample: & = (X7, (AW])n—0... NTfl)ji

=1,...,N
— can use Stochastic Gradient Descent
@ Structure:
o+ ...+ Cn;
®—> Po,00 - '7539.3\'1-71 —>X1,.. . ,XNT

18/40

Numerical lllustration 1: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

fapn= @=af + 2. a= [u@w, o =a
distance to cost of ——
mean position MoOvIng mean position

Numerical example with d = 10 (see [Carmona and Lauriere, 2022]):

5.1 LY N=32,Nr=100 N=32,Nr=100
N =128, Nr=100 N =128,Nr=100
5.0 —— N=1024,N; =100 100 —— N=1024, Ny =100
49 === N=1024,Nr=20 === N=1024,N;=20
" ~-= N=1024,Nr=10 -== N=1024,Nr=10
4.8
3 5
247 o
107t
4.6
4.5
4.4
4.3 10-2
0 10000 20000 30000 40000 0 10000 20000 30000 40000
SGD iterations SGD iterations
— 1 2
total cost (= loss function) L*-error on the control

19/40

Numerical lllustration 2: min-LQ MFC with common noise

The following model is inspired by [Salhab et al., 2015] and [Achdou and Lasry, 2019].

MFC with simple CN:
Dynamics: dX; = ¢¢(Xy, €))dt +adWy, ¢ = 0 until t = T'/2, and then &; or & w.p. 1/2

Running cost |¢: (X, €7)|?, final cost (X7 — ¢7)? + Qr(mr — X1)?

Parameter values: 0 = 0.1, T =1, & = —1.5, & = +1.5

Numerical results:
@ neural network oy (t, X, €}), taking as an input the common noise

@ benchmark solution computed by solving a system of 6 PDEs (see
[Achdou and Lasry, 2019, Bourany, 2018])

20/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, £°=0
—— PDE =0
mm DS,£0=0
e DS, £9=0

-2 -1 0 1 2

Until T'/2: concentrate around mid-point = 0

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, %= -15
—— PDE &%= +15
o= _
175 W DS, €= -15
e DS, %= +15

1.50 A

5 5

g8 B
-

T

Until T'/2: concentrate around mid-point = 0

After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, %= -15
—— PDE &%= +15
o= _
175 W DS, €= -15
e DS, %= +15

t=0.7

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, €= -15
—= PDE = +15
= DS, %= -15
e DS, %= +15

t=20.8

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, €= -15
—= PDE = +15
= DS, %= -15
e DS, %= +15

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 2: min-LQ MFC with common noise

Here the common noise takes one among two values, at time 7'/2.

— PDE, €= -15
—= PDE = +15
= DS, %= -15
e DS, %= +15

t=1

Until T'/2: concentrate around mid-point = 0
After T'/2: move towards the target selected by common noise

More details in [Carmona and Lauriere, 2022]

21/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS

22/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS

Objective: minimize

J(a) = E[/OT ex (X2)dt + g(X5) — vﬁ}

22/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS

Objective: minimize
T
J(a) = E[/ ex (X)dt + g(X7) — Vq?}
0
Equivalent problem:

J(@) =E| / ' (ca(aa +ex (Xf) — X7 / adu3<a>) dt + 9(X7)]

22/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Price Impact Model [Carmona and Lacker, 2015, Carmona and Delarue, 2018]:

@ Price process: with v = population’s distribution over actions,
dsy =~ / advy (a)dt + oodW;,
R

@ Typical agent’s inventory: dX{* = a;dt + cdW;
@ Typical agent's wealth: dK;" = — (o S§" + calo))dt
@ Typical agent’s portfolio value: V,* = Ki* + XS

Objective: minimize
T
J(a) = E[/ ex (X)dt + g(X7) — Vq?}
0
Equivalent problem:

J(@) =E| / ' (ca(aa +ex (Xf) — X7 / adu3<a>) dt + 9(X7)]

We take: ca(v) = 3cav’, cx(z) = sexa® and g(z) = Legz

2

22/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

o . t=0.000
Lo = t=0.100
t=0.200
t=0.300
-2 0.8 t=0.400
t=0.500
t=0.600
3 -4 206 t=0.700
‘E 3 t=0.800
g 2 t=0.900
= t=1.000
04
-6
02
-8
0.0

T=1cx=2,ca=1¢=03,0=057=02

See Section 2 in [Carmona and Lauriere, 2023] for more details.

23/40

Numerical lllustration 3: MFC with Interactions Through the Controls

Control learnt (left) and associated state distribution (right)

e t=0.000
- £=0.100
=0.200

t=0.300
=0.400
t=0.500
t=0.600
=0.700
t=0.800
t=0.900
— t=1.000

control
|

T=1cx=2,ca=1¢=03,0=05y=1

See Section 2 in [Carmona and Lauriere, 2023] for more details.

23/40

Sample code

Code
Sample code to illustrate: |Python notebook

https://colab.research.google.com/drive/1QYWz4Sclw9goRzsbd0uB6wR6a0Uula3k?usp=sharing

@ Deep learning for MFC using a direct approach where the control is
parameterized as a neural network

@ Applied to the price impact model discussed above

24/40

https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing
https://colab.research.google.com/drive/1QYWz4Sclw9goRZsbd0uB6wR6a0Uu0a3k?usp=sharing

Related works

@ DL for stochastic control [Gobet and Munos, 2005], [Han and E, 2016], ...

@ Various possible implementations; example: 1 NN per time step instead of a
single 1 NN as a function of time

@ Extensions to finite-player games [Hu, 2021]

@ Extension to MFC presented here [Carmona and Lauriere, 2022]; see also
[Carmona and Lauriere, 2023]

@ Related works with mean field: [Fouque and Zhang, 2020] (MFC with delay),
[Germain et al., 2019], [Agram et al., 2020], [Dayanikli et al., 2023] (with
population-dependent controls), .. .

25/40

Outline

3. Deep Learning for MKV FBSDE

Shooting Method for FBSDE

Goal: solve an FBSDE system
@ The backward process has a value Yy at time 0, but it is not known

@ Try to guess the correct initial condition so that the terminal condition is satisfied

This yields a new optimal control problem

See e.g. [Kohlmann and Zhou, 2000], [Sannikov, 2008], ...

@ For the new optimal control problem, use deep learning [E et al., 2017]

26/40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, X, V3)dt + dW, Xo ~ mo — state
dY, = —F(t, Xy, V2)dt + Z, - dWs, Yr = G(X71) —+ control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

27/40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr =G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z,),
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

27/40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dX; = B(t, X, Y:)dt + dWi, Xo ~ mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

27/40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX¢ = B(t, Xz, Yi)dt + dWr, Xo ~ mo — state
dY, = =F(t, Xy, Y)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dX; = B(t, X, Y:)dt + dWi, Xo ~ mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

27/40

DeepBSDE (E et al.)

Solutions of sto. control problems can be characterized by FBSDEs of the form

dX; = B(t, X, Y})dt + dW, Xo ~ mo — state
AY, = —F(t, Xy, V)dt + Z; - dWy, Yr = G(Xr) — control/cost

(stemming from sto. Pontryagin’s or Bellman’s principle: F' = f or F' = 0, H)

Shooting: Guess Y; and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs
Reformulation as a new optimal control problem
Minimize over yo(-) and z(-) = (z:(+))¢>0
3o (),20) = E[e - 617
under the constraint that (X °* Y¥°-*) solve: Vt € [0, T
dXt :B(t,Xt,}/t)dt-i-th, Xo ~ Mo,
{ dYt :—F(t,Xt,)/t)dt—FZ(t,Xr,)'th, Yozyo(Xo)

— New optimal control problem: apply previous method, replacing yo(-), z(-, -) by NN

Note: This problem is not the original stochastic control problem !

27/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where

28/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 a:)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

28/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 a:)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z, = 00, u(t, Xt)

28/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 x)dt + O'th

@ (Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z, = 00, u(t, Xt)
@ Connection also works with dX; = dW, and a different Y; ...

28/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 x)dt + O'th

@ (Y, Z) solves the BSDE:
Yr =G(Xr)
dY, = —F(t, X;)dt + ZidW;

@ Infact Z, = 00, u(t, Xt)
@ Connection also works with dX; = dW; and a different Y; ...
@ Application: solve a PDE by solving the corresponding (F)BSDE

28/40

Application to Solve PDEs

This method can be used to solve PDEs [E et al., 2017]

Feynman-Kac formula: correspondence (¢, X;) = Y; where
@ u solves the PDE

{u(T, x) = G(x)

2u(t x) + B(t, 2) 2 (t,x) + 0% 28 (t,2) + F(t,2) = 0

@ X solves the SDE:
dXt = B(t7 x)dt + O'th

(Y, Z) solves the BSDE:

Yr = G(Xr)
dY, = —F(t, X;)dt + Z,dW,

@ Infact Z, = 00, u(t, Xt)

@ Connection also works with dX; = dW; and a different Y; ...

@ Application: solve a PDE by solving the corresponding (F)BSDE
@ Ex. HJB equation. Many variations/extensions

28/40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost

29/40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost

Shooting: Guess Yy and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

29/40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost

Shooting: Guess Y, and (Z;),
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Lauriere, 2022]
Minimize over yo(-) and z(-) = (z:(+))¢>0

I(o (), 2()) = E| IY7** - G(X%”'z»ﬂ(X%"'z))llﬂ ;

under the constraint that (X0*,Y¥°-*) solve: Vt € [0, T

dX, = B(t, X¢, £L(Xy),Yy)dt + dWe, Xo ~ mo,
dYt = —F(t, Xt, ;C(Xt), }/t)dt + Z(t, X,) . th, Yo = y[)(X[)).

29/40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost

Shooting: Guess Yy and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Lauriere, 2022]

Minimize over yo(-) and z(-) = (z:(+))¢>0
Io(-),z()) =E| V7" - G(X%”'zvﬂ(X%“‘z))llﬂ ,

under the constraint that (X0*,Y¥°-*) solve: Vt € [0, T

dX, = B(t, X¢, £L(Xy),Yy)dt + dWe, Xo ~ mo,
dYt = —F(t, Xt, ;C(Xt), }/t)dt —|— Z(t, X,) . th, Yo = y[)(X[)).

— New MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

29/40

Deep MKV FBSDE

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX; = B(t, X, L(X;), Y:)dt + dWy, Xo ~ mo — state
dY, = —F(t, X, L(Xy),Yy)dt + Z, - AWy, Y7 = G(Xr,L(X1)) — control/cost

Shooting: Guess Yy and (Z;):
— recover sol. (X,Y, Z) is found by opt. control of 2 forward SDEs

Reformulation as a MFC problem [Carmona and Lauriere, 2022]
Minimize over yo(-) and z(-) = (z:(+))¢>0

I(o (), 2()) = E| IY7** - G(X%“'zvﬂ(X%”'z))llﬂ ;

under the constraint that (X0*,Y¥°-*) solve: Vt € [0, T

dX, = B(t, X¢, £L(Xy),Yy)dt + dWe, Xo ~ mo,
dYt = —F(t, Xt, ;C(Xt), }/t)dt —|— Z(t7 X,) . th, Yo = y[)(X[)).

— New MFC problem: apply previous method, replacing vyo(-), z(+, -) by NN

NB: This problem is not the original MFG or MFC
29/40

Implementation

@ Inputs: initial positions X, = (X{):, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = Cy,, = terminal penalty; state = (X, Yy)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () ~ ,7/0(')’ 20 () ~ Z()

30/40

Implementation

@ Inputs: initial positions X, = (X{):, BM increments: AW,, = (AW,.);, for all n

@ Loss function: total cost = Cy,, = terminal penalty; state = (X, Yy)

@ SGD to optimize over the param. 6,,0. of 2 NN for
Yo, () ~],J(J('), 202('?) ~ Z()

@ Alternative implementation: 1 + N NNs for yo(+), z0(), ..., z2np—1(+)

30/40

Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{* = «a:dt + dW; and

T
J(a;u) =E |:G(X%) +/ <%o¢? + X/ 'atan (/ ac,ut(dx)>> dt:|

31/40

Numerical lllustration 1: Comparison with Picard Solver

Example of MKV FBSDE from [Chassagneux et al., 2019] (p = coupling parameter)
dX; = —thdt + odWy, X0 = xo
dY; = atan(E[X,])dt + Z,dWy, Yr = G'(X7) := atan(Xr)

Comes from the MFG defined by dX{* = «a:dt + dW; and

T
J(a;u) =E |:G(X%) +/ <%o¢? + X/ 'atan (/ ac,ut(dx)>> dt:|

—— Y, (Algorithm 2)
= Y, (benchmark)

-0.225

-0.250

-0.275

Yo

- —0.300
2
-0.325
-0.350

-0.375

~0.400

Coupling P

[Chassagneux et al., 2019] NN (FBSDE system)

More details in [Carmona and Lauriere, 2022]
31/40

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
X = log-monetary reserve, « = rate of borrowing/lending to central bank, cost:

T
J(a;m) =E [/ [_a? — qou (e — X)) + %(mt - Xt)2] dt + g(mT - XT)Z}
0
where m = (m;):>0 = conditional mean of the population states given 77°, and
dXt = [a(’ﬁ’lt — Xt) —+ Olt]dt + o (\/ 1-— deWt + det0>

32/40

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
X = log-monetary reserve, a = rate of borrowing/lending to central bank, cost:

T
1
J(a;m) =E [/ [503 — qau(my — X1) + %(mt - Xﬂ dt + g(mT - XT)Q}
0
where m = (m:):>0 = conditional mean of the population states given 17°, and
dX, = [a(e — X2) + ad]dt + & (\/1 —RdW, + det())

NN for FBSDE system VS (semi) analytical solution (LQ structure)

—— X! (Algorithm 2) X2 (Algorithm 2) —— Y (Algorithm 2) ¥?2 (Algorithm 2)
—— —— X* (benchmark) X? (benchmark) —— —-= Y (benchmark) ¥? (benchmark)
02
00
0.2
-03
ot
-0.6
Samples of X Samples of Y

More details in [Carmona and Lauriere, 2022]
32/40

Numerical lllustration 2: LQ MFG with Common Noise

Example: MFG for inter-bank borrowing/lending [Carmona et al., 2015]
X = log-monetary reserve, a = rate of borrowing/lending to central bank, cost:

T
1
J(a;m) =E [/ [505 — qau(my — X1) + %(mt - Xﬂ dt + g(mT - XT)Q}
0
where m = (m:):>0 = conditional mean of the population states given 17°, and
dX, = [a(e — X2) + ad]dt + & (\/1 —RdW, + de,P)

NN for FBSDE system VS (semi) analytical solution (LQ structure)

o« Nr=100,N=10° —- Nr=50,N=10° —— Nr=100,N=10?] —% Nr=100,N=10* —e— Ny=50,N=10* —&— Ny=100, N=10%

0.035
0.007

0.030
0.006

0.025
0.005

0.004 0.020

0.003 0.015

0.002 0.010

0.001 0.005

0.000 B 0.000
[10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
iteration iteration

L? erroron X L?erroronY

More details in [Carmona and Lauriere, 2022]
32/40

Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/lwSpMwMxvOVRXFZ1ly71-zecyctBTdV1372usp=sharing

@ Deep learning for MKV FBSDEs

@ Applied to the systemic risk model discussed above

33/40

https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing
https://colab.research.google.com/drive/1w5pMwMxvoVRXFZ1y71-zecyctBTdVl37?usp=sharing

Comments

Convergence of the DeepBSDE method [Han and Long, 2020]
Extension to finite-player games [Han et al., 2022]

Analysis of the different types of errors to be done for MKV case
The new MFC problem is not standard

Deep learning of MKV FBSDEs as presented here
[Carmona and Lauriere, 2022]; see also [Carmona and Lauriere, 2023]

Related works on deep learning for MKV FBSDEs: [Fouque and Zhang, 2020]
(MFC with delay), [Germain et al., 2019], [Aurell et al., 2022b], ...

Similar “shooting” strategy can be applied to (infinite-dimensional) ODE systems
obtained in graphon games [Aurell et al., 2022a]. Code (Gokge Dayanikli):

https://github.com/gokce-d/GraphonEpidemics

34/40

https://github.com/gokce-d/GraphonEpidemics

Outline

4. Two Examples of Extensions

Outline

4. Two Examples of Extensions
@ Solving Stackelberg MFG with Deep MKV FBSDE

Stackelberg MFG

MFG with a Stackelberg (leader-follower) structure:
@ A Principal chooses a policy A

@ A population of agents react and form a Nash equilibrium:

I (e,) :—E[/ F(Xes a0, pe; A1)t + g(Xr, pr; A(T)) |

@ This is an MFG parameterized by A

@ The resulting mean field flow j1* incurs a cost to the principal

P = / folt N At - go (b A(T))

Related works: Holmstrém-Milgrom (1987), Sannikov (2008, 2013), Djehiche-Helgesson (2014),
Cvitani¢ et al (2018), Carmona-Wang (2018), Elie et al (2019)
35/40

DL for Stackelberg MFG

Reminder:
@ MFG solution can be characterized using a MKV FBSDE system
@ This MKV FBSDE can be rewritten as a control problem
» 2 forward equations
» terminal cost
Stackelberg MFG:
@ The above terminal cost can be combined with the principal’s cost
@ We obtain an MFC problem [Elie et al., 2019]

@ From here we can apply the methods discussed previously

36/40

https://github.com/gokce-d/StackelbergMFG

DL for Stackelberg MFG

Reminder:
@ MFG solution can be characterized using a MKV FBSDE system
@ This MKV FBSDE can be rewritten as a control problem
» 2 forward equations
» terminal cost
Stackelberg MFG:
@ The above terminal cost can be combined with the principal’s cost

@ We obtain an MFC problem [Elie et al., 2019]

@ From here we can apply the methods discussed previously

For more details, see:

@ [Aurell et al., 2022b] with application to epidemics management (finite state
MFG): principal gives guidelines (social distancing, etc.) and population reacts

@ Code available ((Gokce Dayaniklr)):
https://github.com/gokce-d/StackelbergMFG
@ Extension to other Stackelberg MFGs: [Dayanikli and Lauriere, 2023]

@ Similarities with DA for mean field optimal transport [Baudelet et al., 2023]
36/40

https://github.com/gokce-d/StackelbergMFG

Outline

4. Two Examples of Extensions

@ Computing MFC Value Function with DBDP

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
o is a solution to the MFC problem if it minimizes

T
JMFC(a) =E [/ F(XE, ar, m)dt + g(X, m7)
0

Main difference with MFG: here not only X but m too is controlled by a.

37/40

Social optimum: Mean Field Control

Reminder from lecture 2 about mean field (type) control or control of McKean-Vlasov
(MKV) dynamics

Definition (Mean field control (MFC) problem)
o is a solution to the MFC problem if it minimizes

T
JMFC(a) =K [/ F(XE, ar, m)dt + g(X, m7)
0

Main difference with MFG: here not only X but m too is controlled by a.

Optimality conditions? Several approaches:

@ Dynamic programming value function depending on m; value function V/

@ Calculus of variations taking m as a state; adjoint state u

@ Pontryagin’s maximum principle for the (MKV process) X; adjoint state Y
Dynamic programming for MFC [Lauriere and Pironneau, 2014],
[Bensoussan et al., 2015], [Pham and Wei, 2017], [Djete et al., 2022], . ..

— Algorithm?
37/40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:
@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:
@ Version 1: Let (V;,, Z,,) = minimizer over (Y,,, Z,,) of:

E [1¥n11(Xnt1) = Yn(Xn) = £(tn, Xo, Yo (Xn), Z0 (X)) At = Zn(Xn) - AWpp1]

38/40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:
@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:
@ Version 1: Let (V;,, Z,,) = minimizer over (Y,,, Z,,) of:

E [1¥n11(Xnt1) = Yn(Xn) = £(tn, Xo, Yo (Xn), Z0 (X)) At = Zn(Xn) - AWpp1]

@ or Version 2: Let (Y, Z,,) = minimizer over (Yy, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = £(tn, Xn, Yo (Xn), 0| DaYn(Xn)AL = Do Yo (X0) T oAW1l

38/40

DBDP for Non-Mean Field Control

For standard (non-mean field) stochastic optimal control problems, [Huré et al., 2019]
have introduced the Deep Backward Dynamic Programming (DBDP):

Idea: learn Y,, and Z,, at each n as functions of X,,, backward in time:
@ Initialize Y, = g and then, for n = Nz — 1,...,0, either:
@ Version 1: Let (V;,, Z,,) = minimizer over (Y,,, Z,,) of:

E [1¥n11(Xnt1) = Yn(Xn) = £(tn, Xo, Yo (Xn), Z0 (X)) At = Zn(Xn) - AWpp1]

@ or Version 2: Let (Y, Z,,) = minimizer over (Yy, Z,) of:

E [1¥041(Xnt1) = Yn(Xn) = £(tn, Xn, Yo (Xn), 0| DaYn(Xn)AL = Do Yo (X0) T oAW1l

For more details on deep learning methods for (non-mean field) optimal control
problems, see e.g. [Germain et al., 2021b]

38/40

DBDP for MFC

@ Can we apply the same idea to MFC, replacing V' by a neural network?
@ Main challenge: the value function V takes m € P(R?) as an input

@ We need to approximate m

39/40

DBDP for MFC

Can we apply the same idea to MFC, replacing V' by a neural network?
Main challenge: the value function V takes m € P(R?) as an input
We need to approximate m

One possibility:
V(t,me) = V(t,my)~ Velt, X}, ..., X))

where Vj is a neural network which is symmetric with respect to the inputs
See the lecture 5 for more details

See [Germain et al., 2021a] for more details about the implementation and
[Germain et al., 2022] for the analysis

See also e.g. [Dayanikli et al., 2023] for different approximations of the
population (combined with direct approach instead of DBDP)

39/40

Outline

5. Conclusion

Summary

@ Two algorithms based on the stochastic approach

@ Direct approach without any optimality condition

@ DeepBSDE: recasting (MKV) FBSDEs as control problems

@ Many possible extensions and variations

@ Many open questions for mathematicians (proofs of approximation, rates of
convergence, ...)

@ Some surveys on DL for control/games:
[Germain et al., 2021b, Carmona and Lauriére, 2023, Hu and Lauriére, 2023]

Next lecture: deep learning methods for the PDE approach
40/40

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References |

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).
Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77—-109.

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136—1162.

[Achdou and Lasry, 2019] Achdou, Y. and Lasry, J.-M. (2019).
Mean field games for modeling crowd motion.
In Chetverushkin, B. N., Fitzgibbon, W., Kuznetsov, Y. A., Neittaanmaki, P., Periaux, J., and
Pironneau, O., editors, Contributions to Partial Differential Equations and Applications,
chapter 4, pages 17—42. Springer International Publishing.

[Achdou and Lauriére, 2016] Achdou, Y. and Lauriére, M. (2016).
Mean Field Type Control with Congestion (Il): An augmented Lagrangian method.
Appl. Math. Optim., 74(3):535-578.

[Agram et al., 2020] Agram, N., Bakdi, A., and Oksendal, B. (2020).
Deep learning and stochastic mean-field control for a neural network model.
Available at SSRN 3639022.

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657-682.

1/14

References Il

[Andreev, 2017a] Andreev, R. (2017a).
Preconditioning the augmented Lagrangian method for instationary mean field games with
diffusion.
SIAM J. Sci. Comput., 39(6):A2763—-A2783.

[Andreev, 2017b] Andreev, R. (2017b).
Preconditioning the augmented lagrangian method for instationary mean field games with
diffusion.
SIAM Journal on Scientific Computing, 39(6):A2763—A2783.

[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and
Carmona, R. (2019).
Cemracs 2017: numerical probabilistic approach to MFG.
ESAIM: ProcS, 65:84-113.

[Aurell et al., 2022a] Aurell, A., Carmona, R., Dayanikli, G., and Lauriere, M. (2022a).
Finite state graphon games with applications to epidemics.
Dynamic Games and Applications, 12(1):49-81.

[Aurell et al., 2022b] Aurell, A., Carmona, R., Dayanikli, G., and Lauriere, M. (2022b).
Optimal incentives to mitigate epidemics: a stackelberg mean field game approach.
SIAM Journal on Control and Optimization, 60(2):S294-S322.

2/14

References Il

[Balata et al., 2019] Balata, A., Huré, C., Lauriére, M., Pham, H., and Pimentel, I. (2019).
A class of finite-dimensional numerically solvable mckean-vlasov control problems.
ESAIM: Proceedings and Surveys, 65:114-144.

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Lauriere, M., Machtalay, A., and Zhu, Y. (2023).
Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.

[Bayraktar et al., 2018] Bayraktar, E., Budhiraja, A., and Cohen, A. (2018).
A numerical scheme for a mean field game in some queueing systems based on markov chain
approximation method.
SIAM Journal on Control and Optimization, 56(6):4017-4044.

[Benamou and Carlier, 2015] Benamou, J.-D. and Carlier, G. (2015).
Augmented lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations.
Journal of Optimization Theory and Applications, 167(1):1-26.

[Bensoussan et al., 2015] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2015).
The master equation in mean field theory.
J. Math. Pures Appl. (9), 103(6):1441-1474.

[Borkar, 2009] Borkar, V. S. (2009).
Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer.

3/14

References IV

[Bossy and Talay, 1997] Bossy, M. and Talay, D. (1997).
A stochastic particle method for the McKean-Vlasov and the Burgers equation.
Math. Comp., 66(217):157-192.

[Bottou, 2012] Bottou, L. (2012).
Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade: Second Edition, pages 421-436. Springer.

[Bourany, 2018] Bourany, T. (2018).
The wealth distribution over the business cycle, a mean field game with common noise.
Technical report, Technical report, Technical report, Paris Diderot University.

[Bricefo Arias et al., 2019] Bricefio Arias, L. M., Kalise, D., Kobeissi, Z., Lauriere, M.,
Mateos Gonzalez, A., and Silva, F. J. (2019).
On the implementation of a primal-dual algorithm for second order time-dependent mean field
games with local couplings.
ESAIM: ProcS, 65:330-348.

[Bricefo Arias et al., 2018] Bricefio Arias, L. M., Kalise, D., and Silva, F. J. (2018).
Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801-836.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

4/14

References V

[Calzola et al., 2022] Calzola, E., Carlini, E., and Silva, F. J. (2022).
A high-order lagrange-galerkin scheme for a class of fokker-planck equations and applications
to mean field games.
arXiv preprint arXiv:2207.08463.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.

[Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
A fully discrete semi-Lagrangian scheme for a first order mean field game problem.
SIAM J. Numer. Anal., 52(1):45-67.

[Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).
A semi-Lagrangian scheme for a degenerate second order mean field game system.
Discrete Contin. Dyn. Syst., 35(9):4269-4292.

[Carlini and Silva, 2018] Carlini, E. and Silva, F. J. (2018).
On the discretization of some nonlinear fokker—planck—kolmogorov equations and
applications.
SIAM Journal on Numerical Analysis, 56(4):2148-2177.

5/14

References VI

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Carmona et al., 2015] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk.
Commun. Math. Sci., 13(4):911-933.

[Carmona and Lacker, 2015] Carmona, R. and Lacker, D. (2015).
A probabilistic weak formulation of mean field games and applications.
Ann. Appl. Probab., 25(3):1189-1231.

[Carmona and Lauriere, 2021] Carmona, R. and Lauriére, M. (2021).
Convergence analysis of machine learning algorithms for the numerical solution of mean field
control and games i: The ergodic case.
SIAM Journal on Numerical Analysis, 59(3):1455-1485.

[Carmona and Lauriere, 2022] Carmona, R. and Lauriére, M. (2022).
Convergence analysis of machine learning algorithms for the numerical solution of mean field
control and games: li—the finite horizon case.
The Annals of Applied Probability, 32(6):4065—4105.

6/14

References VI

[Carmona and Lauriére, 2023] Carmona, R. and Lauriere, M. (2023).
Deep learning for mean field games and mean field control with applications to finance.
Machine Learning and Data Sciences for Financial Markets: A Guide to Contemporary
Practices, page 369.

[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019).
Numerical method for FBSDEs of McKean-Vlasov type.
Ann. Appl. Probab., 29(3):1640—1684.

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909—1917. PMLR.

[Cybenko, 1989] Cybenko, G. (1989).
Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303-314.

[Dayanikli and Lauriere, 2023] Dayanikli, G. and Lauriere, M. (2023).
A machine learning method for stackelberg mean field games.
arXiv preprint arXiv:2302.10440.

[Dayanikli et al., 2023] Dayanikli, G., Lauriere, M., and Zhang, J. (2023).
Deep learning for population-dependent controls in mean field control problems.
arXiv preprint arXiv:2306.04788.

7/14

References VIII

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).

A cubature based algorithm to solve decoupled mckean-vlasov forward—backward stochastic

differential equations.
Stochastic Processes and their Applications, 125(6):2206—2255.

[Després, 2022] Després, B. (2022).
Neural Networks and Numerical Analysis, volume 6.
Walter de Gruyter GmbH & Co KG.

[Djete et al., 2022] Djete, M. F., Possamai, D., and Tan, X. (2022).
Mckean—vlasov optimal control: the dynamic programming principle.
The Annals of Probability, 50(2):791-833.

[E etal, 2017] E, W., Han, J., and Jentzen, A. (2017).
Deep learning-based numerical methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations.
Commun. Math. Stat., 5(4):349-380.

[Elie et al., 2019] Elie, R., Mastrolia, T., and Possamai, D. (2019).
A tale of a principal and many, many agents.
Mathematics of Operations Research, 44(2):440-467.

[Fougue and Zhang, 2020] Fouque, J.-P. and Zhang, Z. (2020).
Deep learning methods for mean field control problems with delay.
Frontiers in Applied Mathematics and Statistics, 6:11.

8/14

References IX

[Germain et al., 2021a] Germain, M., Lauriere, M., Pham, H., and Warin, X. (2021a).
Deepsets and their derivative networks for solving symmetric pdes.
arXiv preprint arXiv:2103.00838.

[Germain et al., 2019] Germain, M., Mikael, J., and Warin, X. (2019).
Numerical resolution of mckean-vlasov fbsdes using neural networks.
arXiv preprint arXiv:1909.12678.

[Germain et al., 2021b] Germain, M., Pham, H., and Warin, X. (2021b).
Neural networks-based algorithms for stochastic control and pdes in finance.
arXiv preprint arXiv:2101.08068.

[Germain et al., 2022] Germain, M., Pham, H., and Warin, X. (2022).
Rate of convergence for particle approximation of pdes in wasserstein space.
Journal of Applied Probability, 59(4):992—1008.

[Gobet and Munos, 2005] Gobet, E. and Munos, R. (2005).
Sensitivity analysis using It6-Malliavin calculus and martingales, and application to stochastic
optimal control.
SIAM J. Control Optim., 43(5):1676—1713.

[Gomes and Saude, 2018] Gomes, D. A. and Salde, J. (2018).
Numerical methods for finite-state mean-field games satisfying a monotonicity condition.
Applied Mathematics & Optimization.

9/14

References X

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).
The hessian riemannian flow and newton’s method for effective hamiltonians and mather
measures.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883-1915.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep learning.
MIT press.

[Han and E, 2016] Han, J. and E, W. (2016).
Deep learning approximation for stochastic control problems.
Deep Reinforcement Learning Workshop, NIPS, arXiv preprint arXiv:1611.07422.

[Han et al., 2022] Han, J., Hu, R., and Long, J. (2022).
Convergence of deep fictitious play for stochastic differential games.
Frontiers of Mathematical Finance, 1(2):279-311.

[Han and Long, 2020] Han, J. and Long, J. (2020).
Convergence of the deep bsde method for coupled fbsdes.
Probability, Uncertainty and Quantitative Risk, 5:1-33.

[Hornik, 1991] Hornik, K. (1991).
Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251-257.

10/14

References Xl

[Hu, 2021] Hu, R. (2021).
Deep fictitious play for stochastic differential games.
Communications in Mathematical Sciences, 19(2):325-353.

[Hu and Lauriere, 2023] Hu, R. and Lauriere, M. (2023).
Recent developments in machine learning methods for stochastic control and games.
arXiv preprint arXiv:2303.10257.

[Huré et al., 2019] Huré, C., Pham, H., and Warin, X. (2019).
Some machine learning schemes for high-dimensional nonlinear pdes.
arXiv preprint arXiv:1902.01599, page 2.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[Kohlmann and Zhou, 2000] Kohlmann, M. and Zhou, X. Y. (2000).
Relationship between backward stochastic differential equations and stochastic controls: a
linear-quadratic approach.
SIAM Journal on Control and Optimization, 38(5):1392—1407.

[Lauriére and Pironneau, 2014] Lauriére, M. and Pironneau, O. (2014).
Dynamic programming for mean-field type control.
C. R. Math. Acad. Sci. Paris, 352(9):707—-713.

11/14

References XlI

[Lauriére and Pironneau, 2016] Lauriére, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902-924.

[Lauriere et al., 2023] Lauriere, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable
hamiltonians.
Applied Mathematics & Optimization, 87(2):17.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).
Generalized conditional gradient and learning in potential mean field games.
arXiv preprint arXiv:2209.12772.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015).
Deep learning.
nature, 521(7553):436—444.

[Leijnen and Veen, 2020] Leijnen, S. and Veen, F. v. (2020).
The neural network zoo.
In Proceedings, volume 47, page 9. MDPI.

[Liu et al., 2021] Liu, S., Jacobs, M., Li, W., Nurbekyan, L., and Osher, S. J. (2021).
Computational methods for first-order nonlocal mean field games with applications.
SIAM Journal on Numerical Analysis, 59(5):2639-2668.

12/14

References XllI

[Mhaskar and Micchelli, 1995] Mhaskar, H. N. and Micchelli, C. A. (1995).
Degree of approximation by neural and translation networks with a single hidden layer.
Advances in Applied Mathematics, 16:151-183.

[Mou et al., 2022] Mou, C., Yang, X., and Zhou, C. (2022).
Numerical methods for mean field games based on gaussian processes and fourier features.
Journal of Computational Physics, 460:111188.

[Nurbekyan et al., 2019] Nurbekyan, L. et al. (2019).
Fourier approximation methods for first-order nonlocal mean-field games.
Portugaliae Mathematica, 75(3):367-396.

[Pfeiffer, 2016] Pfeiffer, L. (2016).
Numerical methods for mean-field type optimal control problems.
Pure Appl. Funct. Anal., 1(4):629-655.

[Pham and Wei, 2017] Pham, H. and Wei, X. (2017).
Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics.
SIAM J. Control Optim., 55(2):1069-1101.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951).
A stochastic approximation method.
The annals of mathematical statistics, pages 400-407.

13/14

References XIV

[Salhab et al., 2015] Salhab, R., Malhamé, R. P,, and Le Ny, J. (2015).
A dynamic game model of collective choice in multi-agent systems.
In 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pages 4444—4449,
Osaka, Japon.

[Sannikov, 2008] Sannikov, Y. (2008).
A continuous-time version of the principal-agent problem.
The Review of Economic Studies, 75(3):957-984.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

14/14

	Introduction
	Deep Learning for MFC
	Deep learning for stochastic optimal control
	Adaptation to MFC

	Deep Learning for MKV FBSDE
	Two Examples of Extensions
	Solving Stackelberg MFG with Deep MKV FBSDE
	Computing MFC Value Function with DBDP

	Conclusion
	Appendix

