
Numerical Methods for
Mean Field Games

Lecture 6
Reinforcement Learning Methods

Mathieu LAURIÈRE

New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD,
University Côte d’Azur, & GE2MI

Open Doctoral Lectures
July 5 – 7, 2023

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

Motivations

In the methods discussed so far, the algorithm uses the full knowledge of the
model

▶ to write the ODEs or PDEs (lectures 2, 3 and 5)
▶ to write the FBSDEs (lecture 4)
▶ to compute the gradient in the direct approach (lecture 4)

Can we learn the solution without using the full knowledge the model and by
instead relying on a simulator? → model-free reinforcement learning (RL)

Motivations
▶ sometimes we really do not know the model and we only have a simulator

(e.g., nature)

▶ sometimes we do know the model, but using an exact method is too costly
(e.g., very large spaces / complex models)

1 / 68

Motivations

(Reinforcement) Learning in games: many recent successes, e.g.:

Go [Silver et al., 2016, Silver et al., 2017, Silver et al., 2018],
Chess [Campbell et al., 2002], Checkers [Schaeffer et al., 2007],
Hex [Anthony et al., 2017], Starcraft II [Vinyals et al., 2019], poker
games [Brown and Sandholm, 2017, Brown and Sandholm, 2019,
Moravčík et al., 2017, Bowling et al., 2015], Stratego [McAleer et al., 2020],
[Perolat et al., 2022] . . .

Motivations for combining RL and MFGs:
Scaling up population size→ Mean Field Games

Scaling up environment complexity→ (model-free) Reinforcement Learning

2 / 68

Motivations

(Reinforcement) Learning in games: many recent successes, e.g.:

Go [Silver et al., 2016, Silver et al., 2017, Silver et al., 2018],
Chess [Campbell et al., 2002], Checkers [Schaeffer et al., 2007],
Hex [Anthony et al., 2017], Starcraft II [Vinyals et al., 2019], poker
games [Brown and Sandholm, 2017, Brown and Sandholm, 2019,
Moravčík et al., 2017, Bowling et al., 2015], Stratego [McAleer et al., 2020],
[Perolat et al., 2022] . . .

Motivations for combining RL and MFGs:
Scaling up population size→ Mean Field Games

Scaling up environment complexity→ (model-free) Reinforcement Learning

2 / 68

Motivations

(Reinforcement) Learning in games: many recent successes, e.g.:

Go [Silver et al., 2016, Silver et al., 2017, Silver et al., 2018],
Chess [Campbell et al., 2002], Checkers [Schaeffer et al., 2007],
Hex [Anthony et al., 2017], Starcraft II [Vinyals et al., 2019], poker
games [Brown and Sandholm, 2017, Brown and Sandholm, 2019,
Moravčík et al., 2017, Bowling et al., 2015], Stratego [McAleer et al., 2020],
[Perolat et al., 2022] . . .

Motivations for combining RL and MFGs:
Scaling up population size→ Mean Field Games

Scaling up environment complexity→ (model-free) Reinforcement Learning

2 / 68

Reinforcement Learning – Setup

Markov Decision Process (MDP): (X ,A, p, r, γ), where:
• X : state space, A : action space,
• p : X ×A → P(X) : transition kernel, p(·|s, a) gives next state’s distribution
• r : X ×A → R : reward function, γ ∈ (0, 1) : discount factor

Goal: Find (stationary, mixed) policy π∗ : X → P(A) maximizing:

R(π) = E

[∑
n≥0

γnr(sn, an)

]
, with an ∼ π(·|sn), sn+1 ∼ p(·|sn, an)

Model: p, r

Two settings:

(1) Known model : Optimal control theory & methods

(2) Sample transitions & rewards: Reinforcement Learning (RL) framework

3 / 68

Reinforcement Learning – Setup

Markov Decision Process (MDP): (X ,A, p, r, γ), where:
• X : state space, A : action space,
• p : X ×A → P(X) : transition kernel, p(·|s, a) gives next state’s distribution
• r : X ×A → R : reward function, γ ∈ (0, 1) : discount factor

Goal: Find (stationary, mixed) policy π∗ : X → P(A) maximizing:

R(π) = E

[∑
n≥0

γnr(sn, an)

]
, with an ∼ π(·|sn), sn+1 ∼ p(·|sn, an)

Model: p, r

Two settings:

(1) Known model : Optimal control theory & methods

(2) Sample transitions & rewards: Reinforcement Learning (RL) framework

3 / 68

Reinforcement Learning – Setup

Markov Decision Process (MDP): (X ,A, p, r, γ), where:
• X : state space, A : action space,
• p : X ×A → P(X) : transition kernel, p(·|s, a) gives next state’s distribution
• r : X ×A → R : reward function, γ ∈ (0, 1) : discount factor

Goal: Find (stationary, mixed) policy π∗ : X → P(A) maximizing:

R(π) = E

[∑
n≥0

γnr(sn, an)

]
, with an ∼ π(·|sn), sn+1 ∼ p(·|sn, an)

Model: p, r

Two settings:

(1) Known model : Optimal control theory & methods

(2) Sample transitions & rewards: Reinforcement Learning (RL) framework

3 / 68

Reinforcement Learning – Paradigm

We want to learn the best control by performing experiments of the form:

Given the current state St,
(1) Take an action At

(2) Observe reward Rt+1 & new state St+1

Source: [Sutton and Barto, 2018]

4 / 68

Reinforcement Learning – Paradigm

We want to learn the best control by performing experiments of the form:

Given the current state St,
(1) Take an action At

(2) Observe reward Rt+1 & new state St+1

Source: [Sutton and Barto, 2018]

4 / 68

Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .

5 / 68

Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .

5 / 68

Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .

5 / 68

Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .

5 / 68

Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .

5 / 68

RL Taxonomy

Source: [OpenAI Spinning Up]1

1
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

6 / 68

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

DQN

Source: [Mnih et al., 2013]

7 / 68

DDPG

Source: [Lillicrap et al., 2016]

8 / 68

SAC

Source: [Haarnoja et al., 2018]

9 / 68

RL Setting for MFG and MFC

Intuitively:

MFG: a representative agent learns by interacting with an environment, which
depends on the population distribution

MFC: the whole population learns

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µn

Action
an

Reward
rn

State
xn

Environment

Population

Reward

rn+1

MF State

µn+1

Action

an

Reward

rn

MF State
µn

10 / 68

Population Distribution Approximation

How to deal with the population distribution µ?

Empirical distribution µN

Histogram (discrete state space)

ϵ-net in P(X)

Function approximation for the density:

▶ Kernels
▶ Neural nets: normalizing flows, . . .
▶ . . .

. . .

So far, most of the literature on RL for MFGs focuses on finite state space models

But see e.g. [Perrin et al., 2021a] in continuous space using normalizing flows

11 / 68

A (Non-exhaustive) Glance at the literature: RL for MFG

MARL with mean field approximation: [Yang et al., 2018]
Inverse RL: [Yang et al., 2017], [Chen et al., 2021], [Chen et al., 2022],
[Ramponi et al., 2023]
Multi-time scales: [Subramanian and Mahajan, 2019],
[Angiuli et al., 2022c, Angiuli et al., 2020, Angiuli and Hu, 2021]
Fictitious Play with tabular RL: [Perrin et al., 2020], with deep RL:
[Elie et al., 2020, Cui and Koeppl, 2021] and distribution embedding:
[Perrin et al., 2021b]; with common noise [Delarue and Vasileiadis, 2021]
Fixed point iterations with Q-learning and variants:
[Guo et al., 2019, Guo et al., 2023],
[Anahtarci et al., 2019, Anahtarcı et al., 2021], [Xie et al., 2021]
Entropy regularization: [Anahtarci et al., 2020], [Cui and Koeppl, 2021]
LQ MFG with actor-Critic: [Fu et al., 2019, uz Zaman et al., 2020], or policy
gradient: [Wang et al., 2021]
RL for partially observable MFG: [Subramanian et al., 2020b]
Mean field RL for multiple types:
[Subramanian et al., 2020a, uz Zaman et al., 2022]
Learning Master policies with deep RL: [Perrin et al., 2022]
Independent learning: [Yongacoglu et al., 2022], [Yardim et al., 2023]
. . .

12 / 68

A (Non-exhaustive) Glance at the literature: RL for MFC

Early works on MDP viewpoint: [Gast and Gaujal, 2011, Gast et al., 2012]

Policy optimization for stationary MFC: [Subramanian and Mahajan, 2019]

Policy gradient for LQ MFC [Carmona et al., 2019a, Wang et al., 2021] and zero
sum mean field type game [Carmona et al., 2020]

Multi-time scale for MFC (and MFG):
[Angiuli et al., 2022c, Angiuli et al., 2020, Angiuli and Hu, 2021]:

Mean field MDP: dynamic programming and RL [Carmona et al., 2019b,
Gu et al., 2023, Motte and Pham, 2019, Gu et al., 2021a, Cui et al., 2021]

Decentralized network approach [Gu et al., 2021b]

Model based RL for MFC: [Pásztor et al., 2023]

. . .

Several talks on this topic are available here:
https://sites.google.com/view/mlmfgseminar/past-talks

Survey on this topic: [Laurière et al., 2022a] (updated version soon)

13 / 68

https://sites.google.com/view/mlmfgseminar/past-talks

Three Settings [Laurière et al., 2022a]

Intuitively, at least 3 different settings:

Static:
▶ No states (normal-form game): each player chooses an action a ∼ π(·)
▶ Reward: depends on own action & population’s action distribution
▶ Examples: towel on the beach, urban settlement, . . .

Stationary:
▶ Infinite horizon: learns a stationary policy π(·|x)
▶ Reward: similar than Evolutive case.
▶ Initial state distribution = stationary distribution induced by the population’s policy or

gamma discounted distribution.
▶ Examples: player joining a crowd already in a steady state

Evolutive:
▶ (In)Finite horizon: each player learns a time-dependant policy πn(·|x)
▶ Reward: depends on own state, action & population’s (state,action) distribution.
▶ Fixed initial state distribution
▶ Examples: crowd motion, traffic routing, . . .

Other settings: asymptotic, γ-discounted, ergodic, . . .

In the sequel we mostly stick to the evolutive setting.

14 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)
Setting
Model-Free Policy Gradient for MFC
Q-Learning for MFC

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

Outline

1. Introduction

2. RL for MFC (MFRL)
Setting
Model-Free Policy Gradient for MFC
Q-Learning for MFC

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

From Optimal Control to MFRL

Mean-Field Control
unknown model // Mean-Field

Reinforcement Learning

Optimal Control

N→∞
MKV

OO

unknown model
// Reinforcement Learning

N→∞
MKV

OO

15 / 68

Mean Field Control: Finite Population Approximation

N-agent
R. Learning

MFRL

M-agent
Situation

εN εM

16 / 68

Dynamics and cost

Dynamics: discrete time

Xα,µ
n+1 = F (Xα,µ

n , αn, µn, ϵn+1, ϵ0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

▶ Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ A ⊆ Rk : action

▶ ϵn ∼ ν : idiosyncratic noise, ϵ0
n ∼ ν0 : common noise (random env.)

▶ p(x′|x, a, µ): corresponding transition probability distribution

▶ µn ∈ P(X ×A): a state-action distribution

▶ πn: a policy; randomized actions: αn ∼ πn(·|sn) or αn ∼ πn(·|sn, µn)

Cost: J(π; µ) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα,µ

n , αn, µn

)]

17 / 68

Problem Formulation

Two scenarios:

Cooperative (MFC): Find π∗ s.t.

π∗ minimizes π 7→ JMF C(π) = J(π; µπ) where µπ
n = P0

X
α,µπ
n

Non-Cooperative (MFG): Find (π̂, µ̂) s.t.{
π̂ minimizes π 7→ JMF G(π; µ̂) = J(π; µ̂)
µ̂n = P0

X
α̂,µ̂
n

In this section we focus on the MFC case

MFG in the next section

18 / 68

MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā

19 / 68

MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā

19 / 68

MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā

19 / 68

MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā

19 / 68

MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā
19 / 68

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP [Carmona et al., 2019b]

Under suitable conditions,

J̄∗(µ) := sup
π̄

J̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γE

[
J̄∗(

F̄ (µ, ā, ϵ0)
)]]

π̄(dā|µ)
}

,

where the sup is over a subset of {π̄ : X̄ → P(Ā)}

Likewise for mean field state-action value function Q̄∗

Proof: based on “double lifting” [Bertsekas and Shreve, 1996]

DPPs for MFC: [Laurière and Pironneau, 2016], [Pham and Wei, 2017],
[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm

20 / 68

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP [Carmona et al., 2019b]

Under suitable conditions,

J̄∗(µ) := sup
π̄

J̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γE

[
J̄∗(

F̄ (µ, ā, ϵ0)
)]]

π̄(dā|µ)
}

,

where the sup is over a subset of {π̄ : X̄ → P(Ā)}

Likewise for mean field state-action value function Q̄∗

Proof: based on “double lifting” [Bertsekas and Shreve, 1996]

DPPs for MFC: [Laurière and Pironneau, 2016], [Pham and Wei, 2017],
[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm

20 / 68

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP [Carmona et al., 2019b]

Under suitable conditions,

J̄∗(µ) := sup
π̄

J̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γE

[
J̄∗(

F̄ (µ, ā, ϵ0)
)]]

π̄(dā|µ)
}

,

where the sup is over a subset of {π̄ : X̄ → P(Ā)}

Likewise for mean field state-action value function Q̄∗

Proof: based on “double lifting” [Bertsekas and Shreve, 1996]

DPPs for MFC: [Laurière and Pironneau, 2016], [Pham and Wei, 2017],
[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm

20 / 68

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP [Carmona et al., 2019b]

Under suitable conditions,

J̄∗(µ) := sup
π̄

J̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γE

[
J̄∗(

F̄ (µ, ā, ϵ0)
)]]

π̄(dā|µ)
}

,

where the sup is over a subset of {π̄ : X̄ → P(Ā)}

Likewise for mean field state-action value function Q̄∗

Proof: based on “double lifting” [Bertsekas and Shreve, 1996]

DPPs for MFC: [Laurière and Pironneau, 2016], [Pham and Wei, 2017],
[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm

20 / 68

Mean Field Learning Settings

Hierarchy of settings:
• Setting 1: known model: computational method based on knowledge of MFMDP

(a) Gradient based methods
(b) Dynamic programming based methods

• Setting 2: unknown model but samples from MFMDP: MF learning

Environment

Agent

Cost

fn+1

Distrib.
µn+1

Action

an

Cost

fn

Distrib.

µn

• Setting 3: unknown model but samples from N -agent MDP: approx. MF learning

Environment

Agent

Emp. Cost

f
N

n+1

Emp. Distrib.

µN
n+1

Action

an

Emp. Cost

f
N

n

Emp. Distrib.

µN
n

21 / 68

Mean Field Learning Settings

Hierarchy of settings:
• Setting 1: known model: computational method based on knowledge of MFMDP

(a) Gradient based methods
(b) Dynamic programming based methods

• Setting 2: unknown model but samples from MFMDP: MF learning

Environment

Agent

Cost

fn+1

Distrib.
µn+1

Action

an

Cost

fn

Distrib.

µn

• Setting 3: unknown model but samples from N -agent MDP: approx. MF learning

Environment

Agent

Emp. Cost

f
N

n+1

Emp. Distrib.

µN
n+1

Action

an

Emp. Cost

f
N

n

Emp. Distrib.

µN
n

21 / 68

Mean Field Learning Settings

Hierarchy of settings:
• Setting 1: known model: computational method based on knowledge of MFMDP

(a) Gradient based methods
(b) Dynamic programming based methods

• Setting 2: unknown model but samples from MFMDP: MF learning

Environment

Agent

Cost

fn+1

Distrib.
µn+1

Action

an

Cost

fn

Distrib.

µn

• Setting 3: unknown model but samples from N -agent MDP: approx. MF learning

Environment

Agent

Emp. Cost

f
N

n+1

Emp. Distrib.

µN
n+1

Action

an

Emp. Cost

f
N

n

Emp. Distrib.

µN
n

21 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)
Setting
Model-Free Policy Gradient for MFC
Q-Learning for MFC

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))
(2) access to a mean field simulator:

→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))
(3) access to a N -agent population simulator:

→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations

22 / 68

Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations

22 / 68

Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))
(2) access to a mean field simulator:

→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations

22 / 68

Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))
(2) access to a mean field simulator:

→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))
(3) access to a N -agent population simulator:

→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations

22 / 68

Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))
(2) access to a mean field simulator:

→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))
(3) access to a N -agent population simulator:

→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations

22 / 68

Numerical Illustration

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, α) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ α2︸︷︷︸
cost of
moving

, µ̄ =
∫

µ(ξ)dξ︸ ︷︷ ︸
mean position

,

Value of the MF cost Rel. err. on MF cost
MF cost = cost in the mean field problem

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

23 / 68

Numerical Illustration

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, α) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ α2︸︷︷︸
cost of
moving

, µ̄ =
∫

µ(ξ)dξ︸ ︷︷ ︸
mean position

,

Value of the social cost Rel. err. on social cost
Social cost = average over the N -agents

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

23 / 68

Numerical Illustration

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, α) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ α2︸︷︷︸
cost of
moving

, µ̄ =
∫

µ(ξ)dξ︸ ︷︷ ︸
mean position

,

Value of the social cost Rel. err. on social cost
Social cost = average over the N -agents

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

23 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)
Setting
Model-Free Policy Gradient for MFC
Q-Learning for MFC

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

Mean Field Q-Function

Idea 2: Generalize Q-learning to Mean-Field Control

Reminder:
Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Q-function associated to a policy π:

Qπ(s, a) = r(s, a) + γEs′∼p(·|s,a),a′∼π(·|s′)

[
Qπ(s′, a′)

]
Mean Field Q-function associated to a mean field policy π̄:

Q̄π̄(s̄, ā) = r̄(s̄, ā) + γEs̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄π̄(s̄′, ā′)

]

24 / 68

Mean Field Q-Function

Idea 2: Generalize Q-learning to Mean-Field Control

Reminder:
Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X)
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Q-function associated to a policy π:

Qπ(s, a) = r(s, a) + γEs′∼p(·|s,a),a′∼π(·|s′)

[
Qπ(s′, a′)

]
Mean Field Q-function associated to a mean field policy π̄:

Q̄π̄(s̄, ā) = r̄(s̄, ā) + γEs̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄π̄(s̄′, ā′)

]
24 / 68

MF Q-Learning

Optimal MF Q-function:

Q̄∗(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Eā′∼π̄(·|s̄),s̄′∼p̄(·|s̄,ā′)

[
Q̄∗(s̄′, ā′)

]
Algorithm:
• Idealized version (synchronous):

Q̄(k+1)(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Es̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄(k)(s̄′, ā′)

]
, (s̄, ā) ∈ X̄ × Ā

= [T̄ ∗Q̄(k)](s̄, ā)

• Following a trajectory (async.): s̄(k+1) ∼ p(·|s̄(k), ā(k)), ā(k+1) ∼ π̄(k+1)(·|s̄(k)),{
Q̄(k+1)(s̄, ā) = Q̄(k)(s̄, ā), (s̄, ā) ∈ X̄ × Ā
Q̄(k+1)(s̄(k+1), ā(k+1))← r̄(s̄(k+1), ā(k+1)) + γ maxā′ Q̄(k)(s̄(k+1), ā′)

Implementation: several possibilities (can be combined):
▶ pure (population and individual) strategies
▶ discretization of X̄ = P(X), Ā = P(X ×A)
▶ deep Reinforcement Learning

25 / 68

MF Q-Learning

Optimal MF Q-function:

Q̄∗(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Eā′∼π̄(·|s̄),s̄′∼p̄(·|s̄,ā′)

[
Q̄∗(s̄′, ā′)

]
Algorithm:
• Idealized version (synchronous):

Q̄(k+1)(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Es̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄(k)(s̄′, ā′)

]
, (s̄, ā) ∈ X̄ × Ā

= [T̄ ∗Q̄(k)](s̄, ā)

• Following a trajectory (async.): s̄(k+1) ∼ p(·|s̄(k), ā(k)), ā(k+1) ∼ π̄(k+1)(·|s̄(k)),{
Q̄(k+1)(s̄, ā) = Q̄(k)(s̄, ā), (s̄, ā) ∈ X̄ × Ā
Q̄(k+1)(s̄(k+1), ā(k+1))← r̄(s̄(k+1), ā(k+1)) + γ maxā′ Q̄(k)(s̄(k+1), ā′)

Implementation: several possibilities (can be combined):
▶ pure (population and individual) strategies
▶ discretization of X̄ = P(X), Ā = P(X ×A)
▶ deep Reinforcement Learning

25 / 68

MF Q-Learning: Numerical Illustration

Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X), Ā = P(X ×A)

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])

26 / 68

MF Q-Learning: Numerical Illustration

Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X), Ā = P(X ×A)

Test 1: m0 = (1/4, 1/4, 1/4, 1/4)

0 2 4 6 8 10
time

0.0

0.1

0.2

0.3

0.4

0.5

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])
26 / 68

MF Q-Learning: Numerical Illustration

Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X), Ā = P(X ×A)

Test 2: m0 = (1, 0, 0, 0)

0 2 4 6 8 10
time

0.0

0.2

0.4

0.6

0.8

1.0

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])
26 / 68

MF Q-Learning: Numerical Illustration

Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X), Ā = P(X ×A)

Test 3: m0 = (0, 0, 0, 1)

0 2 4 6 8 10
time

0.0

0.2

0.4

0.6

0.8

1.0

m

mODE(x = 1)
mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE) or
controlled using the approximate Q-function (mQ)

0 2 4 6 8 10
time

0.15

0.20

0.25

0.30

va
lu

e

Vopt

VQ

V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])
26 / 68

Deep RL for MFC

Instead of discretizing the distribution, we can train a parameterized function to
approximate the Q-function

For instance: neural network trained by DDPG

Note: We do not need to randomize the policy at the population level, but we do
allow randomization at the agent level

See sections 6.1, 6.2 and 6.3 of [Carmona et al., 2019b]

27 / 68

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing

Same example as above: MFC for cybersecurity

Solved using deep RL with population-dependent controls

28 / 68

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing
https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing

Another Example: Distribution Planning

Goal: match a target distribution.

X = {1, . . . , 10} and A = {−1, 0, +1}.
Transitions: F (x, a, µ, e, e0) = x + a + e0.

Cost:
f(x, a, µ) = |a|+

∑
i

|µ(i)− µtarget(i)|2.

Here we chose: µtarget = (0, 0, 0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0, 0).
No idiosyncratic noise.

Hence in general it is not possible to match the target distribution unless the
agents are allowed to randomize their actions at the individual level.

We use P(A)X for the level-1 action space.

Without or with common noise ε0
n ∈ A.

It is not feasible to rely on a tabular method. We show deep RL results.

29 / 68

Another Example: Distribution Planning

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30
st

at
e

di
st

rib
ut

io
n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

st
at

e
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
at

e
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

More details in [Carmona et al., 2019b]

30 / 68

Another Example: Distribution Planning with Common Noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
at

e
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

1.0

0.8

0.6

0.4

0.2

0.0

co
m

m
on

 n
oi

se

Cumulative common noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

st
at

e
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0
ac

tio
n

di
st

rib
ut

io
n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

co
m

m
on

 n
oi

se

Cumulative common noise

2 4 6 8 10 12
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e
di

st
rib

ut
io

n

target
init
last
avg20

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
di

st
rib

ut
io

n

Left
Stay
Right

0 20 40 60 80 100
t

0.04

0.02

0.00

0.02

0.04

co
m

m
on

 n
oi

se

Cumulative common noise

More details in [Carmona et al., 2019b]

31 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion

Learning

The term “learning” has many interpretations, such as:

In game theory, economics, . . . :
[Fudenberg and Levine, 2009]: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

In machine learning, RL, . . . :
[Mitchell et al., 1997]: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E.”

32 / 68

Learning

The term “learning” has many interpretations, such as:

In game theory, economics, . . . :
[Fudenberg and Levine, 2009]: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

In machine learning, RL, . . . :
[Mitchell et al., 1997]: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E.”

32 / 68

Learning

The term “learning” has many interpretations, such as:

In game theory, economics, . . . :
[Fudenberg and Levine, 2009]: “The theory of learning in games [. . .] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

In machine learning, RL, . . . :
[Mitchell et al., 1997]: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E.”

32 / 68

Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

▶ Banach-Picard iterations
▶ idem + damping/mixing/smoothing
▶ Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. [Fudenberg et al., 1998]

Non-atomic games. see e.g. [Hadikhanloo et al., 2021]

Mean Field Games, see e.g. [Hadikhanloo, 2018]

33 / 68

Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

▶ Banach-Picard iterations
▶ idem + damping/mixing/smoothing
▶ Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. [Fudenberg et al., 1998]

Non-atomic games. see e.g. [Hadikhanloo et al., 2021]

Mean Field Games, see e.g. [Hadikhanloo, 2018]

33 / 68

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

. . . 7→ π(k) 7→ µ(k) 7→ π(k+1) 7→ . . .

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

34 / 68

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

. . . 7→ π(k) 7→ µ(k) 7→ π(k+1) 7→ . . .

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

34 / 68

Best Response and Population Behavior Maps

We focus on MFG and write J = JMF G. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMF G(·; µ)

Population Behavior (i.e., mean field) induced when everyone using a policy:

MF : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈X

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ X

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = MF(π)
π̂ = BR(µ̂)

µ̂ can be unique without π̂ being unique!

35 / 68

Best Response and Population Behavior Maps

We focus on MFG and write J = JMF G. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMF G(·; µ)

Population Behavior (i.e., mean field) induced when everyone using a policy:

MF : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈X

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ X

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = MF(π)
π̂ = BR(µ̂)

µ̂ can be unique without π̂ being unique!
35 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

36 / 68

Banach-Picard Fixed Point Iterations

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that
▶ µ(k) 7→ π(k+1)

▶ π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

See e.g. [Huang et al., 2006], [Guo et al., 2019]

Can be relaxed with entropy regularization [Anahtarci et al., 2020],
[Cui and Koeppl, 2021], [Yardim et al., 2022], . . .

Can be modified with damping/mixing/smoothing; e.g. Fictitious Play

Note: If BR(µ(k)) is not a singleton, it is not clear which element to pick as π(k+1);
there could be infinitely many best responses and yet a unique Nash equilibrium!

37 / 68

Banach-Picard Fixed Point Iterations

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that
▶ µ(k) 7→ π(k+1)

▶ π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

See e.g. [Huang et al., 2006], [Guo et al., 2019]

Can be relaxed with entropy regularization [Anahtarci et al., 2020],
[Cui and Koeppl, 2021], [Yardim et al., 2022], . . .

Can be modified with damping/mixing/smoothing; e.g. Fictitious Play

Note: If BR(µ(k)) is not a singleton, it is not clear which element to pick as π(k+1);
there could be infinitely many best responses and yet a unique Nash equilibrium!

37 / 68

Banach-Picard Fixed Point Iterations

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that
▶ µ(k) 7→ π(k+1)

▶ π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

See e.g. [Huang et al., 2006], [Guo et al., 2019]

Can be relaxed with entropy regularization [Anahtarci et al., 2020],
[Cui and Koeppl, 2021], [Yardim et al., 2022], . . .

Can be modified with damping/mixing/smoothing; e.g. Fictitious Play

Note: If BR(µ(k)) is not a singleton, it is not clear which element to pick as π(k+1);
there could be infinitely many best responses and yet a unique Nash equilibrium!

37 / 68

Banach-Picard Fixed Point Iterations

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that
▶ µ(k) 7→ π(k+1)

▶ π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

See e.g. [Huang et al., 2006], [Guo et al., 2019]

Can be relaxed with entropy regularization [Anahtarci et al., 2020],
[Cui and Koeppl, 2021], [Yardim et al., 2022], . . .

Can be modified with damping/mixing/smoothing; e.g. Fictitious Play

Note: If BR(µ(k)) is not a singleton, it is not clear which element to pick as π(k+1);
there could be infinitely many best responses and yet a unique Nash equilibrium!

37 / 68

Fictitious Play

Fictitious Play method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1 µ(k+1) + 1
k+1 µ(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
▶ p is independent of µ
▶ r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
▶ r̃ is monotone: ⟨r̃(x, µ) − r̃(x, µ′), µ − µ′⟩ ≤ 0

Consequence: the exploitability is a Lyapunov function

where the exploitability of π facing µ is:

E(π; µ) = sup J(·; µ)− J(π; µ) ≥ 0

See e.g., [Cardaliaguet and Hadikhanloo, 2017], [Hadikhanloo and Silva, 2019],
[Elie et al., 2020], [Perrin et al., 2020], [Geist et al., 2022],
[Delarue and Vasileiadis, 2021], . . .

38 / 68

Fictitious Play

Fictitious Play method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1 µ(k+1) + 1
k+1 µ(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
▶ p is independent of µ
▶ r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
▶ r̃ is monotone: ⟨r̃(x, µ) − r̃(x, µ′), µ − µ′⟩ ≤ 0

Consequence: the exploitability is a Lyapunov function

where the exploitability of π facing µ is:

E(π; µ) = sup J(·; µ)− J(π; µ) ≥ 0

See e.g., [Cardaliaguet and Hadikhanloo, 2017], [Hadikhanloo and Silva, 2019],
[Elie et al., 2020], [Perrin et al., 2020], [Geist et al., 2022],
[Delarue and Vasileiadis, 2021], . . .

38 / 68

Fictitious Play

Fictitious Play method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1 µ(k+1) + 1
k+1 µ(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
▶ p is independent of µ
▶ r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
▶ r̃ is monotone: ⟨r̃(x, µ) − r̃(x, µ′), µ − µ′⟩ ≤ 0

Consequence: the exploitability is a Lyapunov function

where the exploitability of π facing µ is:

E(π; µ) = sup J(·; µ)− J(π; µ) ≥ 0

See e.g., [Cardaliaguet and Hadikhanloo, 2017], [Hadikhanloo and Silva, 2019],
[Elie et al., 2020], [Perrin et al., 2020], [Geist et al., 2022],
[Delarue and Vasileiadis, 2021], . . .

38 / 68

Fictitious Play

Fictitious Play method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1 µ(k+1) + 1
k+1 µ(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
▶ p is independent of µ
▶ r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
▶ r̃ is monotone: ⟨r̃(x, µ) − r̃(x, µ′), µ − µ′⟩ ≤ 0

Consequence: the exploitability is a Lyapunov function

where the exploitability of π facing µ is:

E(π; µ) = sup J(·; µ)− J(π; µ) ≥ 0

See e.g., [Cardaliaguet and Hadikhanloo, 2017], [Hadikhanloo and Silva, 2019],
[Elie et al., 2020], [Perrin et al., 2020], [Geist et al., 2022],
[Delarue and Vasileiadis, 2021], . . .

38 / 68

Value iteration VS policy iteration

Reminder:

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Requires computation of a best response⇒ fully solving an MDP

This is analogous to value iteration

An alternative method is policy iteration: greedy update & evaluation

Note: these are not “standard” VI and PI because we need to intertwine updates
of the mean field and the policy/value function

39 / 68

Value iteration VS policy iteration

Reminder:

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Requires computation of a best response⇒ fully solving an MDP

This is analogous to value iteration

An alternative method is policy iteration: greedy update & evaluation

Note: these are not “standard” VI and PI because we need to intertwine updates
of the mean field and the policy/value function

39 / 68

Policy iteration

Policy iteration method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxa∈AQ(k+1)(x, a), x ∈ X

Update population’s behavior: µ(k+1) = MF(π(k+1))

where the representative agent’s Q-function, given µ, is:

Qπ,µ(x, a)

= E
[∑

n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See [Cacace et al., 2021], , [Camilli and Tang, 2022], [Tang and Song, 2022],
[Laurière et al., 2023] in the continuous setting, and [Cui and Koeppl, 2021] in
the discrete setting.

The updates can be “smoothed” by averaging→ Online Mirror Descent

40 / 68

Policy iteration

Policy iteration method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxπ∈Π⟨Q(k+1)(x, ·), π⟩, x ∈ X

Update population’s behavior: µ(k+1) = MF(π(k+1))

where the representative agent’s Q-function, given µ, is:

Qπ,µ(x, a)

= E
[∑

n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See [Cacace et al., 2021], , [Camilli and Tang, 2022], [Tang and Song, 2022],
[Laurière et al., 2023] in the continuous setting, and [Cui and Koeppl, 2021] in
the discrete setting.

The updates can be “smoothed” by averaging→ Online Mirror Descent

40 / 68

Policy iteration

Policy iteration method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxπ∈Π⟨Q(k+1)(x, ·), π⟩, x ∈ X

Update population’s behavior: µ(k+1) = MF(π(k+1))

where the representative agent’s Q-function, given µ, is:

Qπ,µ(x, a)

= E
[∑

n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See [Cacace et al., 2021], , [Camilli and Tang, 2022], [Tang and Song, 2022],
[Laurière et al., 2023] in the continuous setting, and [Cui and Koeppl, 2021] in
the discrete setting.

The updates can be “smoothed” by averaging→ Online Mirror Descent
40 / 68

Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68

Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68

Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68

Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68

Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68

Summary for FP and OMD

42 / 68

Other Variations and improvements

Possible ways to fix lack of convergence issues:

Damping / smoothing: e.g.,

µk+1 ← average of past mean fields, πk+1 ← average of past BR, . . .

Softmax policy, e.g.

argmax Q(x, ·)← softmaxτ Q(x, ·)

Entropy regularization, e.g.

r(x, a, µ)← r(x, a, µ)− η log
(

π(a|x)
π̃(a|x)

)
. . .

→ Encompasses many possible variants

43 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

Given the mean field, the problem faced by a representative player is a standard MDP

⇒We can use any RL algorithm from the literature

Next, we provide some examples

44 / 68

Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

Given the mean field, the problem faced by a representative player is a standard MDP

⇒We can use any RL algorithm from the literature

Next, we provide some examples

44 / 68

Systemic Risk

Example (Systemic risk model of [Carmona et al., 2015])

J((an)n; (mn)n) = −E
[NT∑

n=0

(
a2

n −qan(mn −Xn)︸ ︷︷ ︸
borrow if Xn < mn

lend if Xn > mn

+κ(mn−Xn)2
)

+c(mNT −XNT)2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + ϵn+1 + ϵ0
n+1

At equilibrium: mn = E[Xn|ϵ0], n ≥ 0

[Perrin et al., 2020]: Fictitious Play with Backward Induction or tabular Q-learning

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability
45 / 68

Crowd Aversion

Example (Ergodic crowd aversion model of [Almulla et al., 2017])
MFG on T,

f(x, m, α) = 1
2 |α|

2 + f̃(x) + ln(m(x)),

with f̃(x) = 2π2
[
−

∑d

i=1 c sin(2πxi) +
∑d

i=1 |c cos(2πxi)|2
]
− 2

∑d

i=1 c sin(2πxi),

then the solution is given by u(x) = c
∑d

i=1 sin(2πxi) and m(x) = e2u(x)/
∫

e2u

[Elie et al., 2020]: Fictitious Play & DDPG (continuous spaces)

Analytical m m Learnt by Deep RL

46 / 68

Flocking

Example (Flocking aversion model of [Nourian et al., 2011])

state = (position, velocity) = (x, v) ∈ R2d,
{

xn+1 = xn + vn∆t,

vn+1 = vn + an∆t + ϵn+1,

with running cost: fflock
β (x, v, µ) =

∥∥∥∥∫
R2d

(v − v′)
(1 + ∥x− x′∥2)β

dµ(x′, v′)
∥∥∥∥2

,

where β ≥ 0, and µ is the position-velocity distribution.

[Perrin et al., 2021b]: For continuous space problems: Deep RL
Deep RL (SAC) for the policy (≈ control)
Deep NN (normalizing flow) for the population distribution

Initial distribution At convergence
Video: https://www.youtube.com/watch?v=TdXysW_FA3k

47 / 68

https://www.youtube.com/watch?v=TdXysW_FA3k

Building Evacuation [Pérolat et al., 2022]

Example (Crowd motion during building evacuation)
Grid world with movement to neighboring cells, and reward:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Inspired by [Djehiche et al., 2017]

Initial distribution

48 / 68

Building Evacuation [Pérolat et al., 2022]

Example (Crowd motion during building evacuation)
Grid world with movement to neighboring cells, and reward:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Inspired by [Djehiche et al., 2017]

FP (red, α = 10−5), FP damped (green, α = 10−3) and OMD (blue, α = 10−4)
48 / 68

Four room exploration [Geist et al., 2022]

Crowd motion in 2D grid world, r(x, a, µ) = − log(µ(x)). (See also lecture 1)

Fixed point Fictitious Play OMD Damped Fixed Point

Softmax Fixed Point Softmax FP Boltzmann PI

49 / 68

Deep OMD and Deep FP [Laurière et al., 2022b]

Crowd exiting a maze, with congestion effects in the reward
Deep RL combined with Online Mirror Descent & Fictitious Play

0 10 20

0

5

10

15

20
0 10 20 0 10 20 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0 50000 100000 150000 200000 250000 300000
step

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

You can reproduce this experiment in OpenSpiel! (see next section)

50 / 68

Deep OMD and Deep FP [Laurière et al., 2022b]

Crowd exiting a maze, with congestion effects in the reward
Deep RL combined with Online Mirror Descent & Fictitious Play

0 10 20

0

5

10

15

20
0 10 20 0 10 20 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0 50000 100000 150000 200000 250000 300000
step

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

You can reproduce this experiment in OpenSpiel! (see next section)
50 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion

Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]

51 / 68

Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]

51 / 68

Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]

51 / 68

Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]

51 / 68

Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]

51 / 68

Numerical Results on LQ Example [Angiuli et al., 2022c]

Extra difficulty: the agent needs to estimate the distribution

Environment

Agent

Cost

ftn+1

State

Xtn+1

Distribution
µtn

Action

Atn

Cost

ftn

State

Xtn

Numerical illustration: Linear-quadratic example

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
state x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFC solution (ρQ < ρµ)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFG solution (ρQ > ρµ)

52 / 68

Numerical Results on LQ Example [Angiuli et al., 2022c]

Extra difficulty: the agent needs to estimate the distribution

Environment

Agent

Cost

ftn+1

State

Xtn+1

Distribution
µtn

Action

Atn

Cost

ftn

State

Xtn

Numerical illustration: Linear-quadratic example

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
state x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFC solution (ρQ < ρµ)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
state x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

α(
x)

MFG m=0.80
MFC m=0.05
 control a eraged o er 10 runs

ergodic distribution
 distribution a eraged o er 10 runs and last 10k episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

μ

MFG solution (ρQ > ρµ)

52 / 68

Comments

Tuning properly the two learning rates is not trivial

Proof of convergence (ongoing work with Andrea Angiuli, Jean-Pierre Fouque,
and Mengrui Zhang)

Application to other models, such as mean field control games
[Angiuli et al., 2022b, Angiuli et al., 2022a]: mean field of players in a Nash
equilibrium, where each agent is of mean field type (solves an MFC)→ 3 time
scales

Continuous setting (ongoing work of Andrea Angiuli, Jean-Pierre Fouque,
Ruimeng Hu et al.)

RL for MFG without oracle for the distribution [Zaman et al., 2023]

53 / 68

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

OpenSpiel

Open source framework for research in learning in games

Main motivation: multi-agent reinforcement learning (MARL)

Marc Lanctot (Google DeepMind) + many contributors

Mostly in C++ and Python; APIs in Julia, . . .

Various games including zero-sum games, N-player games, imperfect
information, . . .

Chess, Blackjack, Atari, Kuhn poker, Go, . . .

And also: Mean field games

54 / 68

OpenSpiel

Introduction to OpenSpiel:

https://openspiel.readthedocs.io/en/latest/intro.html

Python notebook:
https://colab.research.google.com/github/deepmind/open_
spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb

Tutorials by Marc Lanctot available online:
https://www.youtube.com/watch?v=8NCPqtPwlFQ

Paper [Lanctot et al., 2019]

Two big components:

▶ Games

▶ Algorithms

55 / 68

https://openspiel.readthedocs.io/en/latest/intro.html
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://www.youtube.com/watch?v=8NCPqtPwlFQ

MFG in OpenSpiel

Julien Pérolat, Raphael Marinier, Sertan Girgin & growing number of contributors
Théophille Cabannes, Sarah Perrin, Paul Muller, . . .

For today, two main questions:

▶ How to define a new MFG model (environment)?

▶ How to define a new algorithm to learn the MFG solution?

56 / 68

Existing codes for MFG in OpenSpiel

MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [Perrin et al., 2020]
▶ Crowd modeling 2D illustrated in [Perrin et al., 2020, Geist et al., 2022]
▶ Dynamic routing illustrated in [Cabannes et al., 2022]
▶ Linear quadratic (1D) illustrated in [Laurière et al., 2022b]
▶ Predator prey (multi-population 2D) illustrated in [Pérolat et al., 2022]

MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [Laurière et al., 2022b]
▶ Boltzmann policy iteration [Cui and Koeppl, 2021]
▶ Fictitious play [Perrin et al., 2020], . . .
▶ Fixed point
▶ Mirror descent [Pérolat et al., 2022]
▶ Munchausen deep mirror descent [Laurière et al., 2022b]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!

57 / 68

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples

Existing codes for MFG in OpenSpiel

MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [Perrin et al., 2020]
▶ Crowd modeling 2D illustrated in [Perrin et al., 2020, Geist et al., 2022]
▶ Dynamic routing illustrated in [Cabannes et al., 2022]
▶ Linear quadratic (1D) illustrated in [Laurière et al., 2022b]
▶ Predator prey (multi-population 2D) illustrated in [Pérolat et al., 2022]

MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [Laurière et al., 2022b]
▶ Boltzmann policy iteration [Cui and Koeppl, 2021]
▶ Fictitious play [Perrin et al., 2020], . . .
▶ Fixed point
▶ Mirror descent [Pérolat et al., 2022]
▶ Munchausen deep mirror descent [Laurière et al., 2022b]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)

Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!

57 / 68

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples

Existing codes for MFG in OpenSpiel

MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [Perrin et al., 2020]
▶ Crowd modeling 2D illustrated in [Perrin et al., 2020, Geist et al., 2022]
▶ Dynamic routing illustrated in [Cabannes et al., 2022]
▶ Linear quadratic (1D) illustrated in [Laurière et al., 2022b]
▶ Predator prey (multi-population 2D) illustrated in [Pérolat et al., 2022]

MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [Laurière et al., 2022b]
▶ Boltzmann policy iteration [Cui and Koeppl, 2021]
▶ Fictitious play [Perrin et al., 2020], . . .
▶ Fixed point
▶ Mirror descent [Pérolat et al., 2022]
▶ Munchausen deep mirror descent [Laurière et al., 2022b]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!
57 / 68

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples

MFG model in OpenSpiel: State

Q1. How to define a new MFG model?

State of the game = all the information required to describe the current stage

In an MFG: representative player’s state and mean field state

Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

The state evolves along a tree of possibilities

58 / 68

MFG model in OpenSpiel: State

Q1. How to define a new MFG model?

State of the game = all the information required to describe the current stage

In an MFG: representative player’s state and mean field state

Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

The state evolves along a tree of possibilities

58 / 68

MFG model in OpenSpiel: State

Q1. How to define a new MFG model?

State of the game = all the information required to describe the current stage

In an MFG: representative player’s state and mean field state

Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

The state evolves along a tree of possibilities

58 / 68

MFG model in OpenSpiel: State evolution

59 / 68

MFG model in OpenSpiel: State types

Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

Chance:
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

Mean field: no actions

60 / 68

MFG model in OpenSpiel: State types

Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

Chance:
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

Mean field: no actions

60 / 68

MFG model in OpenSpiel: State types

Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

Chance:
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

Mean field: no actions

60 / 68

MFG model in OpenSpiel: State types

Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

Chance:
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

Mean field: no actions

60 / 68

MFG in OpenSpiel: Distribution

The distribution is something specific to MFGs (compared with other games in
OpenSpiel)

Remember that time is part of the state object. Evaluating the distribution at a
given state means evaluating the distribution at (t, x).

master/open_spiel/python/mfg/algorithms/distribution.py

▶ Computes the distribution of a policy
▶ DistributionPolicy

⋆ evaluate: based on the logic behind nodes
⋆ _one_forward_step

master/open_spiel/python/mfg/distribution.py

▶ Representation of a distribution for a game
▶ Distribution

master/open_spiel/python/mfg/tabular_distribution.py

▶ Tabular representation of a distribution for a game
▶ TabularDistribution

61 / 68

master/open_spiel/python/mfg/algorithms/distribution.py
master/open_spiel/python/mfg/distribution.py
master/open_spiel/python/mfg/tabular_distribution.py

MFG model in OpenSpiel: Example

We take a concrete example: crowd modeling in 1D with a grid world

master/open_spiel/python/mfg/games/crowd_modelling.py

3 main classes

MFGCrowdModellingGame:
▶ __init__: initialization
▶ new_initial_state: generate new initial state

MFGCrowdModellingState:
▶ __init__: initialization
▶ _legal_actions: actions that are valid
▶ chance_outcomes: distribution over values of the noise in the dynamics
▶ _apply_action: will be called at each node to modify the state based on the action
▶ _rewards: representative player’s reward

Observer:
▶ defines an observation, here basically t and x

62 / 68

 master/open_spiel/python/mfg/games/crowd_modelling.py

MFG algorithms in OpenSpiel: Principles

Q2. How to define a new algorithm?

Simplest one: Fixed point
master/open_spiel/python/mfg/algorithms/fixed_point.py

A bit more involved: Fictitious play
master/open_spiel/python/mfg/algorithms/fictitious_play.py

Main class FictitiousPlay

Main method iteration

▶ Compute the distribution (sequence) associated to the current policy
▶ Update the policy (using fictitious play rule); this uses an auxiliary class

MergedPolicy to mix the previous policy and the new one

get_policy: returns the current policy

63 / 68

master/open_spiel/python/mfg/algorithms/fixed_point.py
master/open_spiel/python/mfg/algorithms/fictitious_play.py

MFG algorithms in OpenSpiel: Reinforcement Learning

Two building blocks:

Environment (in the sense of RL): in charge of updating the State based on the
based on the Game

Agent: block in charge of training the policy by interacting with the environment

Example of DQN (fixed distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_jax.py

Example of DQN embedded in Fictitious Play (updating the distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py

Key steps:
fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)
distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just
computed by fictitious play iteration
env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration
agents[p].step(time_step): train the agent

64 / 68

master/open_spiel/python/mfg/examples/mfg_dqn_jax.py
master/open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py

MFG algorithms in OpenSpiel: Reinforcement Learning

Two building blocks:

Environment (in the sense of RL): in charge of updating the State based on the
based on the Game

Agent: block in charge of training the policy by interacting with the environment

Example of DQN (fixed distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_jax.py

Example of DQN embedded in Fictitious Play (updating the distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py

Key steps:
fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)
distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just
computed by fictitious play iteration
env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration
agents[p].step(time_step): train the agent

64 / 68

master/open_spiel/python/mfg/examples/mfg_dqn_jax.py
master/open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py

Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1HyDFqZ-qMW25sL1zyR2qYv86f_ldrm5g?usp=sharing

MFG example in OpenSpiel

65 / 68

https://colab.research.google.com/drive/1HyDFqZ-qMW25sL1zyR2qYv86f_ldrm5g?usp=sharing
https://colab.research.google.com/drive/1HyDFqZ-qMW25sL1zyR2qYv86f_ldrm5g?usp=sharing

Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion

Summary (of this lecture)

Background on RL

RL for MFC
▶ Mean Field MDP viewpoint

RL for MFG
▶ Meta-algorithm to update the mean field
▶ RL algorithm to update the policy

Open Spiel

Survey paper: [Laurière et al., 2022a]

66 / 68

Summary of this course

67 / 68

Some References

• Introduction to Mean Field Games:
• Pierre-Louis Lions’ lectures at Collège de France (https://www.college-de-france.fr/)
• Pierre Cardaliaguet’s notes (2013): https://www.ceremade.dauphine.fr/ cardaliaguet/MFG20130420.pdf
• Gomes, D. A., & Saúde, J. (2014). Mean field games models—a brief survey. Dynamic Games and Applications, 4, 110-154.
• Cardaliaguet, P., & Porretta, A. (2020). An Introduction to Mean Field Game Theory. In Mean Field Games (pp. 1-158).

Springer, Cham.
• Carmona, Delarue, Graves, Lacker, Laurière, Malhamé & Ramanan: Lecture notes of the 2020 AMS Short Course on Mean

Field Games (American Mathematical Society), organized by François Delarue
• Achdou, Y., Cardaliaguet, P., Delarue, F., Porretta, A., & Santambrogio, F. (2021). Mean Field Games: Cetraro, Italy 2019

(Vol. 2281). Springer Nature.
• Delarue, F. (Ed.). (2021). Mean Field Games (Vol. 78). American Mathematical Society.

• Monographs on Mean Field Games and Mean Field Control:
• Bensoussan, A., Frehse, J., & Yam, P. (2013). Mean field games and mean field type control theory (Vol. 101). New York:

Springer.
• Gomes, D. A., Pimentel, E. A., & Voskanyan, V. (2016). Regularity theory for mean-field game systems. New York: Springer.
• Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs,

Control, and Games (Vol. 83). Springer.
• Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with

Common Noise and Master Equations (Vol. 84). Springer.

• Surveys about numerical methods for MFGs:
• Achdou, Y. (2013). Finite difference methods for mean field games. In Hamilton-Jacobi equations: approximations,

numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.
• Achdou, Y., & Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects. Mean Field Games: Cetraro,

Italy 2019, 2281, 249.
• Laurière, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. Lecture notes for the AMS’20

short course. arXiv preprint arXiv:2106.06231.
• Carmona, R., & Laurière, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to

Finance. arXiv preprint arXiv:2107.04568.
• Hu, R., & Laurière, M. (2023). Recent developments in machine learning methods for stochastic control and games. arXiv

preprint arXiv:2303.10257.
• Laurière, M., Perrin, S., Geist, M., & Pietquin, O. (2022). Learning mean field games: A survey. arXiv preprint

arXiv:2205.12944.
68 / 68

Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu

References I

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).
Two numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657–682.

[Anahtarci et al., 2019] Anahtarci, B., Kariksiz, C. D., and Saldi, N. (2019).
Fitted q-learning in mean-field games.
arXiv preprint arXiv:1912.13309.

[Anahtarci et al., 2020] Anahtarci, B., Kariksiz, C. D., and Saldi, N. (2020).
Q-learning in regularized mean-field games.

[Anahtarcı et al., 2021] Anahtarcı, B., Karıksız, C. D., and Saldi, N. (2021).
Learning in discounted-cost and average-cost mean-field games.

[Angiuli et al., 2022a] Angiuli, A., Detering, N., Fouque, J.-P., Lauriere, M., and Lin, J. (2022a).
Reinforcement learning algorithm for mixed mean field control games.
arXiv preprint arXiv:2205.02330.

[Angiuli et al., 2022b] Angiuli, A., Detering, N., Fouque, J.-P., Laurière, M., and Lin, J. (2022b).
Reinforcement learning for intra-and-inter-bank borrowing and lending mean field control
game.
In Proceedings of the Third ACM International Conference on AI in Finance, pages 369–376.

[Angiuli et al., 2022c] Angiuli, A., Fouque, J.-P., and Laurière, M. (2022c).
Unified reinforcement q-learning for mean field game and control problems.
Mathematics of Control, Signals, and Systems, 34(2):217–271.

1 / 17

References II

[Angiuli et al., 2020] Angiuli, A., Fouque, J.-P., Laurière, M., and Zhang, M. (2020).
Convergence of two-timescale stochastic approximation for learning MFG and MFC.
In preparation.

[Angiuli and Hu, 2021] Angiuli, A. and Hu, R. (2021).
Deep reinforcement learning for mean field games and mean field control problems in
continuous spaces.
In preparation.

[Anthony et al., 2017] Anthony, T., Tian, Z., and Barber, D. (2017).
Thinking fast and slow with deep learning and tree search.
In Proceedings of NeurIPS.

[Bertsekas and Shreve, 1996] Bertsekas, D. P. and Shreve, S. E. (1996).
Stochastic optimal control: the discrete-time case, volume 5.
Athena Scientific.

[Bowling et al., 2015] Bowling, M., Burch, N., Johanson, M., and Tammelin, O. (2015).
Heads-up limit hold’em poker is solved.
Science, 347(6218).

[Brown and Sandholm, 2017] Brown, N. and Sandholm, T. (2017).
Superhuman AI for heads-up no-limit poker: Libratus beats top professionals.
Science, 360(6385).

2 / 17

References III

[Brown and Sandholm, 2019] Brown, N. and Sandholm, T. (2019).
Superhuman AI for multiplayer poker.
Science, 365(6456).

[Cabannes et al., 2022] Cabannes, T., Laurière, M., Perolat, J., Marinier, R., Girgin, S., Perrin,
S., Pietquin, O., Bayen, A. M., Goubault, E., and Elie, R. (2022).
Solving n-player dynamic routing games with congestion: A mean-field approach.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 1557–1559.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021).
A policy iteration method for mean field games.
ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).
Rates of convergence for the policy iteration method for mean field games systems.
Journal of Mathematical Analysis and Applications, 512(1):126138.

[Campbell et al., 2002] Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002).
Deep Blue.
Artificial intelligence, 134(1-2).

[Cardaliaguet and Hadikhanloo, 2017] Cardaliaguet, P. and Hadikhanloo, S. (2017).
Learning in mean field games: the fictitious play.
ESAIM Control Optim. Calc. Var., 23(2):569–591.

3 / 17

References IV

[Carmona et al., 2015] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk.
Commun. Math. Sci., 13(4):911–933.

[Carmona et al., 2020] Carmona, R., Hamidouche, K., Laurière, M., and Tan, Z. (2020).
Policy optimization for linear-quadratic zero-sum mean-field type games.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1038–1043. IEEE.

[Carmona et al., 2019a] Carmona, R., Laurière, M., and Tan, Z. (2019a).
Linear-quadratic mean-field reinforcement learning: Convergence of policy gradient methods.
Preprint.

[Carmona et al., 2019b] Carmona, R., Laurière, M., and Tan, Z. (2019b).
Model-free mean-field reinforcement learning: mean-field mdp and mean-field q-learning.
To appear in Annals of Applied Probability. arXiv preprint arXiv:1910.12802.

[Chen et al., 2021] Chen, Y., Liu, J., and Khoussainov, B. (2021).
Maximum entropy inverse reinforcement learning for mean field games.
arXiv preprint arXiv:2104.14654.

[Chen et al., 2022] Chen, Y., Zhang, L., Liu, J., and Hu, S. (2022).
Individual-level inverse reinforcement learning for mean field games.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 253–262.

4 / 17

References V

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).
Approximately solving mean field games via entropy-regularized deep reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 1909–1917. PMLR.

[Cui et al., 2021] Cui, K., Tahir, A., Sinzger, M., and Koeppl, H. (2021).
Discrete-time mean field control with environment states.
In 2021 60th IEEE Conference on Decision and Control (CDC), pages 5239–5246. IEEE.

[Delarue and Vasileiadis, 2021] Delarue, F. and Vasileiadis, A. (2021).
Exploration noise for learning linear-quadratic mean field games.
arXiv preprint arXiv:2107.00839.

[Djehiche et al., 2017] Djehiche, B., Tcheukam, A., and Tembine, H. (2017).
A mean-field game of evacuation in multilevel building.
IEEE Transactions on Automatic Control, 62(10):5154–5169.

[Djete et al., 2019] Djete, M. F., Possamaï, D., and Tan, X. (2019).
Mckean-vlasov optimal control: the dynamic programming principle.
arXiv preprint arXiv:1907.08860.

[Elie et al., 2020] Elie, R., Perolat, J., Laurière, M., Geist, M., and Pietquin, O. (2020).
On the convergence of model free learning in mean field games.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
7143–7150.

5 / 17

References VI

[Fazel et al., 2018] Fazel, M., Ge, R., Kakade, S., and Mesbahi, M. (2018).
Global convergence of policy gradient methods for the linear quadratic regulator.
In International Conference on Machine Learning, pages 1467–1476. PMLR.

[Fu et al., 2019] Fu, Z., Yang, Z., Chen, Y., and Wang, Z. (2019).
Actor-critic provably finds nash equilibria of linear-quadratic mean-field games.
In International Conference on Learning Representations.

[Fudenberg and Levine, 2009] Fudenberg, D. and Levine, D. K. (2009).
Learning and equilibrium.
Annu. Rev. Econ., 1(1):385–420.

[Fudenberg et al., 1998] Fudenberg, D., Levine, D. K., et al. (1998).
The theory of learning in games.
MIT Press Books, 1.

[Gast and Gaujal, 2011] Gast, N. and Gaujal, B. (2011).
A mean field approach for optimization in discrete time.
Discrete Event Dynamic Systems, 21(1):63–101.

[Gast et al., 2012] Gast, N., Gaujal, B., and Le Boudec, J.-Y. (2012).
Mean field for markov decision processes: from discrete to continuous optimization.
IEEE Transactions on Automatic Control, 57(9):2266–2280.

6 / 17

References VII

[Geist et al., 2022] Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos,
R., and Pietquin, O. (2022).
Concave utility reinforcement learning: The mean-field game viewpoint.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 489–497.

[Gu et al., 2020] Gu, H., Guo, X., Wei, X., and Xu, R. (2020).
Q-learning for mean-field controls.
arXiv preprint arXiv:2002.04131.

[Gu et al., 2021a] Gu, H., Guo, X., Wei, X., and Xu, R. (2021a).
Mean-field controls with q-learning for cooperative marl: convergence and complexity
analysis.
SIAM Journal on Mathematics of Data Science, 3(4):1168–1196.

[Gu et al., 2021b] Gu, H., Guo, X., Wei, X., and Xu, R. (2021b).
Mean-field multi-agent reinforcement learning: A decentralized network approach.
arXiv preprint arXiv:2108.02731.

[Gu et al., 2023] Gu, H., Guo, X., Wei, X., and Xu, R. (2023).
Dynamic programming principles for mean-field controls with learning.
Operations Research.

7 / 17

References VIII

[Guo et al., 2019] Guo, X., Hu, A., Xu, R., and Zhang, J. (2019).
Learning mean-field games.
Advances in Neural Information Processing Systems, 32:4966–4976.

[Guo et al., 2023] Guo, X., Hu, A., Xu, R., and Zhang, J. (2023).
A general framework for learning mean-field games.
Mathematics of Operations Research, 48(2):656–686.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor.
In International conference on machine learning, pages 1861–1870. PMLR.

[Hadikhanloo, 2018] Hadikhanloo, S. (2018).
Learning in mean field games.
PhD thesis, PSL Research University.

[Hadikhanloo et al., 2021] Hadikhanloo, S., Laraki, R., Mertikopoulos, P., and Sorin, S. (2021).
Learning in nonatomic games, part i: Finite action spaces and population games.
arXiv preprint arXiv:2107.01595.

[Hadikhanloo and Silva, 2019] Hadikhanloo, S. and Silva, F. J. (2019).
Finite mean field games: fictitious play and convergence to a first order continuous mean field
game.
Journal de Mathématiques Pures et Appliquées, 132:369–397.

8 / 17

References IX

[Huang et al., 2006] Huang, M., Malhamé, R. P., Caines, P. E., et al. (2006).
Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the
nash certainty equivalence principle.
Communications in Information & Systems, 6(3):221–252.

[Kolokoltsov and Bensoussan, 2016] Kolokoltsov, V. N. and Bensoussan, A. (2016).
Mean-field-game model for botnet defense in cyber-security.
Appl. Math. Optim., 74(3):669–692.

[Lanctot et al., 2019] Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S.,
Pérolat, J., Srinivasan, S., Timbers, F., Tuyls, K., Omidshafiei, S., et al. (2019).
Openspiel: A framework for reinforcement learning in games.
arXiv preprint arXiv:1908.09453.

[Laurière, 2021] Laurière, M. (2021).
Numerical methods for mean field games and mean field type control.
arXiv preprint arXiv:2106.06231.

[Laurière et al., 2022a] Laurière, M., Perrin, S., Geist, M., and Pietquin, O. (2022a).
Learning mean field games: A survey.
arXiv preprint arXiv:2205.12944.

9 / 17

References X

[Laurière et al., 2022b] Laurière, M., Perrin, S., Girgin, S., Muller, P., Jain, A., Cabannes, T.,
Piliouras, G., Pérolat, J., Elie, R., Pietquin, O., et al. (2022b).
Scalable deep reinforcement learning algorithms for mean field games.
In International Conference on Machine Learning, pages 12078–12095. PMLR.

[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016).
Dynamic programming for mean-field type control.
J. Optim. Theory Appl., 169(3):902–924.

[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).
Policy iteration method for time-dependent mean field games systems with non-separable
hamiltonians.
Applied Mathematics & Optimization, 87(2):17.

[Lillicrap et al., 2016] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning.
In ICLR (Poster).

[McAleer et al., 2020] McAleer, S., Lanier, J., Fox, R., and Baldi, P. (2020).
Pipeline PSRO: A scalable approach for finding approximate nash equilibria in large games.
In Proceedings of NeurIPS.

10 / 17

References XI

[Mguni et al., 2018] Mguni, D., Jennings, J., and de Cote, E. M. (2018).
Decentralised learning in systems with many, many strategic agents.
In Thirty-Second AAAI Conference on Artificial Intelligence.

[Mitchell et al., 1997] Mitchell, T. M. et al. (1997).
Machine learning.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013).
Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

[Moravčík et al., 2017] Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis,
T., Waugh, K., Johanson, M., and Bowling, M. (2017).
Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science, 356(6337).

[Motte and Pham, 2019] Motte, M. and Pham, H. (2019).
Mean-field Markov decision processes with common noise and open-loop controls.
arXiv preprint arXiv:1912.07883.

[Nourian et al., 2011] Nourian, M., Caines, P. E., and Malhamé, R. P. (2011).
Mean field analysis of controlled cucker-smale type flocking: Linear analysis and perturbation
equations.
IFAC Proceedings Volumes, 44(1):4471–4476.

11 / 17

References XII

[Pásztor et al., 2023] Pásztor, B., Krause, A., and Bogunovic, I. (2023).
Efficient model-based multi-agent mean-field reinforcement learning.
Transactions on Machine Learning Research.

[Perolat et al., 2022] Perolat, J., De Vylder, B., Hennes, D., Tarassov, E., Strub, F., de Boer, V.,
Muller, P., Connor, J. T., Burch, N., Anthony, T., et al. (2022).
Mastering the game of stratego with model-free multiagent reinforcement learning.
Science, 378(6623):990–996.

[Pérolat et al., 2022] Pérolat, J., Perrin, S., Elie, R., Laurière, M., Piliouras, G., Geist, M., Tuyls,
K., and Pietquin, O. (2022).
Scaling mean field games by online mirror descent.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 1028–1037.

[Perrin et al., 2022] Perrin, S., Laurière, M., Pérolat, J., Élie, R., Geist, M., and Pietquin, O.
(2022).
Generalization in mean field games by learning master policies.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
9413–9421.

[Perrin et al., 2021a] Perrin, S., Laurière, M., Pérolat, J., Geist, M., Élie, R., and Pietquin, O.
(2021a).
Mean field games flock! the reinforcement learning way.
arXiv preprint arXiv:2105.07933.

12 / 17

References XIII

[Perrin et al., 2021b] Perrin, S., Laurière, M., Pérolat, J., Geist, M., Élie, R., and Pietquin, O.
(2021b).
Mean field games flock! the reinforcement learning way.
In IJCAI.

[Perrin et al., 2020] Perrin, S., Pérolat, J., Laurière, M., Geist, M., Elie, R., and Pietquin, O.
(2020).
Fictitious play for mean field games: Continuous time analysis and applications.
Advances in Neural Information Processing Systems.

[Pham and Wei, 2017] Pham, H. and Wei, X. (2017).
Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics.
SIAM J. Control Optim., 55(2):1069–1101.

[Ramponi et al., 2023] Ramponi, G., Kolev, P., Pietquin, O., He, N., Laurière, M., and Geist, M.
(2023).
On imitation in mean-field games.
arXiv preprint arXiv:2306.14799.

[Schaeffer et al., 2007] Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake,
R., Lu, P., and Sutphen, S. (2007).
Checkers is solved.
Science, 317(5844).

13 / 17

References XIV

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016).
Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587).

[Silver et al., 2018] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.
(2018).
A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play.
Science, 632(6419).

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017).
Mastering the game of Go without human knowledge.
Nature, 550(7676).

[Subramanian and Mahajan, 2019] Subramanian, J. and Mahajan, A. (2019).
Reinforcement learning in stationary mean-field games.
In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, pages 251–259.

14 / 17

References XV

[Subramanian et al., 2020a] Subramanian, S. G., Poupart, P., Taylor, M. E., and Hegde, N.
(2020a).
Multi type mean field reinforcement learning.
CoRR, abs/2002.02513.

[Subramanian et al., 2020b] Subramanian, S. G., Taylor, M. E., Crowley, M., and Poupart, P.
(2020b).
Partially observable mean field reinforcement learning.
CoRR, abs/2012.15791.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018).
Reinforcement learning: An introduction.
MIT press.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).
Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms.
arXiv preprint arXiv:2212.04791.

[uz Zaman et al., 2022] uz Zaman, M. A., Miehling, E., and Başar, T. (2022).
Reinforcement learning for non-stationary discrete-time linear–quadratic mean-field games in
multiple populations.
Dynamic Games and Applications, pages 1–47.

15 / 17

References XVI

[uz Zaman et al., 2020] uz Zaman, M. A., Zhang, K., Miehling, E., and Bas, ar, T. (2020).
Reinforcement learning in non-stationary discrete-time linear-quadratic mean-field games.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 2278–2284. IEEE.

[Vinyals et al., 2019] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019).
Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782).

[Wang et al., 2021] Wang, W., Han, J., Yang, Z., and Wang, Z. (2021).
Global convergence of policy gradient for linear-quadratic mean-field control/game in
continuous time.
In International Conference on Machine Learning, pages 10772–10782. PMLR.

[Xie et al., 2021] Xie, Q., Yang, Z., Wang, Z., and Minca, A. (2021).
Learning while playing in mean-field games: Convergence and optimality.
In Meila, M. and Zhang, T., editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
11436–11447. PMLR.

[Yang et al., 2017] Yang, J., Ye, X., Trivedi, R., Xu, H., and Zha, H. (2017).
Deep mean field games for learning optimal behavior policy of large populations.
CoRR, abs/1711.03156.

16 / 17

References XVII

[Yang et al., 2018] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. (2018).
Mean field multi-agent reinforcement learning.
In Proceedings of ICML.

[Yardim et al., 2022] Yardim, B., Cayci, S., Geist, M., and He, N. (2022).
Policy mirror ascent for efficient and independent learning in mean field games.
arXiv preprint arXiv:2212.14449.

[Yardim et al., 2023] Yardim, B., Cayci, S., Geist, M., and He, N. (2023).
Policy mirror ascent for efficient and independent learning in mean field games.
In International Conference on Machine Learning, pages 39722–39754. PMLR.

[Yongacoglu et al., 2022] Yongacoglu, B., Arslan, G., and Yüksel, S. (2022).
Independent learning and subjectivity in mean-field games.
In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 2845–2850. IEEE.

[Zaman et al., 2023] Zaman, M. A. U., Koppel, A., Bhatt, S., and Basar, T. (2023).
Oracle-free reinforcement learning in mean-field games along a single sample path.
In International Conference on Artificial Intelligence and Statistics, pages 10178–10206.
PMLR.

17 / 17

	Introduction
	RL for MFC (MFRL)
	Setting
	Model-Free Policy Gradient for MFC
	Q-Learning for MFC

	RL for MFGs
	Setting
	Learning/Optimization Methods
	Reinforcement Learning Methods
	Unifying RL for MFC and MFG: a Two Timescale Approach

	MFGs in OpenSpiel
	Conclusion
	Appendix

