Numerical Methods for Mean Field Games

Lecture 5 Deep Learning Methods: Part II FBPDEs and Master equations

Mathieu LAURIÈRE

New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD, University Côte d'Azur, & GE2MI Open Doctoral Lectures July 5 – 7, 2023

2. Deep Galerkin Method for MFG PDEs

3. Master Equation

4. Conclusion

- Background on deep learning (DL)
- DL for MFC using a direct approach
- DL for MKV FBSDEs using a "shooting method"
- Extensions
- What about DL for the PDE approach to MFG/MFC?

2. Deep Galerkin Method for MFG PDEs

- Warm-up: ODE
- Solving MFG PDE system
- 3. Master Equation
- 4. Conclusion

2. Deep Galerkin Method for MFG PDEs

Warm-up: ODE

Solving MFG PDE system

3. Master Equation

4. Conclusion

Solving ODEs with Neural Networks

• Look for $\varphi : \mathbb{R} \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x),\varphi'(x),\dots) = 0, & x \in [a,b] \\ G(a,\varphi(a),\varphi'(a),\dots) = 0 \end{cases}$$

Solving ODEs with Neural Networks

• Look for
$$\varphi : \mathbb{R} \ni x \mapsto \varphi(x) \in \mathbb{R}$$
 s.t.
$$\begin{cases} F(x, \varphi(x), \varphi'(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi(a), \varphi'(a), \dots) = 0 \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x,\varphi_{\theta}(x),\varphi'_{\theta}(x),\dots) = 0, & x \in [a,b] \\ G(a,\varphi_{\theta}(a),\varphi'_{\theta}(a),\dots) = 0 \end{cases}$$

• Look for
$$\varphi : \mathbb{R} \ni x \mapsto \varphi(x) \in \mathbb{R}$$
 s.t.
$$\begin{cases} F(x, \varphi(x), \varphi'(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi(a), \varphi'(a), \dots) = 0 \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x, \varphi_{\theta}(x), \varphi'_{\theta}(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi_{\theta}(a), \varphi'_{\theta}(a), \dots) = 0 \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}([a,b])} \left[\left| F(X,\varphi_{\theta}(X),\varphi'_{\theta}(X),\dots) \right|^{2} \right] + \left| G(a,\varphi_{\theta}(a),\varphi'_{\theta}(a),\dots) \right|^{2}$$

• Look for
$$\varphi : \mathbb{R} \ni x \mapsto \varphi(x) \in \mathbb{R}$$
 s.t.
$$\begin{cases} F(x, \varphi(x), \varphi'(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi(a), \varphi'(a), \dots) = 0 \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x, \varphi_{\theta}(x), \varphi'_{\theta}(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi_{\theta}(a), \varphi'_{\theta}(a), \dots) = 0 \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}([a,b])} \left[\left| F(X,\varphi_{\theta}(X),\varphi'_{\theta}(X),\dots) \right|^{2} \right] + \left| G(a,\varphi_{\theta}(a),\varphi'_{\theta}(a),\dots) \right|^{2}$$

Use SGD

• Look for
$$\varphi : \mathbb{R} \ni x \mapsto \varphi(x) \in \mathbb{R}$$
 s.t.
$$\begin{cases} F(x, \varphi(x), \varphi'(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi(a), \varphi'(a), \dots) = 0 \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x, \varphi_{\theta}(x), \varphi'_{\theta}(x), \dots) = 0, & x \in [a, b] \\ G(a, \varphi_{\theta}(a), \varphi'_{\theta}(a), \dots) = 0 \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}([a,b])} \left[\left| F(X,\varphi_{\theta}(X),\varphi_{\theta}'(X),\dots) \right|^{2} \right] + \left| G(a,\varphi_{\theta}(a),\varphi_{\theta}'(a),\dots) \right|^{2}$$

- Use SGD
- Note: we solve and ODE without discretizing time!

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Application to the following ODE:

$$\begin{cases} F(x,\varphi(x),\varphi'(x)) = \varphi'(x) - (x - \varphi(x)), & x \in [0,5]\\ \varphi(0) = 1 \end{cases}$$

$$\varphi(x) = x - 1 + 2e^{-x}$$

Code

Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1pHAKlcRwpeMwzTFI7CcEi3NI5uo0cVqE?usp=sharing

ODE

Solved by DGM

2. Deep Galerkin Method for MFG PDEs

- Warm-up: ODE
- Solving MFG PDE system
- 3. Master Equation
- 4. Conclusion

• Look for $\varphi : \mathbb{R}^d \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x), D\varphi(x), D^{2}\varphi(x), \dots) = 0, & x \in \Omega\\ G(x,\varphi(x), D\varphi(x), D^{2}\varphi(x), \dots) = 0, & x \in \partial\Omega \end{cases}$$

• Look for $\varphi : \mathbb{R}^d \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\Omega\\ G(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\partial\Omega \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \Omega \\ G(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \partial\Omega \end{cases}$$

• Look for $\varphi : \mathbb{R}^d \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\Omega\\ G(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\partial\Omega \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \Omega\\ G(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \partial\Omega \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}(\Omega)} \left[|F(X, \varphi_{\theta}(X), D\varphi_{\theta}(X), D^{2}\varphi_{\theta}(X), \dots)|^{2} \right] \\ + \mathbb{E}_{Y \sim \mathcal{U}(\partial\Omega)} \left[|G(Y, \varphi_{\theta}(Y), D\varphi_{\theta}(Y), D^{2}\varphi_{\theta}(Y), \dots)|^{2} \right]$$

• Look for $\varphi : \mathbb{R}^d \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\Omega\\ G(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\partial\Omega \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \Omega\\ G(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \partial\Omega \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}(\Omega)} \left[|F(X, \varphi_{\theta}(X), D\varphi_{\theta}(X), D^{2}\varphi_{\theta}(X), \dots)|^{2} \right] \\ + \mathbb{E}_{Y \sim \mathcal{U}(\partial\Omega)} \left[|G(Y, \varphi_{\theta}(Y), D\varphi_{\theta}(Y), D^{2}\varphi_{\theta}(Y), \dots)|^{2} \right]$$

Use SGD

• Look for $\varphi : \mathbb{R}^d \ni x \mapsto \varphi(x) \in \mathbb{R}$ s.t.

$$\begin{cases} F(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\Omega\\ G(x,\varphi(x),D\varphi(x),D^{2}\varphi(x),\dots)=0, & x\in\partial\Omega \end{cases}$$

• Look among NN φ_{θ}

$$\begin{cases} F(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \Omega\\ G(x,\varphi_{\theta}(x), D\varphi_{\theta}(x), D^{2}\varphi_{\theta}(x), \dots) = 0, & x \in \partial\Omega \end{cases}$$

• Rephrase as minimization problem: minimizer over θ

$$L(\theta) = \mathbb{E}_{X \sim \mathcal{U}(\Omega)} \left[|F(X, \varphi_{\theta}(X), D\varphi_{\theta}(X), D^{2}\varphi_{\theta}(X), \dots)|^{2} \right] \\ + \mathbb{E}_{Y \sim \mathcal{U}(\partial\Omega)} \left[|G(Y, \varphi_{\theta}(Y), D\varphi_{\theta}(Y), D^{2}\varphi_{\theta}(Y), \dots)|^{2} \right]$$

Use SGD

DGM: Comments

Remarks on the implementation:

- Choice of distribution:
 - influences training and generalization
 - may depend on the problem (e.g., some regions are more important than others)
- Boundary conditions:
 - need to balance their importance with the PDE residual; can be challenging
 - can sometimes imposed by construction
- Higher order derivatives computation:
 - in principle, can be computed automatically but costly in high dimension
 - approximations are possible, see [Sirignano and Spiliopoulos, 2018] for an approximation of second order derivatives
- Choice of architecture:
 - in low dimension, feedforward fully connected networks work
 - in high dimension, they seem inefficient; [Sirignano and Spiliopoulos, 2018] proposed a specific architecture
- Other DL methods for PDEs e.g. [Raissi et al., 2019]

DGM Architecture

- Let $\overrightarrow{x} = (t, x)$ be the input
- Architecture: L + 1 hidden layers (\odot denotes element-wise multiplication):

$$\begin{split} S^{1} &= & \sigma(W^{1}\overrightarrow{x}+b^{1}), \\ Z^{\ell} &= & \sigma(U^{z,\ell}\overrightarrow{x}+W^{z,\ell}S^{\ell}+b^{z,\ell}), \quad \ell=1,\ldots,L, \\ G^{\ell} &= & \sigma(U^{g,\ell}\overrightarrow{x}+W^{g,\ell}S^{1}+b^{g,\ell}), \quad \ell=1,\ldots,L, \\ R^{\ell} &= & \sigma(U^{r,\ell}\overrightarrow{x}+W^{r,\ell}S^{\ell}+b^{r,\ell}), \quad \ell=1,\ldots,L, \\ H^{\ell} &= & \sigma(U^{h,\ell}\overrightarrow{x}+W^{h,\ell}(S^{\ell}\odot R^{\ell})+b^{h,\ell}), \quad \ell=1,\ldots,L, \\ S^{\ell+1} &= & (1-G^{\ell})\odot H^{\ell}+Z^{\ell}\odot S^{\ell}, \quad \ell=1,\ldots,L, \\ f(t,x;\theta) &= & WS^{L+1}+b, \end{split}$$

• The parameters are

$$\theta = \left\{ W^1, b^1, \left(U^{\alpha,\ell}, W^{\alpha,\ell}, b^{\alpha,\ell} \right)_{\ell=1,\ldots,L,\alpha \in \{z,g,r,h\}}, W, b \right\}.$$

• The number of units in each layer is M and $\sigma : \mathbb{R}^M \to \mathbb{R}^M$ is an element-wise nonlinearity:

$$\sigma(z) = \Big(\phi(z_1), \phi(z_2), \dots, \phi(z_M)\Big),$$

where $\phi : \mathbb{R} \to \mathbb{R}$ is a nonlinear activation function.

MFG PDE system

Reminder: (m, u) solving, on $[0, T] \times \mathbb{T}^d$,

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t,x) - \nu \Delta u(t,x) + H(x,m(t,\cdot),\nabla u(t,x)) \\ 0 = \frac{\partial m}{\partial t}(t,x) - \nu \Delta m(t,x) - \operatorname{div}\left(m(t,\cdot)\partial_{p}H(\cdot,m(t),\nabla u(t,\cdot))\right)(x) \\ u(T,x) = g(x,m(T,\cdot)), \qquad m(0,x) = m_{0}(x) \end{cases}$$

MFG PDE system

Reminder: (m, u) solving, on $[0, T] \times \mathbb{T}^d$,

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t,x) - \nu \Delta u(t,x) + H(x,m(t,\cdot),\nabla u(t,x)) \\ 0 = \frac{\partial m}{\partial t}(t,x) - \nu \Delta m(t,x) - \operatorname{div}\left(m(t,\cdot)\partial_{p}H(\cdot,m(t),\nabla u(t,\cdot))\right)(x) \\ u(T,x) = g(x,m(T,\cdot)), \qquad m(0,x) = m_{0}(x) \end{cases}$$

Or ergodic version: (m, u, λ) on \mathbb{T}^d

$$\begin{cases} 0 = -\nu\Delta u(x) + H(x, m(\cdot), \nabla u(x)) + \lambda \\ 0 = -\nu\Delta m(x) - \operatorname{div}\left(m(\cdot)\partial_p H(\cdot, m, \nabla u(\cdot))\right)(x) \\ \int u(x)dx = 0, \qquad \int m(x)dx = 1, m > 0 \end{cases}$$

See [Lasry and Lions, 2007], Chapter 7 in [Bensoussan et al., 2013]

MFG PDE system

Reminder: (m, u) solving, on $[0, T] \times \mathbb{T}^d$,

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t,x) - \nu \Delta u(t,x) + H(x,m(t,\cdot),\nabla u(t,x)) \\ 0 = \frac{\partial m}{\partial t}(t,x) - \nu \Delta m(t,x) - \operatorname{div}\left(m(t,\cdot)\partial_{p}H(\cdot,m(t),\nabla u(t,\cdot))\right)(x) \\ u(T,x) = g(x,m(T,\cdot)), \qquad m(0,x) = m_{0}(x) \end{cases}$$

Or ergodic version: (m, u, λ) on \mathbb{T}^d

$$\begin{cases} 0 = -\nu\Delta u(x) + H(x, m(\cdot), \nabla u(x)) + \lambda \\ 0 = -\nu\Delta m(x) - \operatorname{div}\left(m(\cdot)\partial_p H(\cdot, m, \nabla u(\cdot))\right)(x) \\ \int u(x)dx = 0, \qquad \int m(x)dx = 1, m > 0 \end{cases}$$

See [Lasry and Lions, 2007], Chapter 7 in [Bensoussan et al., 2013]

There are analogous PDE systems for MFC problems

Inspired by [Almulla et al., 2017]

Example

Ergodic MFC with explicit solution on \mathbb{T}^d . Take:

$$f(x, \boldsymbol{m}, \boldsymbol{\alpha}) = \frac{1}{2} |\boldsymbol{\alpha}|^2 + \tilde{f}(x) + \ln(\boldsymbol{m}(x)),$$

with

$$\tilde{f}(x) = 2\pi^2 \left[-\sum_{i=1}^d c \sin(2\pi x_i) + \sum_{i=1}^d |c \cos(2\pi x_i)|^2 \right] - 2\sum_{i=1}^d c \sin(2\pi x_i),$$

then the solution is given by

$$u(x) = c \sum_{i=1}^{d} \sin(2\pi x_i), \qquad m(x) = \frac{e^{2u(x)}}{\int e^{2u}}$$

Numerical Illustration 1: Ergodic Example with Explicit Solution

Numerical experiments in dimension d = 10

Error vs SGD iterations:

More details in [Carmona and Laurière, 2021a]

Example of MFG without explicit solution on \mathbb{T}^d inspired by [Achdou and Capuzzo-Dolcetta, 2010]

Example

Take:

$$f(x, \boldsymbol{m}, \boldsymbol{\alpha}) = \frac{1}{2} |\boldsymbol{\alpha}|^2 + \tilde{f}(x) + |\boldsymbol{m}(x)|^2,$$

with

$$\tilde{f}(x) = 2\pi^2 c \sum_{i=1}^d \left[\sin(2\pi x_i) + \cos(2\pi x_i)\right]$$

Numerical Illustration 2: Ergodic Example without Explicit Solution

Numerical experiments in dimension d = 30

PDE residuals (training loss) vs SGD iterations:

 ${\it L}^2$ norm of residuals for HJB and KFP

More details in [Carmona and Laurière, 2021a]

Code

Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1xqamOTOCw7LRVxCMo1TECGM7st6XeB0H?usp=sharing

- Ergodic mean field PDE system
- Solved by DGM

Example

Model of crowd trading by [Cardaliaguet and Lehalle, 2018]:

$$\begin{cases} dS_t^{\bar{\nu}} = \gamma \bar{\nu}_t dt + \sigma dW_t & (\text{price}) \\ dQ_t^{\alpha} = \alpha_t dt & (\text{player's inventory}) \\ dX_t^{\alpha,\bar{\nu}} = -\alpha_t (S_t^{\bar{\nu}} + \kappa \alpha_t) dt & (\text{player's wealth}) \end{cases}$$

Objective: given $(\bar{\nu}_t)_t$, maximize

$$\mathbb{E}\left[X_T^{\boldsymbol{\alpha},\bar{\nu}} + Q_T^{\boldsymbol{\alpha}}S_T^{\bar{\nu}} - A|Q_T^{\boldsymbol{\alpha}}|^2 - \phi \int_0^T |Q_t^{\boldsymbol{\alpha}}|^2 dt\right]$$

where: $\phi, A > 0 \Rightarrow$ penalty for holding inventory
Ansatz (see [Cartea and Jaimungal, 2016]):

$$V(t, x, s, q) = x + qsu(t, q), \quad \hat{\alpha}_t(q) = \frac{\partial_q u(t, q)}{2\kappa}$$

where $\boldsymbol{u}(\cdot)$ solves

$$-\gamma \bar{\nu}q = \partial_t u - \phi q^2 + \sup_{\alpha} \{ \frac{\alpha}{2} \partial_q u - \kappa \alpha^2 \}, \qquad u(T,q) = -Aq^2$$

Ansatz (see [Cartea and Jaimungal, 2016]):

$$V(t,x,s,q) = x + qsu(t,q), \quad \hat{lpha}_t(q) = rac{\partial_q u(t,q)}{2\kappa}$$

where $u(\cdot)$ solves

$$-\gamma \bar{\nu}q = \partial_t u - \phi q^2 + \sup_{\alpha} \{\alpha \partial_q u - \kappa \alpha^2\}, \qquad u(T,q) = -Aq^2$$

Mean field term: at equilibrium

$$\bar{\nu}_t = \int \hat{\alpha}_t(q) \hat{m}(t, dq) = \int \frac{\partial_q \hat{u}(t, q)}{2\kappa} \hat{m}(t, dq),$$

where \hat{m} solves the KFP equation:

$$m(0,\cdot) = m_0, \qquad \partial_t m + \partial_q \left(m \frac{\partial_q \hat{u}(t,q)}{2\kappa} \right) = 0$$

Reduced forward-backward PDE system:

$$\begin{cases} 0 = -\partial_t u(t,q) + \phi q^2 - \frac{|\partial_q u(t,q)|^2}{4\kappa} = \gamma \bar{\nu}_t q \\ 0 = \partial_t m(t,q) + \partial_q \left(m(t,q) \frac{\partial_q u(t,q)}{2\kappa} \right) \\ \bar{\nu}_t = \int \frac{\partial_q u(t,q)}{2\kappa} m(t,q) dq \\ m(0,\cdot) = m_0, u(T,q) = -Aq^2. \end{cases}$$

Note: the interactions are through the action distribution \Rightarrow yields a non-local term involving both u and m

It can be estimated e.g. by Monte Carlo samples (for a fixed t, sample various q)

[Al-Aradi et al., 2019] applied DGM to this model.

The results presented below are from [Carmona and Laurière, 2021b]

Numerical Illustration 3: Crowd Trading

Numerical results by DGM versus ODE solution Evolution of m:

More details in [Carmona and Laurière, 2021b]

Numerical results by DGM versus ODE solution

Evolution of equilibrium control $\hat{\alpha}$:

More details in [Carmona and Laurière, 2021b]

- Convergence of DGM discussed in [Sirignano and Spiliopoulos, 2018]
 - By density, there exists a sequence of NN which approximates the solution and minimizes the DGM loss
 - Conversely, if the DGM loss is small, then the NN is close to the solution
- Similar analysis is possible for MFGs, see e.g. [Luo and Zheng, 2022]
- Variations and improvements, see e.g. [Reisinger et al., 2021]
- Obtaining (good) rates of convergence is challenging, even just for the approximation error
- Understanding the full generalization error remains challenging
- Application to other settings, e.g. mean field optimal transport [Baudelet et al., 2023], and the finite-state master equation (next section)

1. Introduction

2. Deep Galerkin Method for MFG PDEs

3. Master Equation

- Master Equation for Finite State MFG
- Master Bellman PDE of MFC

4. Conclusion

- Reminder: equilibrium: $(u, \mu) = \text{sol. starting with } m_0 \text{ at } t = 0$
- Idea: express the value function of a typical player as $u(t, x) = U(t, x, \mu_t)$

- Reminder: equilibrium: $(u, \mu) = \text{sol. starting with } m_0 \text{ at } t = 0$
- Idea: express the value function of a typical player as $u(t, x) = U(t, x, \mu_t)$
- Value function U: PDE on the Wasserstein space

- Reminder: equilibrium: $(u, \mu) = \text{sol. starting with } m_0 \text{ at } t = 0$
- Idea: express the value function of a typical player as $u(t, x) = \mathcal{U}(t, x, \mu_t)$
- Value function U: PDE on the Wasserstein space
- Motivations:
 - ► Convergence of *N*-player games, large deviation principles, ...
 - Unknown initial distribution µ0
 - Macroscopic shocks, common noise
- From a practical viewpoint, if we know U, then we know the optimal behavior of a representative player for **any** current distribution

- Reminder: equilibrium: $(u, \mu) = \text{sol. starting with } m_0 \text{ at } t = 0$
- Idea: express the value function of a typical player as $u(t, x) = U(t, x, \mu_t)$
- Value function U: PDE on the Wasserstein space
- Motivations:
 - ► Convergence of *N*-player games, large deviation principles, ...
 - Unknown initial distribution μ₀
 - Macroscopic shocks, common noise
- From a practical viewpoint, if we know \mathcal{U} , then we know the optimal behavior of a representative player for **any** current distribution
- How can we compute U?

1. Introduction

2. Deep Galerkin Method for MFG PDEs

3. Master Equation

Master Equation for Finite State MFG

Master Bellman PDE of MFC

4. Conclusion

Finite state MFG:

- Finite state space \mathcal{X}
- $\bullet \ \mu \in \Delta^{|\mathcal{X}|}$
- $\dot{\mu}_t = \mu_t Q(\mu_t), Q = \text{transition rate matrix}$

Finite state MFG:

- Finite state space X
- $\mu \in \Delta^{|\mathcal{X}|}$
- $\dot{\mu}_t = \mu_t Q(\mu_t), Q = \text{transition rate matrix}$

Master PDE for \mathcal{U} :

$$\begin{cases} \mathcal{U}(T, x, \mu) = g(x, \mu) \\ -\partial_t \mathcal{U}(t, x, \mu) = \underbrace{H^*(t, x, \mu, \mathcal{U}(t, \cdot, \mu))}_{\text{Hamiltonian}} + \sum_{x' \in \mathcal{X}} \underbrace{\bar{\mathcal{Q}}^*(t, \mu, \mathcal{U}(t, \cdot, \mu))(x')}_{\text{avg transition}} \underbrace{\frac{\partial \mathcal{U}(t, \cdot, \mu)}{\partial \mu(x')}}_{\text{classical deriv.}} \end{cases}$$

for $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$

Finite state MFG:

- Finite state space \mathcal{X}
- $\bullet \ \mu \in \Delta^{|\mathcal{X}|}$
- $\dot{\mu}_t = \mu_t Q(\mu_t)$, Q = transition rate matrix

Master PDE for U:

$$\begin{cases} \mathcal{U}(T, x, \mu) = g(x, \mu) \\ -\partial_t \mathcal{U}(t, x, \mu) = \underbrace{H^*(t, x, \mu, \mathcal{U}(t, \cdot, \mu))}_{\text{Hamiltonian}} + \sum_{x' \in \mathcal{X}} \underbrace{\bar{Q}^*(t, \mu, \mathcal{U}(t, \cdot, \mu))(x')}_{\text{avg transition}} \underbrace{\frac{\partial \mathcal{U}(t, \cdot, \mu)}{\partial \mu(x')}}_{\text{classical deriv.}} \end{cases}$$

for $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$

Numerical solution using the DGM described above

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

- State space: $\mathcal{X} = \{DI, DS, UI, US\}$
 - defended/unprotected
 - infected/susceptible
- Actions: want to switch level of protection; event happens at rate $\alpha\lambda$
 - $\alpha = 1$ (want to switch level of protection)
 - or (happy)
- Time: continuous time, finite time horizon T

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

- State space: $\mathcal{X} = \{DI, DS, UI, US\}$
 - defended/unprotected
 - infected/susceptible
- Actions: want to switch level of protection; event happens at rate $\alpha\lambda$
 - $\alpha = 1$ (want to switch level of protection)
 - or <mark>()</mark> (happy)
- Time: continuous time, finite time horizon T
- Mean field interactions: more infected units ⇒ higher infection rate

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

• State space: $\mathcal{X} = \{DI, DS, UI, US\}$

- defended/unprotected
- infected/susceptible
- Actions: want to switch level of protection; event happens at rate $\alpha\lambda$
 - $\alpha = 1$ (want to switch level of protection)

or (happy)

- Time: continuous time, finite time horizon T
- Mean field interactions: more infected units ⇒ higher infection rate

$$\dot{\mu}(t) = \mu(t) \underbrace{\begin{pmatrix} & \dots & q_{\rm rec}^D & \alpha\lambda & 0\\ q_{\rm inf}^D + \beta_{\rm D}(\mu_{DI}(t) + \mu_{UI}(t)) & \dots & 0 & \alpha\lambda\\ & \alpha\lambda & 0 & \dots & q_{\rm rec}^U\\ & 0 & \alpha\lambda & q_{\rm inf}^U + \beta_{\rm U}(\mu_{UI}(t) + \mu_{DI}(t)) & \dots \end{pmatrix}}_{\text{transition rates}}$$

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

• State space: $\mathcal{X} = \{DI, DS, UI, US\}$

- defended/unprotected
- infected/susceptible
- Actions: want to switch level of protection; event happens at rate $\alpha\lambda$
 - $\alpha = 1$ (want to switch level of protection)

or <mark>0</mark> (happy)

- Time: continuous time, finite time horizon T
- Mean field interactions: more infected units ⇒ higher infection rate

Running cost:

 $k_D 1_{\{DI,DS\}} + k_I 1_{\{DI,UI\}} = \text{ cost of defense + penalty for being infected}$

• Terminal cost: 0

We apply the DGM. See [Laurière, 2021] for more details.

- Neural network: \mathcal{U}_{θ} to approximate \mathcal{U}
- Samples: Pick points $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$
- Loss: PDE residual + terminal condition

Comparison:

- $\mathcal{U}_{\theta}(t, x, \mu(t, \cdot))$
- $\mu(t, x)$, u(t, x): finite state space \rightarrow forward-backward ODE system

We apply the DGM. See [Laurière, 2021] for more details.

- Neural network: \mathcal{U}_{θ} to approximate \mathcal{U}
- Samples: Pick points $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$
- Loss: PDE residual + terminal condition

Comparison:

- $\mathcal{U}_{\theta}(t, x, \mu(t, \cdot))$
- $\mu(t, x)$, u(t, x): finite state space \rightarrow forward-backward ODE system

Test 1: $m_0 = (1/4, 1/4, 1/4, 1/4)$

We apply the DGM. See [Laurière, 2021] for more details.

- Neural network: \mathcal{U}_{θ} to approximate \mathcal{U}
- Samples: Pick points $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$
- Loss: PDE residual + terminal condition

Comparison:

- $\mathcal{U}_{\theta}(t, x, \mu(t, \cdot))$
- $\mu(t, x)$, u(t, x): finite state space \rightarrow forward-backward ODE system

Test 2: $m_0 = (1, 0, 0, 0)$

We apply the DGM. See [Laurière, 2021] for more details.

- Neural network: \mathcal{U}_{θ} to approximate \mathcal{U}
- Samples: Pick points $(t, x, \mu) \in [0, T] \times \mathcal{X} \times \Delta^{|\mathcal{X}|}$
- Loss: PDE residual + terminal condition

Comparison:

- $\mathcal{U}_{\theta}(t, x, \mu(t, \cdot))$
- $\mu(t, x)$, u(t, x): finite state space \rightarrow forward-backward ODE system

Test 3: $m_0 = (0, 0, 0, 1)$

Example 2: Entropic solution

Example of a 2-state MFG [Cecchin et al., 2019] with

- multiple solutions to the master equation
- a unique one is an entropic solution

More details in [Laurière, 2021], section 7.2

Some ongoing works:

- Analysis of the DGM convergence for finite-state master equation (ongoing work with Asaf Cohen and Ethan Zell)
- Application to (continuous space) macroeconomic models, joint work with Jonathan Payne and Sebastian Merkel. Working draft on Jonathan's webpage.

1. Introduction

2. Deep Galerkin Method for MFG PDEs

3. Master Equation

- Master Equation for Finite State MFG
- Master Bellman PDE of MFC

4. Conclusion

• MFC problem in continuous space with common noise:

$$J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\int_0^T f(X_t, \mathbb{P}^0_{X_t}, \boldsymbol{\alpha}_t) dt + g(X_T, \mathbb{P}^0_{X_T})\bigg].$$

subj. to: $dX_t = b(X_t, \mathbb{P}^0_{X_t}, \alpha_t)dt + \sigma dW_t + \sigma_0 dW_t^0$, where $\mathbb{P}^0_{X_t}$ = conditional law of X_t given the common noise W^0

Master Bellman Equation for MFC

• MFC problem in continuous space with common noise:

$$J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\int_0^T f(X_t, \mathbb{P}^0_{X_t}, \boldsymbol{\alpha}_t) dt + g(X_T, \mathbb{P}^0_{X_T})\bigg].$$

subj. to: $dX_t = b(X_t, \mathbb{P}^0_{X_t}, \alpha_t)dt + \sigma dW_t + \sigma_0 dW_t^0$, where $\mathbb{P}^0_{X_t}$ = conditional law of X_t given the common noise W^0

• Master Bellman equation in the Wasserstein space $\mathcal{P}_2(\mathbb{R}^d)$:

$$\begin{cases} \partial_t V + \mathcal{F}(\mu, V, \partial_\mu V, \partial_x \partial_\mu V, \partial_\mu^2 V) = 0, & (t, \mu) \in [0, T) \in \mathcal{P}_2(\mathbb{R}^d) \\ V(T, \mu) = \mathcal{G}(\mu), & \mu \in \mathcal{P}_2(\mathbb{R}^d), \end{cases}$$

where:

<

• MFC problem in continuous space with common noise:

$$J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\int_0^T f(X_t, \mathbb{P}^0_{X_t}, \boldsymbol{\alpha}_t) dt + g(X_T, \mathbb{P}^0_{X_T})\bigg].$$

subj. to: $dX_t = b(X_t, \mathbb{P}^0_{X_t}, \alpha_t)dt + \sigma dW_t + \sigma_0 dW_t^0$, where $\mathbb{P}^0_{X_t}$ = conditional law of X_t given the common noise W^0

• Master Bellman equation in the Wasserstein space $\mathcal{P}_2(\mathbb{R}^d)$:

$$\begin{cases} \partial_t V + \mathcal{F}(\mu, V, \partial_\mu V, \partial_x \partial_\mu V, \partial_\mu^2 V) = 0, & (t, \mu) \in [0, T) \in \mathcal{P}_2(\mathbb{R}^d) \\ V(T, \mu) = \mathcal{G}(\mu), & \mu \in \mathcal{P}_2(\mathbb{R}^d), \end{cases}$$

where:

∂_µV(µ)(.): ℝ^d → ℝ^d, ∂_x∂_µV(µ)(.): ℝ^d → S^d, ∂²_µV(µ)(.,.): ℝ^d × ℝ^d → S^d, are the *L*-derivatives of *V* on P₂(ℝ^d) (see [Carmona and Delarue, 2018], Chapter 5)
and

$$\begin{split} \mathcal{F}(\mu, y, Z(.), \Gamma(.), \Gamma_0(., .)) &= \int_{\mathbb{R}^d} h(x, \mu, Z(x), \Gamma(x)) \mu(dx) \ + \ \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{2} \mathrm{tr} \Big(\sigma_0 \sigma_0^\mathsf{T} \Gamma_0(x, x') \Big) \mu(dx) \mu(dx'), \\ \mathcal{G}(\mu) &= \int_{\mathbb{R}^d} g(x, \mu) \mu(dx), \\ h(x, \mu, z, \gamma) &= \inf_{a \in A} \left[b(x, \mu, a) . z + \frac{1}{2} \mathrm{tr} \Big(\sigma \sigma^\mathsf{T} \gamma \Big) + \ f(x, \mu, a) \right]. \end{split}$$

Symmetric Neural Networks

- How can we solve the Bellman PDE and compute V?
- Idea: approximate V by a NN and use backward induction
- Challenge: How can we represent μ and input it to the neural network?

Symmetric Neural Networks

- How can we solve the Bellman PDE and compute V?
- Idea: approximate V by a NN and use backward induction
- Challenge: How can we represent μ and input it to the neural network?

• Connection between N-agents problem and MFC: $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$

$$v^{N}(t, x, x^{1}, \dots, x^{N}) = V^{N}(t, x, \mu^{N}) \xrightarrow[N \to +\infty]{} V(t, x, \mu^{N})$$

• Approximate $V(t, x, \cdot)$ by a **symmetric** function of N inputs (N large)

Symmetric Neural Networks

- How can we solve the Bellman PDE and compute V?
- Idea: approximate V by a NN and use backward induction
- Challenge: How can we represent μ and input it to the neural network?

• Connection between N-agents problem and MFC: $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$

$$v^{N}(t, x, x^{1}, \dots, x^{N}) = V^{N}(t, x, \mu^{N}) \xrightarrow[N \to +\infty]{} V(t, x, \mu^{N})$$

• Approximate $V(t, x, \cdot)$ by a **symmetric** function of N inputs (N large)

Symmetric Neural Networks:

Symmetry by construction; e.g. with a sum:

$$(x^i)_{i=1,\dots,N} \mapsto \sum_{i=1}^N \psi_\omega(x^i) \mapsto \varphi_\theta\left(\sum_{i=1}^N \psi_\omega(x^i)\right)$$

DeepSets [Zaheer et al., 2017], PointNet [Qi et al., 2017], …

Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN [Germain et al., 2021a]

- Symmetric NN: $\mathcal{V}(t, x^1, \dots, x^N)$
- D-Symmetric NN: sym. except in one space variable:

$$\mathcal{Z}(x^1, \dots, x^N, x^i) \leftrightarrow \partial_{x^i} \mathcal{V}(x^1, \dots, x^N) = \frac{1}{N} \partial_\mu \mathcal{V}\left(\frac{1}{N} \sum_j x^j\right)(x^i)$$

$$\begin{split} \hline \mathbf{Output:} \ (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n)_{n=0,...,N_T} \ \text{s.t.} \ \widehat{\mathcal{V}}_n(\underline{x}) \approx V(t_n, \mu_{\underline{x}}^N) \ , \\ \widehat{\mathcal{Z}}_n(\underline{x}, x^i) \approx \frac{1}{N} \partial_{\mu} V(t_n, \mu_{\underline{x}}^N)(x^i) \\ \text{1 Set } \widehat{\mathcal{V}}_{N_T}(\cdot) = G(\cdot) \\ \text{2 for } n = N_T - 1, N_T - 2, \dots, 1, 0 \ \text{do} \\ \text{3 Compute } (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n) \ \text{as a minimizer of:} \\ (\mathcal{V}_n, \mathcal{Z}_n) \mapsto \mathbb{E} \left| \widehat{\mathcal{V}}_{n+1}(\mathbf{X}_{n+1}) - \mathcal{V}_n(\mathbf{X}_n) + H(t_n, \mathbf{X}_n, \mathcal{V}_n(\mathbf{X}_n), \mathbf{Z}_n(\mathbf{X}_n)) \Delta t \right. \\ \left. - \sum_{i=1}^N \sum_{j=0}^N \left(\mathcal{Z}_n(\mathbf{X}_n, X_n^i) \right)^\intercal \sigma_{ij} \Delta W_n^j \right|^2, \\ \text{where } \widehat{\mathcal{V}}_n \ \text{is a sym. NN, } \widehat{\mathcal{Z}}_n \ \text{is a D-sym. NN, } H = \text{sym. version of } h \\ \text{4 return } (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n)_{n=0,\dots,N_T} \end{split}$$

Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN [Germain et al., 2021a]

- Symmetric NN: $\mathcal{V}(t, x^1, \dots, x^N)$
- D-Symmetric NN: sym. except in one space variable:

$$\mathcal{Z}(x^1, \dots, x^N, x^i) \leftrightarrow \partial_{x^i} \mathcal{V}(x^1, \dots, x^N) = \frac{1}{N} \partial_\mu \mathcal{V}\left(\frac{1}{N} \sum_j x^j\right)(x^i)$$

$$\begin{array}{c} \hline \mathbf{Output:} \ (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n)_{n=0,...,N_T} \ \text{s.t.} \ \widehat{\mathcal{V}}_n(\underline{x}) \approx V(t_n, \mu_{\underline{x}}^N) \ , \\ \widehat{\mathcal{Z}}_n(\underline{x}, x^i) \approx \frac{1}{N} \partial_{\mu} V(t_n, \mu_{\underline{x}}^N)(x^i) \\ \text{set} \ \widehat{\mathcal{V}}_{N_T}(\cdot) = G(\cdot) \\ \text{s for } n = N_T - 1, N_T - 2, \ldots, 1, 0 \ \text{do} \\ \text{Compute } (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n) \ \text{as a minimizer of:} \\ (\mathcal{V}_n, \mathcal{Z}_n) \mapsto \mathbb{E} \left| \widehat{\mathcal{V}}_{n+1}(\mathbf{X}_{n+1}) - \mathcal{V}_n(\mathbf{X}_n) + H(t_n, \mathbf{X}_n, \mathcal{V}_n(\mathbf{X}_n), \mathbf{Z}_n(\mathbf{X}_n)) \Delta t \\ & - \sum_{i=1}^N \sum_{j=0}^N \left(\mathcal{Z}_n(\mathbf{X}_n, X_n^i) \right)^\intercal \sigma_{ij} \Delta W_n^j \Big|^2, \\ \text{where } \ \widehat{\mathcal{V}}_n \ \text{is a sym. NN, } \ \widehat{\mathcal{Z}}_n \ \text{is a D-sym. NN, } H = \text{sym. version of } h \\ \text{a return } (\widehat{\mathcal{V}}_n, \widehat{\mathcal{Z}}_n)_{n=0,...,N_T} \end{array}$$

See [Germain et al., 2021a] for numerical results and more details about the implementation, and [Germain et al., 2022] for the analysis

1. Introduction

2. Deep Galerkin Method for MFG PDEs

3. Master Equation

4. Conclusion

- Deep Galerkin Method principle
 - Application to solve FB PDE system
 - Application to solve finite-state Master equations
- Deep Backward Dynamic Programming & symmetric NN
 - Application to compute the value function of MFC
- Many open questions for mathematicians (proofs of approximation, rates of convergence, ...)
The presentation in this lecture and the previous one is not exhaustive. Other works, such as: [Ruthotto et al., 2020], and works on the connection between (variational) MFGs and Generative Adversarial Networks (GANs) [Cao et al., 2020], [Lin et al., 2020].

Surveys on deep learning for:

- PDEs [Beck et al., 2020]
- Stochastic control and PDEs in finance: [Germain et al., 2021b]
- Stochastic control and games: [Hu and Laurière, 2023]

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM J. Numer. Anal., 48(3):1136–1162.

[Al-Aradi et al., 2019] Al-Aradi, A., Correia, A., Naiff, D. d. F., Jardim, G., and Saporito, Y. (2019). Applications of the deep galerkin method to solving partial integro-differential and hamilton-jacobi-bellman equations.

arXiv preprint arXiv:1912.01455.

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017). Two numerical approaches to stationary mean-field games. *Dyn. Games Appl.*, 7(4):657–682.

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023). Deep learning for mean field optimal transport. arXiv preprint arXiv:2302.14739.

[Beck et al., 2020] Beck, C., Hutzenthaler, M., Jentzen, A., and Kuckuck, B. (2020). An overview on deep learning-based approximation methods for partial differential equations. arXiv preprint arXiv:2012.12348.

[Bensoussan et al., 2013] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2013). Mean field games and mean field type control theory. Springer Briefs in Mathematics. Springer, New York. [Cao et al., 2020] Cao, H., Guo, X., and Laurière, M. (2020). Connecting GANs, MFGs, and OT. *arXiv preprint arXiv:2002.04112.*

[Cardaliaguet and Lehalle, 2018] Cardaliaguet, P. and Lehalle, C.-A. (2018). Mean field game of controls and an application to trade crowding. *Mathematics and Financial Economics*, 12(3):335–363.

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018). Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory and Stochastic Modelling.

Springer, Cham. Mean field FBSDEs, control, and games.

[Carmona and Laurière, 2021a] Carmona, R. and Laurière, M. (2021a).

Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games i: The ergodic case.

SIAM Journal on Numerical Analysis, 59(3):1455–1485.

[Carmona and Laurière, 2021b] Carmona, R. and Laurière, M. (2021b). Deep learning for mean field games and mean field control with applications to finance. *arXiv preprint arXiv:2107.04568.* [Cartea and Jaimungal, 2016] Cartea, Á. and Jaimungal, S. (2016). Incorporating order-flow into optimal execution. Mathematics and Financial Economics, 10(3):339–364.

[Cecchin et al., 2019] Cecchin, A., Pra, P. D., Fischer, M., and Pelino, G. (2019). On the convergence problem in mean field games: a two state model without uniqueness. *SIAM Journal on Control and Optimization*, 57(4):2443–2466.

 [Domingo-Enrich et al., 2020] Domingo-Enrich, C., Jelassi, S., Mensch, A., Rotskoff, G., and Bruna, J. (2020).
A mean-field analysis of two-player zero-sum games. arXiv preprint arXiv:2002.06277.

[Germain et al., 2021a] Germain, M., Laurière, M., Pham, H., and Warin, X. (2021a). Deepsets and their derivative networks for solving symmetric pdes. *arXiv preprint arXiv:2103.00838*.

[Germain et al., 2021b] Germain, M., Pham, H., and Warin, X. (2021b). Neural networks-based algorithms for stochastic control and pdes in finance. *arXiv preprint arXiv:2101.08068*.

[Germain et al., 2022] Germain, M., Pham, H., and Warin, X. (2022). Rate of convergence for particle approximation of pdes in wasserstein space. *Journal of Applied Probability*, 59(4):992–1008. [Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets

Advances in neural information processing systems, 27.

[Hu and Laurière, 2023] Hu, R. and Laurière, M. (2023). Recent developments in machine learning methods for stochastic control and games. *arXiv preprint arXiv:2303.10257.*

[Karras et al., 2020] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020).

Analyzing and improving the image quality of stylegan.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119.

[Kolokoltsov and Bensoussan, 2016] Kolokoltsov, V. N. and Bensoussan, A. (2016). Mean-field-game model for botnet defense in cyber-security. *Appl. Math. Optim.*, 74(3):669–692.

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. *Jpn. J. Math.*, 2(1):229–260.

[Laurière, 2021] Laurière, M. (2021).

Numerical methods for mean field games and mean field type control. *arXiv preprint arXiv:2106.06231*.

[Lin et al., 2020] Lin, A. T., Fung, S. W., Li, W., Nurbekyan, L., and Osher, S. J. (2020). Apac-net: Alternating the population and agent control via two neural networks to solve high-dimensional stochastic mean field games.

arXiv preprint arXiv:2002.10113.

[Luo and Zheng, 2022] Luo, J. and Zheng, H. (2022). Deep neural network solution for finite state mean field game with error estimation. *Dynamic Games and Applications*, pages 1–38.

[Qi et al., 2017] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017).
Pointnet: Deep learning on point sets for 3d classification and segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660.

[Raissi et al., 2019] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707. [Reisinger et al., 2021] Reisinger, C., Stockinger, W., and Zhang, Y. (2021).

A fast iterative pde-based algorithm for feedback controls of nonsmooth mean-field control problems.

arXiv preprint arXiv:2108.06740.

[Ruthotto et al., 2020] Ruthotto, L., Osher, S. J., Li, W., Nurbekyan, L., and Fung, S. W. (2020). A machine learning framework for solving high-dimensional mean field game and mean field control problems.

Proceedings of the National Academy of Sciences, 117(17):9183–9193.

[Sirignano and Spiliopoulos, 2018] Sirignano, J. and Spiliopoulos, K. (2018). DGM: a deep learning algorithm for solving partial differential equations. *J. Comput. Phys.*, 375:1339–1364.

 [Zaheer et al., 2017] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola, A. (2017).
Deep sets.
arXiv preprint arXiv:1703.06114.

5. Link with Generative Adversarial Networks

Examples

thispersondoesnotexist.com

thiscatdoesnotexist.com

thispersondoesnotexist.com

thiscatdoesnotexist.com

[Karras et al., 2020]

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data}

Given: samples from data, and random noise generator p_z over some space Z

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data}

Given: samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data}

Given: samples from data, and random noise generator p_z over some space Z

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

[Goodfellow et al., 2014]

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data}

Given: samples from data, and random noise generator p_z over some space Z

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

[Goodfellow et al., 2014]

NVIDIA'19

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data} **Given:** samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Idea++: also learn $D: \mathcal{X} \to \mathbb{R}$ to distinguish between samples from $p_z \circ G^{-1}$ and p_{data}

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data} **Given:** samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Idea++: also learn $D: \mathcal{X} \to \mathbb{R}$ to distinguish between samples from $p_z \circ G^{-1}$ and p_{data}

Mathematically: min-max game between two neural networks D_{δ}, G_{γ} (params: δ, γ)

$$\min_{\gamma} \max_{\delta} \left\{ \mathbb{E}_{x \sim \mathbb{P}_r} [\log D_{\delta}(x)] + \mathbb{E}_{z \sim \mathbb{P}_z} [\log(1 - D_{\delta}(G_{\gamma}(z)))] \right\}.$$

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data} **Given:** samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Idea++: also learn $D: \mathcal{X} \to \mathbb{R}$ to distinguish between samples from $p_z \circ G^{-1}$ and p_{data}

Mathematically: min-max game between two neural networks D_{δ}, G_{γ} (params: δ, γ)

$$\min_{\gamma} \max_{\delta} \bigg\{ \mathbb{E}_{x \sim \mathbb{P}_r} [\log \mathcal{D}_{\delta}(x)] + \mathbb{E}_{z \sim \mathbb{P}_z} [\log(1 - \mathcal{D}_{\delta}(G_{\gamma}(z)))] \bigg\}.$$

 $\text{Variational MFG:} \inf_{\substack{u:[0,T]\times\mathbb{R}^d\to\mathbb{R}}} \quad \sup_{m:[0,T]\times\mathbb{R}^d\to\mathbb{R}} \Phi(m,u), \text{ where }$

$$\Phi(m,u) = \int_0^T \int_{\mathbb{T}^d} \left[m(-\partial_t u - \epsilon \Delta_x u) + mH(x, \nabla_x u, m) \right] dx dt + \int_{\mathbb{T}^d} \left[m(T)u(T) - m_0 u(0) \right] dx dt$$

4

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data} **Given:** samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Idea++: also learn $D: \mathcal{X} \to \mathbb{R}$ to distinguish between samples from $p_z \circ G^{-1}$ and p_{data}

Mathematically: min-max game between two neural networks D_{δ}, G_{γ} (params: δ, γ)

$$\min_{\gamma} \max_{\delta} \bigg\{ \mathbb{E}_{x \sim \mathbb{P}_r} [\log \mathcal{D}_{\delta}(x)] + \mathbb{E}_{z \sim \mathbb{P}_z} [\log(1 - \mathcal{D}_{\delta}(G_{\gamma}(z)))] \bigg\}.$$

 $\text{Variational MFG:} \inf_{\substack{u:[0,T]\times\mathbb{R}^d\to\mathbb{R}}} \quad \sup_{m:[0,T]\times\mathbb{R}^d\to\mathbb{R}} \Phi(m,u), \text{ where }$

$$\Phi(m,u) = \int_0^T \int_{\mathbb{T}^d} \left[m(-\partial_t u - \epsilon \Delta_x u) + mH(x, \nabla_x u, m) \right] dx dt + \int_{\mathbb{T}^d} \left[m(T)u(T) - m_0 u(0) \right] dx dt$$

 \rightarrow Conceptual connection GANs/MFGs: [Cao et al., 2020]

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space \mathcal{X} (e.g. images of fixed size); *unknown* data distribution p_{data} **Goal:** be able to generate samples according p_{data} **Given:** samples from data, and random noise generator p_z over some space \mathcal{Z}

Idea: learn $G: \mathcal{Z} \to \mathcal{X}$ such that $p_z \circ G^{-1} \approx p_{data}$

Idea++: also learn $D: \mathcal{X} \to \mathbb{R}$ to distinguish between samples from $p_z \circ G^{-1}$ and p_{data}

Mathematically: min-max game between two neural networks D_{δ}, G_{γ} (params: δ, γ)

$$\min_{\gamma} \max_{\delta} \left\{ \mathbb{E}_{x \sim \mathbb{P}_r} [\log \mathcal{D}_{\delta}(x)] + \mathbb{E}_{z \sim \mathbb{P}_z} [\log(1 - \mathcal{D}_{\delta}(G_{\gamma}(z)))] \right\}.$$

 $\text{Variational MFG:} \inf_{\substack{u:[0,T]\times\mathbb{R}^d\to\mathbb{R}}} \quad \sup_{m:[0,T]\times\mathbb{R}^d\to\mathbb{R}} \Phi(m,u), \text{ where }$

$$\Phi(\mathbf{m}, u) = \int_0^T \int_{\mathbb{T}^d} \left[m(-\partial_t u - \epsilon \Delta_x u) + mH(x, \nabla_x u, m) \right] dx dt + \int_{\mathbb{T}^d} \left[m(T)u(T) - m_0 u(0) \right] dx dt + \int_{\mathbb{T}^d} \left[m(T)u(T) - m_$$

 \rightarrow Conceptual connection GANs/MFGs: [Cao et al., 2020] Related work: [Domingo-Enrich et al., 2020], [Lin et al., 2020], ...