Numerical Methods for
Mean Field Games

Lecture 5
Deep Learning Methods: Part Il
FBPDEs and Master equations

Mathieu LAURIERE

New York University Shanghai

UMBG6P Vanguard Center, Université Cadi AYYAD,
University Cote d’Azur, & GE2MI
Open Doctoral Lectures
July 5-7,2023

Outline

1. Introduction

Recap of Lecture 4

@ Background on deep learning (DL)

@ DL for MFC using a direct approach

@ DL for MKV FBSDEs using a “shooting method”
@ Extensions

@ What about DL for the PDE approach to MFG/MFC?

1/29

Outline

2. Deep Galerkin Method for MFG PDEs

Outline

2. Deep Galerkin Method for MFG PDEs
@ Warm-up: ODE

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

{F(m,np(ﬂc),go'(x), ...)=0, z € [a,b]
0

2/29

Solving ODEs with Neural Networks

@ Lookforp:R >z ¢(z) € Rst.

@ Look among NN g

z € [a,b]

z € [a,b]

2/29

Solving ODEs with Neural Networks

@ Lookforo:R >z — p(x) € Rs.L

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

L(0) = Ex (o [[F(X, 00(X), 06(X), ..)I’] +1G(a, pa(a), (a),. ..

2/29

Solving ODEs with Neural Networks

@ Lookforo:R >z — p(x) € Rs.L

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

L(0) = Ex (o [[F(X, 00(X), 06(X), ..)I’] +1G(a, pa(a), (a),. ..

@ Use SGD

2/29

Solving ODEs with Neural Networks

@ Lookforo:R >z — p(x) € Rs.L

@ Look among NN g

@ Rephrase as minimization problem: minimizer over 6

L(0) = Ex (o [[F(X, 00(X), 06(X), ..)I’] +1G(a, pa(a), (a),. ..

@ Use SGD

@ Note: we solve and ODE without discretizing time!

)

2/29

Numerical Illustration

Application to the following ODE:

{F(%@(x)w'(w)) =¢'(x)—(z—(x), =2€[0,5]

3/29

Numerical Illustration

Application to the following ODE:

Explicit solution:
plr)=c—1+2"

z € [0, 5]

3/29

Numerical Illustration

Application to the following ODE:

Explicit solution:

F(z,¢(2), ¢ (2) = ¢'(z) — (z —¢(z)), z€][0,5]
p(0) =1
pl)y=x—-14+2e"
4.0 — NN, iter=0 .
45| == penchmar
3.0 L
o 251 /’l,,
é 2.0 ’/’/
154 /,,"’
109 ~ ‘,,f’/’
Y
0 1 2 3 5

3/29

Numerical Illustration

Application to the following ODE:

{F(%@(I)W'(I)) =¢'(x) = (z—(z), 2€[0,5]

Explicit solution:
plz)=c—1+2e "

4.071 — NN, iter=200 .
=== benchmark ’

3/29

Numerical Illustration

Application to the following ODE:

Explicit solution:

plz)=c—1+2e "

7 —— NN, iter=700
-=- benchmark ‘.

3/29

Numerical Illustration

Application to the following ODE:

Explicit solution:

plz)=c—1+2e "

z € [0, 5]

7 — NN, iter=1000
—-=- benchmark

3/29

Numerical Illustration

Application to the following ODE:

Explicit solution:
plz)=c—1+2e "

z € [0, 5]

4.0 — NN, iter=1500
—-- benchmark

3/29

Numerical Illustration

Application to the following ODE:

{F(%@(l’)awl(f)) =¢'(x) = (z—(z), 2€[0,5]

Explicit solution:
plz)=c—1+2e "

4.0 — NN, iter=2000
—-- benchmark

3/29

Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/l1pHAKlcRwpeMwzTFI7CcEi3NI5uo0cVgE?usp=sharing
@ ODE

@ Solved by DGM

4/29

https://colab.research.google.com/drive/1pHAKlcRwpeMwzTFI7CcEi3NI5uo0cVqE?usp=sharing
https://colab.research.google.com/drive/1pHAKlcRwpeMwzTFI7CcEi3NI5uo0cVqE?usp=sharing

Outline

2. Deep Galerkin Method for MFG PDEs

@ Solving MFG PDE system

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by [Sirignano and Spiliopoulos, 2018]
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.

{F(w,ap(m),Dgp(m),D2go(x), ...)=0, x e
G(x,¢(x), Dp(x), D*p(2), ... z € 00

Il
=

5/29

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by [Sirignano and Spiliopoulos, 2018]

@ Lookforp:R% 3z — ¢(z) € Rsit.

{F(% ¢(x), Dy(x), D*p(2), ...
G(x,¢(x), Dp(x), D*p(2), ...

([l
LS L

@ Look among NN g

{F(mv909(:”)7D909(x)7D2509(x)5 .-)
G(l‘, (pg(:C),DLpg($),D2g09($), .-)

1
L e

€N
r € 0N

x € Q
r € 0N

5/29

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by [Sirignano and Spiliopoulos, 2018]
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.

{F(w,ap(m), Dy(x), D*p(z),...) =0, x e
G(z, o(x), Do(x), D*p(x),...) =0, z € 00

@ Look among NN g

{F(az,wg(x),Dcpg(ﬂc),Dang(x),...)—0, z €
Gz, po(x), Dpa(z), D*pe(x),...) =0, x €00

@ Rephrase as minimization problem: minimizer over 0

L(0) =Ex~u) [|F(X,00(X), Deo(X), D*0o(X),...)[]
+ Eyuon) [|G(Y, 00(Y), Deo(Y), D*0(Y),...)["]

5/29

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by [Sirignano and Spiliopoulos, 2018]
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.

{F(w,ap(m), Dy(x), D*p(z),...) =0, x e
G(z, o(x), Do(x), D*p(x),...) =0, z € 00

@ Look among NN g

{F(az,wg(x),Dcpg(ﬂc),Dang(x),...)—0, z €
Gz, po(x), Dpa(z), D*pe(x),...) =0, x €00

@ Rephrase as minimization problem: minimizer over 0

L(0) =Ex~u) [|F(X,00(X), Deo(X), D*0o(X),...)[]
+ Eyuon) [|G(Y, 00(Y), Deo(Y), D*0(Y),...)["]

@ Use SGD

5/29

Solving PDEs with Neural Networks

Deep Galerkin Method (DGM), proposed by [Sirignano and Spiliopoulos, 2018]
@ Look for ¢ : R? 3 2+ ¢(z) € Rsit.

{F(w,ap(m), Dy(x), D*p(z),...) =0, x e
G(z, o(x), Do(x), D*p(x),...) =0, z € 00

@ Look among NN g

{F(az,wg(x),Dcpg(ﬂc),Dang(x),...)—0, z €
Gz, po(x), Dpa(z), D*pe(x),...) =0, x €00

@ Rephrase as minimization problem: minimizer over 0

L(0) =Ex~u) [|F(X,00(X), Deo(X), D*0o(X),...)[]
+ Eyuon) [|G(Y, 00(Y), Deo(Y), D*0(Y),...)["]

@ Use SGD

5/29

DGM: Comments

Remarks on the implementation:

@ Choice of distribution:

> influences training and generalization
> may depend on the problem (e.g., some regions are more important than others)

@ Boundary conditions:

> need to balance their importance with the PDE residual; can be challenging
> can sometimes imposed by construction

@ Higher order derivatives computation:

> in principle, can be computed automatically but costly in high dimension
> approximations are possible, see [Sirignano and Spiliopoulos, 2018] for an
approximation of second order derivatives

@ Choice of architecture:

> in low dimension, feedforward fully connected networks work
> in high dimension, they seem inefficient; [Sirignano and Spiliopoulos, 2018]
proposed a specific architecture

@ Other DL methods for PDEs e.g. [Raissi et al., 2019]
6/29

DGM Architecture

@ Let 7 = (t,z) be the input
@ Architecture: L + 1 hidden layers (® denotes element-wise multiplication):

s = oW'Z +bh),
7zt = c'T +walst vl e=1,...,L,
' = SUItT A wolst 9ty e=1,...,L,
RY = o™t +wnistymt), e=1,...,L,
Y = oME fwhistoRY) £, e=1,...,L,
sttt = a-cYHoeHH ' +z'0s", ¢=1,...,L,
ftz0) = WSt b,

@ The parameters are

0= Wl,bla(U‘*’z»Wo‘“,ba’Z) Wby
£=1...., L,a€{z,g,m,h}

@ The number of units in each layer is M and ¢ : R™ — R is an element-wise
nonlinearity:

() = (6(1), 6(z2), ., 6(zan))

where ¢ : R — R is a nonlinear activation function.

7/29

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

0= _%(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %T(x) — vAm(t,x) — div (m(t,) OpH(-, m(t), Vu(t,-))) (z)

U(T 'T) - g(x, m(Tv))7 m(07 CL‘) = mo(l‘)

8/29

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t,) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv))7 m(07 CL‘) = mo(l‘)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/ /m)Jdxr=1,m >0

See [Lasry and Lions, 2007], Chapter 7 in [Bensoussan et al., 2013]

8/29

MFG PDE system

Reminder: (m,u) solving, on [0, 7] x T¢,

ou

0= _E(t x) — vAu(t,z) + H(zx,m(t,-), Vu(t,x))
0= %—T(t, x) — vAm(t,x) — div (m(t,) OpH(-, m(t), Vu(t,-))) (z)

u(T7 'T) = g(x, m(Tv))7 m(07 CL‘) = mo(l‘)

Or ergodic version: (m, u, \) on T¢

0= —vAu(z) + H(z, m() Vu(z)) + A
0= —vAm(z) — div(m(-)0pH(-,m, Vu(-))) (z)

/u /m)Jdxr=1,m >0

See [Lasry and Lions, 2007], Chapter 7 in [Bensoussan et al., 2013]

There are analogous PDE systems for MFC problems

8/29

Numerical lllustration 1: Ergodic Example with Explicit Solution

Inspired by [Almulla et al., 2017]

Example
Ergodic MFC with explicit solution on T¢. Take:

f(@,m, @) = 5lal? + F(@) + n(m(z)),

with

d

chm (2mx;) + Z lccos(2ma:)|? | — Qchm 2mx;),

=1 =1 =l
then the solution is given by

eQu(z)

Zsm 2mx;) m(x) = ——
f62'u,

9/29

Numerical lllustration 1: Ergodic Example with Explicit Solution

Numerical experiments in dimension d = 10
Error vs SGD iterations:

—— L%erroronu —— L?erroronp

T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
iterations of SGD

Relative L? error on v and m

More details in [Carmona and Lauriere, 20212a]

10/29

Numerical lllustration 2: Ergodic Example without Explicit Solution

Example of MFG without explicit solution on T¢ inspired by
[Achdou and Capuzzo-Dolcetta, 2010]

Example
Take:
f@,m, 0) = lal + f(z) + m(z) %,
with
d
f(z) = 27r2cz [sin(27x;) + cos(2mx;)]
=il

11/29

Numerical lllustration 2: Ergodic Example without Explicit Solution

Numerical experiments in dimension d = 30

PDE residuals (training loss) vs SGD iterations:

—— residual HJB —— residual KFP

T T T T T T
0 10000 20000 30000 40000 50000
iterations of SGD

L? norm of residuals for HJB and KFP

More details in [Carmona and Lauriere, 20212a]

k102

12/29

Sample code

Code
Sample code to illustrate: |IPython notebook

https://colab.research.google.com/drive/1xqamOTOCw7LRVXCMolTECGM7st 6XeBOH?usp=sharing
@ Ergodic mean field PDE system

@ Solved by DGM

13/29

https://colab.research.google.com/drive/1xqamOTOCw7LRVxCMo1TECGM7st6XeB0H?usp=sharing
https://colab.research.google.com/drive/1xqamOTOCw7LRVxCMo1TECGM7st6XeB0H?usp=sharing

Numerical lllustration 3: Crowd Trading

Example
Model of crowd trading by [Cardaliaguet and Lehalle, 2018]:

dsy = 'yﬁtdt + cdW, (price)
dQf = aud (player’s inventory)
dX{7 = —af,(Sf + kay)dt (player's wealth)

Objective: given (7;);, maximize
~ ~ T
E | X7 + Q757 — AlQF[* ~ ¢/ Q?th]
0

where: ¢, A > 0 = penalty for holding inventory

14/29

Numerical lllustration 3: Crowd Trading

Ansatz (see [Cartea and Jaimungal, 2016]):

V('L}CE,S,(]) = x—'—qsu(taq)v @t((])

where u(-) solves

—yiq = dyu — ¢q° + sup{adyu — ka’}, u(T,q) = —Aq’

15/29

Numerical lllustration 3: Crowd Trading

Ansatz (see [Cartea and Jaimungal, 2016]):

R Oqu(t,
V(t7 x, s, q) =z + qsu(t7 q)7 at(q) = QUQ(H’ Q)
where u(-) solves
—yiq = du — ¢q” + sup{adyu — ka’}, u(T,q) =

Mean field term: at equilibrium
9q0(t,q) .
wo= [awntean = [25D, a0,

where 1 solves the KFP equation:

m(0,-) = mo, Orm ~+ 0q4 (m(?qu;’:,q)> =0

15/29

Numerical lllustration 3: Crowd Trading

Reduced forward-backward PDE system:

dqu(t, q)|?
0= —0eu(t,q) + ¢q° — gt)" qui Ol _ Vg
K
Oqu(t
0= im(t.q) +0, (m(m @“‘J;‘”)

Oquft,
vt :/7"1;(,; Dint, q)dq

m(0,-) = mo, u(T, q) = —Ag>.

Note: the interactions are through the action distribution
= yields a non-local term involving both « and m

It can be estimated e.g. by Monte Carlo samples (for a fixed ¢, sample various q)
[Al-Aradi et al., 2019] applied DGM to this model.

The results presented below are from [Carmona and Lauriere, 2021b]

16/29

Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution

Evolution of m:

-~~~ benchmark mean

More details in [Carmona and Lauriere, 2021b]

1.44

1.28

112

0.96

0.80

0.64

0.48

0.32

0.16

0.00

17/29

Numerical lllustration 3: Crowd Trading

Numerical results by DGM versus ODE solution

Evolution of equilibrium control &:

More details in [Carmona and Lauriere, 2021b]

17/29

Numerical lllustration 3: Crowd Trading

@ Convergence of DGM discussed in [Sirignano and Spiliopoulos, 2018]

> By density, there exists a sequence of NN which approximates the solution and
minimizes the DGM loss

> Conversely, if the DGM loss is small, then the NN is close to the solution

@ Similar analysis is possible for MFGs, see e.g. [Luo and Zheng, 2022]
@ Variations and improvements, see e.g. [Reisinger et al., 2021]

@ Obtaining (good) rates of convergence is challenging, even just for the
approximation error

@ Understanding the full generalization error remains challenging

@ Application to other settings, e.g. mean field optimal transport
[Baudelet et al., 2023], and the finite-state master equation (next section)

18/29

Outline

3. Master Equation

Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mo att =0

@ Idea: express the value function of a typical player as u(¢, z) = U(t, x,)

19/29

Master Equation

@ Reminder: equilibrium: (u, 1) = sol. starting with mo att =0
@ Idea: express the value function of a typical player as u(¢, z) = U(t, x,)

@ Value function U/: PDE on the Wasserstein space

19/29

Master Equation

Reminder: equilibrium: (u, 1) = sol. starting with mg att =0
Idea: express the value function of a typical player as w(t, z) = U(t, z,)
Value function ¢/: PDE on the Wasserstein space

Motivations:

» Convergence of N-player games, large deviation principles, ...
» Unknown initial distribution 1o
» Macroscopic shocks, common noise

From a practical viewpoint, if we know U/, then we know the optimal behavior of a
representative player for any current distribution

19/29

Master Equation

Reminder: equilibrium: (u, 1) = sol. starting with mg att =0
Idea: express the value function of a typical player as w(t, z) = U(t, z,)
Value function ¢/: PDE on the Wasserstein space

Motivations:

» Convergence of N-player games, large deviation principles, ...
» Unknown initial distribution 1o
» Macroscopic shocks, common noise

From a practical viewpoint, if we know U/, then we know the optimal behavior of a
representative player for any current distribution

How can we compute U/?

19/29

Outline

3. Master Equation
@ Master Equation for Finite State MFG

Finite State MFGs

Finite state MFG:
@ Finite state space X
TS Al
@ [= 1Q(ue), Q = transition rate matrix

20/29

Finite State MFGs

Finite state MFG:
@ Finite state space X
TS Al
@ [= 1Q(ue), Q = transition rate matrix

Master PDE for U/:

UCT) = 9,10 |
~OU(t,7,1) = H (2, b)) + e @ (iUl 0)() T 0

Hamiltonian avg transition classical deriv.

for (t,x,) € [0,T] x X x Al¥I

20/29

Finite State MFGs

Finite state MFG:
@ Finite state space X
TS Al
@ [= 1Q(ue), Q = transition rate matrix

Master PDE for U/:

UT, 2,1) = g(w, 1)

* % ou L, M
— Ut @, 1) = H (b2, iU 1) + 3 ey QF (b U - 1)) () W
Hamiltonian avg transition classical deriv.

for (t,x,) € [0,T] x X x Al¥I

Numerical solution using the DGM described above

20/29

Example 1: Cyber-Security Model

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

@ State space: X = {DI,DS,UI,US}

defended/unprotected
infected/susceptible

@ Actions: want to switch level of protection; event happens at rate o\

« = 1 (want to switch level of protection)
or 0 (happy)

@ Time: continuous time, finite time horizon T'

21/29

Example 1: Cyber-Security Model

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

@ State space: X = {DI,DS,UI,US}

defended/unprotected
infected/susceptible

@ Actions: want to switch level of protection; event happens at rate o\

« = 1 (want to switch level of protection)
or 0 (happy)

@ Time: continuous time, finite time horizon T'
@ Mean field interactions: more infected units = higher infection rate

21/29

Example 1: Cyber-Security Model

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

@ State space: X = {DI,DS,UI,US}

defended/unprotected
infected/susceptible

@ Actions: want to switch level of protection; event happens at rate o\

« = 1 (want to switch level of protection)
or 0 (happy)

@ Time: continuous time, finite time horizon T'
@ Mean field interactions: more infected units = higher infection rate

a2, a\ 0
D
. e+ t) + t .. 0 al
(t) = (e | Gt 513(#1:;1)5)+ pur(t) ; o
0 aX qY + Bupur(t) + ppr(t))

transition rates

21/29

Example 1: Cyber-Security Model

Example (Cyber-security model [Kolokoltsov and Bensoussan, 2016])

@ State space: X = {DI,DS,UI,US}

defended/unprotected
infected/susceptible

@ Actions: want to switch level of protection; event happens at rate o\

« = 1 (want to switch level of protection)
or 0 (happy)

@ Time: continuous time, finite time horizon T'
@ Mean field interactions: more infected units = higher infection rate

a2, a\ 0
D
. e+ t) + t .. 0 al
(t) = (e | Gt 513(#1:;1)5)+ pur(t) ; o
0 aX qY + Bupur(t) + ppr(t))

transition rates
@ Running cost:
kplypr.psy + krliprury = cost of defense + penalty for being infected

@ Terminal cost: 0

21/29

Example 1: Cyber-Security Model

We apply the DGM. See [Lauriere, 2021] for more details.
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x X x Al¥]
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

22/29

Example 1: Cyber-Security Model

We apply the DGM. See [Lauriere, 2021] for more details.

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x X x Al¥]

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 1: mo = (1/4,1/4,1/4,1/4)

Evolution of u

u_HB1]
u_HIBI2)
u_HJB(3]

Evolution of u, 1/

22/29

Example 1: Cyber-Security Model

We apply the DGM. See [Lauriere, 2021] for more details.
@ Neural network: U/, to approximate U
@ Samples: Pick points (t,z, 1) € [0,T] x X x Al¥]
@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t,x, ult,"))
@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 2: mo = (1,0,0,0)

— uHB(0]
- uHBLL
u_HIBI2)
u_HJB(3]

Evolution of Evolution of u, U

22/29

Example 1: Cyber-Security Model

We apply the DGM. See [Lauriere, 2021] for more details.

@ Neural network: U/, to approximate U

@ Samples: Pick points (t,z, 1) € [0,T] x X x Al¥]

@ Loss: PDE residual + terminal condition

Comparison:
® Uy(t.z, u(t, "))

@ u(t,z), u(t,z): finite state space — forward-backward ODE system

Test 3: mo = (0,0,0,1)

Evolution of u

u_HB1]
u_HIBI2)
u_HJB(3]

-
-

Evolution of u, 1/

22/29

Example 2: Entropic solution

Example of a 2-state MFG [Cecchin et al., 2019] with
@ multiple solutions to the master equation
@ a unique one is an entropic solution

Analytical Z Algo. Z

o0 -075 050 025 000 025 050 075 100

More details in [Lauriere, 2021], section 7.2

23/29

Extensions

Some ongoing works:

@ Analysis of the DGM convergence for finite-state master equation (ongoing work
with Asaf Cohen and Ethan Zell)

@ Application to (continuous space) macroeconomic models, joint work with
Jonathan Payne and Sebastian Merkel. Working draft on Jonathan’s webpage.

24/29

https://drive.google.com/file/d/10xz4moTUIPwgw7Rp8g7XqbiahDmC81KD/view?usp=sharing

Outline

3. Master Equation

@ Master Bellman PDE of MFC

Master Bellman Equation for MFC

@ MFC problem in continuous space with common noise:

T
JMFC((X) — E[/ f(Xt,IP’OXt7 ay)dt + g(XT,P())(T)} .
0

subj. to: dX; = b(X:,P%,, ou)dt + odW; + ood IV,
where P, = conditional law of X; given the common noise 1"

25/29

Master Bellman Equation for MFC

@ MFC problem in continuous space with common noise:
T
J]VIFC((X) = IE[/ f(Xt,IP’OXt, o)dt + g(XT,P(;)(T)} .
0

subj. to: dX; = b(X:,P%,, ou)dt + odW; + ood IV,
where P, = conditional law of X; given the common noise 1"
@ Master Bellman equation in the Wasserstein space P2 (R?):

{atv+f(u,v,auv,azauv,63\/) = 0, (tp)€[0,T) e P:(RY)
V(T,p) = G(u), pnePaRY),

where:

25/29

Master Bellman Equation for MFC

@ MFC problem in continuous space with common noise:
T
JMFC (o) — E[/ f(Xt,IP’OXt,at)dt+g(XT,}P’(§(T)}.
0

subj. to: dX; = b(X:,P%,, ou)dt + odW; + ood IV,
where P, = conditional law of X; given the common noise 1"
@ Master Bellman equation in the Wasserstein space P2 (R?):

{atv+f(u,v,auv,azauv,63\/) = 0, (tp)€[0,T) e P:(RY)
V(T,p) = G(u), pnePaRY),

where:
> 9,V (p)(): RT = RY, 8:9,V(u)(.) : RT = 8%, 82V (u)(.,.) : R? x RY — §4, are
the L-derivatives of V on P2 (R¢) (see [Carmona and Delarue, 2018], Chapter 5)
> and

Fluy, 20T T)) = [hlew @), D@)utda) + [, o dtr(c00f Do, 2)) u(dm)n(da’),
G = [, 9 wn(de),

1
h(z,p,z,v) = inf [b(m, pya).z + —tr (oaT'y) + f(z, p, a)] .
a€cA 2

25/29

Symmetric Neural Networks

@ How can we solve the Bellman PDE and compute V'?
@ Idea: approximate V by a NN and use backward induction

@ Challenge: How can we represent 1 and input it to the neural network?

26/29

Symmetric Neural Networks

@ How can we solve the Bellman PDE and compute V'?

@ Idea: approximate V by a NN and use backward induction

@ Challenge: How can we represent . and input it to the neural network?
@ Connection between N-agents problem and MFC: ¥ = % Zfil Oy

’UN(ta'I:7x17 .. '7IN) = VN(t’xnu‘N) —_— V(tv:[aHN)
N—+oco

@ Approximate V (¢, z, -) by a symmetric function of IV inputs (V large)

26/29

Symmetric Neural Networks

@ How can we solve the Bellman PDE and compute V'?

Idea: approximate V' by a NN and use backward induction

Challenge: How can we represent . and input it to the neural network?

Connection between N-agents problem and MFC: ¥ = % Zfil Oy

N) = VN(t7x7:uN) — V(t,:l’, HN)

N 1
(tyz,x,...,x
N—+oco

@ Approximate V (¢, z, -) by a symmetric function of IV inputs (V large)

Symmetric Neural Networks:
> Symmetry by construction; e.g. with a sum:

NHZ%) o (wa)

> DeepSets [Zaheer et al., 2017], PointNet [Qi et al., 2017], ...

26/29

Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN [Germain et al., 2021a]
@ Symmetric NN: V(t,z', ... z)
@ D-Symmetric NN: sym. except in one space variable:

Z(', ...,z 2") 8, V(. aY) = %(%V (% Zj a:j) (z%)

Za(z,) ~ R 0uV (tn, 1) (@)
1 Set V. (1) = G()
2 forn=Nr—1,Nr—2,...,1,0do
3 Compute (Vy, Z5,) as a minimizer of:

Vn, Z0) = EVui1(Xns1) = Va(Xn) + H(tn, X, Va(Xn), Zn (X)) At

N

2

N
(20(X0, X1)) Toiy AW
0

1 5=

i

where 17n is a sym. NN, §" is a D-sym. NN, H = sym. version of i

4 return (177“ gn)n:O,...,NT

27/29

Deep Backward Dynamic Programming for MFC

Deep Learning for MFC with DPP and Symmetric NN [Germain et al., 2021a]
@ Symmetric NN: V(t,z', ... z)
@ D-Symmetric NN: sym. except in one space variable:

Z(', ...,z 2") 8, V(. aY) = %(%V (% Zj a:J) (z%)

Zn(z,2") & FOuV (tn, pz) (")
1 Set Yy, (1) = G(-)

2 forn=Nr—1,Nr—2,...,1,0do

3 Compute (Vy, Z5,) as a minimizer of:

Vn, Z0) = EVui1(Xns1) = Va(Xn) + H(tn, X, Va(Xn), Zn (X)) At

N

2

N
(Zn(Xp, X)) 00, AW
0

1 5=

i

where 17n is a sym. NN, §" is a D-sym. NN, H = sym. version of i

4 return (17n,§n)n=o,...,NT

See [Germain et al., 2021a] for numerical results and more details about the
implementation, and [Germain et al., 2022] for the analysis

27/29

Outline

4. Conclusion

Summary

@ Deep Galerkin Method principle

» Application to solve FB PDE system

» Application to solve finite-state Master equations

@ Deep Backward Dynamic Programming & symmetric NN
» Application to compute the value function of MFC

@ Many open questions for mathematicians (proofs of approximation, rates of
convergence, . ..)

28/29

More references

The presentation in this lecture and the previous one is not exhaustive. Other works,
such as: [Ruthotto et al., 2020], and works on the connection between (variational)
MFGs and Generative Adversarial Networks (GANs) [Cao et al., 2020],
[Lin et al., 2020].
Surveys on deep learning for:

@ PDEs [Beck et al., 2020]

@ Stochastic control and PDEs in finance: [Germain et al., 2021b]

@ Stochastic control and games: [Hu and Lauriere, 2023]

29/29

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References |

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).
Mean field games: numerical methods.
SIAM J. Numer. Anal., 48(3):1136—1162.

[Al-Aradi et al., 2019] Al-Aradi, A., Correia, A., Naiff, D. d. F, Jardim, G., and Saporito, Y. (2019).

Applications of the deep galerkin method to solving partial integro-differential and
hamilton-jacobi-bellman equations.
arXiv preprint arXiv:1912.01455.

[Aimulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657-682.

[Baudelet et al., 2023] Baudelet, S., Frénais, B., Lauriere, M., Machtalay, A., and Zhu, Y. (2023).

Deep learning for mean field optimal transport.
arXiv preprint arXiv:2302.14739.

[Beck et al., 2020] Beck, C., Hutzenthaler, M., Jentzen, A., and Kuckuck, B. (2020).

An overview on deep learning-based approximation methods for partial differential equations.

arXiv preprint arXiv:2012.12348.

[Bensoussan et al., 2013] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2013).
Mean field games and mean field type control theory.
Springer Briefs in Mathematics. Springer, New York.

1/8

References Il

[Cao et al., 2020] Cao, H., Guo, X., and Lauriere, M. (2020).
Connecting GANs, MFGs, and OT.
arXiv preprint arXiv:2002.04112.

[Cardaliaguet and Lehalle, 2018] Cardaliaguet, P. and Lehalle, C.-A. (2018).
Mean field game of controls and an application to trade crowding.
Mathematics and Financial Economics, 12(3):335-363.

[Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory
and Stochastic Modelling.
Springer, Cham.
Mean field FBSDEs, control, and games.

[Carmona and Lauriere, 2021a] Carmona, R. and Lauriere, M. (2021a).
Convergence analysis of machine learning algorithms for the numerical solution of mean field
control and games i: The ergodic case.
SIAM Journal on Numerical Analysis, 59(3):1455—-1485.

[Carmona and Lauriere, 2021b] Carmona, R. and Lauriére, M. (2021b).
Deep learning for mean field games and mean field control with applications to finance.
arXiv preprint arXiv:2107.04568.

2/8

References Il

[Cartea and Jaimungal, 2016] Cartea, A. and Jaimungal, S. (2016).
Incorporating order-flow into optimal execution.
Mathematics and Financial Economics, 10(3):339-364.

[Cecchin et al., 2019] Cecchin, A., Pra, P. D., Fischer, M., and Pelino, G. (2019).
On the convergence problem in mean field games: a two state model without uniqueness.
SIAM Journal on Control and Optimization, 57(4):2443-2466.

[Domingo-Enrich et al., 2020] Domingo-Enrich, C., Jelassi, S., Mensch, A., Rotskoff, G., and
Bruna, J. (2020).
A mean-field analysis of two-player zero-sum games.
arXiv preprint arXiv:2002.06277.

[Germain et al., 2021a] Germain, M., Lauriere, M., Pham, H., and Warin, X. (2021a).
Deepsets and their derivative networks for solving symmetric pdes.
arXiv preprint arXiv:2103.00838.

[Germain et al., 2021b] Germain, M., Pham, H., and Warin, X. (2021b).
Neural networks-based algorithms for stochastic control and pdes in finance.
arXiv preprint arXiv:2101.08068.

[Germain et al., 2022] Germain, M., Pham, H., and Warin, X. (2022).
Rate of convergence for particle approximation of pdes in wasserstein space.
Journal of Applied Probability, 59(4):992—1008.

3/8

References IV

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets.
Advances in neural information processing systems, 27.

[Hu and Lauriere, 2023] Hu, R. and Lauriere, M. (2023).
Recent developments in machine learning methods for stochastic control and games.
arXiv preprint arXiv:2303.10257.

[Karras et al., 2020] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T.
(2020).
Analyzing and improving the image quality of stylegan.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8110-8119.

[Kolokoltsov and Bensoussan, 2016] Kolokoltsov, V. N. and Bensoussan, A. (2016).
Mean-field-game model for botnet defense in cyber-security.
Appl. Math. Optim., 74(3):669-692.

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P-L. (2007).
Mean field games.
Jon. J. Math., 2(1):229-260.

4/8

References V

[Lauriére, 2021] Lauriére, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.

[Lin et al., 2020] Lin, A. T., Fung, S. W., Li, W., Nurbekyan, L., and Osher, S. J. (2020).
Apac-net: Alternating the population and agent control via two neural networks to solve
high-dimensional stochastic mean field games.
arXiv preprint arXiv:2002.10113.

[Luo and Zheng, 2022] Luo, J. and Zheng, H. (2022).
Deep neural network solution for finite state mean field game with error estimation.
Dynamic Games and Applications, pages 1-38.

[Qietal,2017] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017).
Pointnet: Deep learning on point sets for 3d classification and segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
652-660.

[Raissi et al., 2019] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019).
Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686—707.

5/8

References VI

[Reisinger et al., 2021] Reisinger, C., Stockinger, W., and Zhang, Y. (2021).
A fast iterative pde-based algorithm for feedback controls of nonsmooth mean-field control
problems.
arXiv preprint arXiv:2108.06740.

[Ruthotto et al., 2020] Ruthotto, L., Osher, S. J., Li, W., Nurbekyan, L., and Fung, S. W. (2020).
A machine learning framework for solving high-dimensional mean field game and mean field
control problems.

Proceedings of the National Academy of Sciences, 117(17):9183-9193.

[Sirignano and Spiliopoulos, 2018] Sirignano, J. and Spiliopoulos, K. (2018).
DGM: a deep learning algorithm for solving partial differential equations.
J. Comput. Phys., 375:1339-1364.

[Zaheer et al., 2017] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.,
and Smola, A. (2017).
Deep sets.
arXiv preprint arXiv:1703.06114.

6/8

Outline

5. Link with Generative Adversarial Networks

Examples

7/8

Examples

R

thispersondoesnotexist.com

thiscatdoesnotexist.com

7/8

Examples

thispersondoesnotexist.com

[Karras et al., 2020]

thiscatdoesnotexist.com

7/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. o G~ & paata

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. o G ! ~ paata

[Goodfellow et al., 2014]

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. o G ! ~ paata

[Goodfellow et aI., 2014] NVIDIA’1\9

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. o G™' = paata

Idea++: also learn D : X — R to distinguish between samples from p. oG ™' and paaia

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. 0 G~ & paata
Idea++: also learn D : X — R to distinguish between samples from p. o G~! and paata

Mathematically: min-max game between two neural networks D;, G, (params: ¢,)

min max{ By, flog Ds(2)] + Eans. [log(1 — Ds(G- ()] .

o 0

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. 0 G~ & paata
Idea++: also learn D : X — R to distinguish between samples from p. o G~! and paata

Mathematically: min-max game between two neural networks D;, G, (params: ¢,)

min max{ By, flog Ds(2)] + Eans. [log(1 — Ds(G- ()] .

o 0

Variational MFG: inf sup ®(m,u), where
u:[0,T| XR4—R m:[0,T] xR —R

T
P(m,u) = / / [m(—0tu — eAgzu) + mH(x, Vyu, m)] dedt + / [m(T)u(T) — mou(0)] de
0 Td Td

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. 0 G~ & paata
Idea++: also learn D : X — R to distinguish between samples from p. o G~! and paata

Mathematically: min-max game between two neural networks D;, G, (params: ¢,)

min max{ By, flog Ds(2)] + Eans. [log(1 — Ds(G- ()] .

o 0

Variational MFG: inf sup ®(m,u), where
u:[0,T| XR4—R m:[0,T] xR —R

T
P(m,u) = / / [m(—0tu — eAgzu) + mH(x, Vyu, m)] dedt + / [m(T)u(T) — mou(0)] de
0 Td Td
— Conceptual connection GANs/MFGs: [Cao et al., 2020]

8/8

GANs & MFGs

Generative Adversarial Nets [Goodfellow et al., 2014]:

Setup: data space X (e.g. images of fixed size); unknown data distribution pgata
Goal: be able to generate samples according paata

Given: samples from data, and random noise generator p, over some space Z

Idea: learn G : Z — X such that p. o G~ & paata

Idea++: also learn D : X — R to distinguish between samples from p. o G~! and paata

Mathematically: min-max game between two neural networks D;, G, (params: ¢,)

min max{ By, flog Ds(2)] + Eans. [log(1 — Ds(G- ()] .

o 0

Variational MFG: inf sup ®(m,u), where
u:[0,T]xRI—R m:[0,T]XxRI—R

T
P(m,u) = / / [m(—0tu — eAgzu) + mH(x, Vyu, m)] dedt + / [m(T)u(T) — mou(0)] de
0 Td Td

— Conceptual connection GANs/MFGs: [Cao et al., 2020]

Related work: [Domingo-Enrich et al., 2020], [Lin et al., 2020], ...
8/8

	Introduction
	Deep Galerkin Method for MFG PDEs
	Warm-up: ODE
	Solving MFG PDE system

	Master Equation
	Master Equation for Finite State MFG
	Master Bellman PDE of MFC

	Conclusion
	Appendix
	Link with Generative Adversarial Networks

