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Motivations

In the methods discussed so far, the algorithm uses the full knowledge of the
model

▶ to write the ODEs or PDEs (lectures 2, 3 and 5)
▶ to write the FBSDEs (lecture 4)
▶ to compute the gradient in the direct approach (lecture 4)

Can we learn the solution without using the full knowledge the model and by
instead relying on a simulator? → model-free reinforcement learning (RL)

Motivations
▶ sometimes we really do not know the model and we only have a simulator

(e.g., nature)

▶ sometimes we do know the model, but using an exact method is too costly
(e.g., very large spaces / complex models)
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Motivations

(Reinforcement) Learning in games: many recent successes, e.g.:

Go [Silver et al., 2016, Silver et al., 2017, Silver et al., 2018],
Chess [Campbell et al., 2002], Checkers [Schaeffer et al., 2007],
Hex [Anthony et al., 2017], Starcraft II [Vinyals et al., 2019], poker
games [Brown and Sandholm, 2017, Brown and Sandholm, 2019,
Moravčík et al., 2017, Bowling et al., 2015], Stratego [McAleer et al., 2020],
[Perolat et al., 2022] . . .

Motivations for combining RL and MFGs:
Scaling up population size→ Mean Field Games

Scaling up environment complexity→ (model-free) Reinforcement Learning
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Reinforcement Learning – Setup

Markov Decision Process (MDP): (X ,A, p, r, γ), where:
• X : state space, A : action space,
• p : X ×A → P(X ) : transition kernel, p(·|s, a) gives next state’s distribution
• r : X ×A → R : reward function, γ ∈ (0, 1) : discount factor

Goal: Find (stationary, mixed) policy π∗ : X → P(A) maximizing:

R(π) = E

[∑
n≥0

γnr(sn, an)

]
, with an ∼ π(·|sn), sn+1 ∼ p(·|sn, an)

Model: p, r

Two settings:

(1) Known model : Optimal control theory & methods

(2) Sample transitions & rewards: Reinforcement Learning (RL) framework
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Reinforcement Learning – Paradigm

We want to learn the best control by performing experiments of the form:

Given the current state St,
(1) Take an action At

(2) Observe reward Rt+1 & new state St+1

Source: [Sutton and Barto, 2018]
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Reinforcement Learning – Methods

Learning the policy:
▶ Policy Gradient

θ(k+1) = θ(k) − η(k)∇J(θ(k)), π(k)(a|s) = π(s|a, θ(k))

▶ PPO, TRPO
▶ . . .

Learning the value function:
▶ Q-learning

Q∗(s, a) = r(s, a) + γ max
π

Es′∼p(·|s,a),a′∼π(·|s′)

[
Q∗(s′, a′)

]
Note: V ∗(s) = max

a∈A
Q∗(s, a), α∗(s) = argmaxa∈A Q∗(s, a)

▶ Deep Q-neural network (DQN)
▶ . . .

Hybrid:
▶ Deep Deterministic Policy Gradient (DDPG)
▶ Soft Actor Critic (SAC)
▶ . . .
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RL Taxonomy

Source: [OpenAI Spinning Up]1

1
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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DQN

Source: [Mnih et al., 2013]
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DDPG

Source: [Lillicrap et al., 2016]
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SAC

Source: [Haarnoja et al., 2018]
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RL Setting for MFG and MFC

Intuitively:

MFG: a representative agent learns by interacting with an environment, which
depends on the population distribution

MFC: the whole population learns

Environment

Agent

Reward
rn+1

State
xn+1

Distribution
µn

Action
an

Reward
rn

State
xn

Environment

Population

Reward

rn+1

MF State

µn+1

Action

an

Reward

rn

MF State
µn
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Population Distribution Approximation

How to deal with the population distribution µ?

Empirical distribution µN

Histogram (discrete state space)

ϵ-net in P(X )

Function approximation for the density:

▶ Kernels
▶ Neural nets: normalizing flows, . . .
▶ . . .

. . .

So far, most of the literature on RL for MFGs focuses on finite state space models

But see e.g. [Perrin et al., 2021a] in continuous space using normalizing flows
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A (Non-exhaustive) Glance at the literature: RL for MFG

MARL with mean field approximation: [Yang et al., 2018]
Inverse RL: [Yang et al., 2017], [Chen et al., 2021], [Chen et al., 2022],
[Ramponi et al., 2023]
Multi-time scales: [Subramanian and Mahajan, 2019],
[Angiuli et al., 2022c, Angiuli et al., 2020, Angiuli and Hu, 2021]
Fictitious Play with tabular RL: [Perrin et al., 2020], with deep RL:
[Elie et al., 2020, Cui and Koeppl, 2021] and distribution embedding:
[Perrin et al., 2021b]; with common noise [Delarue and Vasileiadis, 2021]
Fixed point iterations with Q-learning and variants:
[Guo et al., 2019, Guo et al., 2023],
[Anahtarci et al., 2019, Anahtarcı et al., 2021], [Xie et al., 2021]
Entropy regularization: [Anahtarci et al., 2020], [Cui and Koeppl, 2021]
LQ MFG with actor-Critic: [Fu et al., 2019, uz Zaman et al., 2020], or policy
gradient: [Wang et al., 2021]
RL for partially observable MFG: [Subramanian et al., 2020b]
Mean field RL for multiple types:
[Subramanian et al., 2020a, uz Zaman et al., 2022]
Learning Master policies with deep RL: [Perrin et al., 2022]
Independent learning: [Yongacoglu et al., 2022], [Yardim et al., 2023]
. . .
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A (Non-exhaustive) Glance at the literature: RL for MFC

Early works on MDP viewpoint: [Gast and Gaujal, 2011, Gast et al., 2012]

Policy optimization for stationary MFC: [Subramanian and Mahajan, 2019]

Policy gradient for LQ MFC [Carmona et al., 2019a, Wang et al., 2021] and zero
sum mean field type game [Carmona et al., 2020]

Multi-time scale for MFC (and MFG):
[Angiuli et al., 2022c, Angiuli et al., 2020, Angiuli and Hu, 2021]:

Mean field MDP: dynamic programming and RL [Carmona et al., 2019b,
Gu et al., 2023, Motte and Pham, 2019, Gu et al., 2021a, Cui et al., 2021]

Decentralized network approach [Gu et al., 2021b]

Model based RL for MFC: [Pásztor et al., 2023]

. . .

Several talks on this topic are available here:
https://sites.google.com/view/mlmfgseminar/past-talks

Survey on this topic: [Laurière et al., 2022a] (updated version soon)

13 / 68

https://sites.google.com/view/mlmfgseminar/past-talks


Three Settings [Laurière et al., 2022a]

Intuitively, at least 3 different settings:

Static:
▶ No states (normal-form game): each player chooses an action a ∼ π(·)
▶ Reward: depends on own action & population’s action distribution
▶ Examples: towel on the beach, urban settlement, . . .

Stationary:
▶ Infinite horizon: learns a stationary policy π(·|x)
▶ Reward: similar than Evolutive case.
▶ Initial state distribution = stationary distribution induced by the population’s policy or

gamma discounted distribution.
▶ Examples: player joining a crowd already in a steady state

Evolutive:
▶ (In)Finite horizon: each player learns a time-dependant policy πn(·|x)
▶ Reward: depends on own state, action & population’s (state,action) distribution.
▶ Fixed initial state distribution
▶ Examples: crowd motion, traffic routing, . . .

Other settings: asymptotic, γ-discounted, ergodic, . . .

In the sequel we mostly stick to the evolutive setting.
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From Optimal Control to MFRL

Mean-Field Control
unknown model // Mean-Field

Reinforcement Learning

Optimal Control

N→∞
MKV

OO

unknown model
// Reinforcement Learning

N→∞
MKV

OO
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Mean Field Control: Finite Population Approximation

N-agent
R. Learning

MFRL

M-agent
Situation

εN εM
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Dynamics and cost

Dynamics: discrete time

Xα,µ
n+1 = F (Xα,µ

n , αn, µn, ϵn+1, ϵ0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

▶ Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ A ⊆ Rk : action

▶ ϵn ∼ ν : idiosyncratic noise, ϵ0
n ∼ ν0 : common noise (random env.)

▶ p(x′|x, a, µ): corresponding transition probability distribution

▶ µn ∈ P(X ×A): a state-action distribution

▶ πn: a policy; randomized actions: αn ∼ πn(·|sn) or αn ∼ πn(·|sn, µn)

Cost: J(π; µ) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα,µ

n , αn, µn

)]

17 / 68



Problem Formulation

Two scenarios:

Cooperative (MFC): Find π∗ s.t.

π∗ minimizes π 7→ JMF C(π) = J(π; µπ) where µπ
n = P0

X
α,µπ
n

Non-Cooperative (MFG): Find (π̂, µ̂) s.t.{
π̂ minimizes π 7→ JMF G(π; µ̂) = J(π; µ̂)
µ̂n = P0

X
α̂,µ̂
n

In this section we focus on the MFC case

MFG in the next section
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MFMDP with Common Noise & Randomization
Key Remark:

α∗ ∈ argmin
α

JMF C(α) = Eϵ,ϵ0

[∑∞
n=0 γnf

(
Xα

n , αn, µπ
n

)]
, µπ

n = P0
Xα

n

= Eϵ0

[∑∞
n=0 γn

∫
X ×A

f
(
x, a, µπ

n

)
νπ

n(dx, da)︸ ︷︷ ︸
function of νπ

n

]

Lifted problem: population / social planner’s optimization problem:
→ state = population distribution µπ

n

→ value function = function of the distribution µ

Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X )
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[ ∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Mean field policy: π̄ kernel X̄ → P(Ā), randomized population-strategies ā
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• State space: X̄ = P(X )
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• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
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Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP [Carmona et al., 2019b]

Under suitable conditions,

J̄∗(µ) := sup
π̄

J̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γE

[
J̄∗(

F̄ (µ, ā, ϵ0)
)]]

π̄(dā|µ)
}

,

where the sup is over a subset of {π̄ : X̄ → P(Ā)}

Likewise for mean field state-action value function Q̄∗

Proof: based on “double lifting” [Bertsekas and Shreve, 1996]

DPPs for MFC: [Laurière and Pironneau, 2016], [Pham and Wei, 2017],
[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm
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[Gast et al., 2012], [Gu et al., 2020], [Djete et al., 2019], [Motte and Pham, 2019], . . .

Here: discrete time, infinite horizon, common noise, feedback controls, . . .
→ well-suited for RL
→ Mean-field Q-learning algorithm
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Mean Field Learning Settings

Hierarchy of settings:
• Setting 1: known model: computational method based on knowledge of MFMDP

(a) Gradient based methods
(b) Dynamic programming based methods

• Setting 2: unknown model but samples from MFMDP: MF learning

Environment

Agent

Cost

fn+1

Distrib.
µn+1

Action

an

Cost

fn

Distrib.

µn

• Setting 3: unknown model but samples from N -agent MDP: approx. MF learning

Environment

Agent

Emp. Cost

f
N

n+1

Emp. Distrib.

µN
n+1

Action

an

Emp. Cost

f
N

n

Emp. Distrib.

µN
n
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Algorithm

Idea 1: Make the “policy gradient” approach model-free
Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function (analog to the “direct approach” in lecture 4)
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θ(k+1) = θ(k) − η∇J(θ(k))
(2) access to a mean field simulator:

→ idem + gradient estimation (0th-order opt.): θ(k+1) = θ(k) − η∇̃J(θ(k))
(3) access to a N -agent population simulator:

→ idem + error on mean ≈ empirical mean (LLN): θ(k+1) = θ(k) − η∇̃N J(θ(k))

Theorem: For Linear-Quadratic MFC [Carmona et al., 2019b]

In each case, convergence holds at a linear rate:
Taking k ≈ O

(
log(1/ϵ)

)
is sufficient to ensure J(θ(k))− J(θ∗) < ϵ.

Proof: builds on [Fazel et al., 2018], analysis of perturbation of Riccati equations
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Numerical Illustration

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, α) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ α2︸︷︷︸
cost of
moving

, µ̄ =
∫

µ(ξ)dξ︸ ︷︷ ︸
mean position

,

Value of the MF cost Rel. err. on MF cost
MF cost = cost in the mean field problem

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small
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Mean Field Q-Function

Idea 2: Generalize Q-learning to Mean-Field Control

Reminder:
Mean Field Markov Decision Process (MFMDP): (X̄ , Ā, p̄, r̄, γ), where:

• State space: X̄ = P(X )
• Action space: Ā = P(X ×A) with constraint: pr1(ā) = µ

• Transition function: µ′ = F̄ (µ, ā, ϵ0) ∼ p̄(µ, ā)
• Reward function: r̄(µ, ā) = −

∫
X ×A f(x, a, µ)ā(dx, da)

Goal: max. J̄ π̄(µ) = E
[ ∞∑

n=0

γnr̄
(
µπ̄

n, ān

)]
, ān ∼ π̄(·|µπ̄

n), µπ̄
n+1 ∼ p̄(·|µπ̄

n, ān),

µπ̄
0 = µ

Q-function associated to a policy π:

Qπ(s, a) = r(s, a) + γEs′∼p(·|s,a),a′∼π(·|s′)

[
Qπ(s′, a′)

]
Mean Field Q-function associated to a mean field policy π̄:

Q̄π̄(s̄, ā) = r̄(s̄, ā) + γEs̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄π̄(s̄′, ā′)

]
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MF Q-Learning

Optimal MF Q-function:

Q̄∗(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Eā′∼π̄(·|s̄),s̄′∼p̄(·|s̄,ā′)

[
Q̄∗(s̄′, ā′)

]
Algorithm:
• Idealized version (synchronous):

Q̄(k+1)(s̄, ā) = r̄(s̄, ā) + γ sup
π̄

Es̄′∼p̄(·|s̄,ā),ā′∼π̄(·|s̄′)

[
Q̄(k)(s̄′, ā′)

]
, (s̄, ā) ∈ X̄ × Ā

= [T̄ ∗Q̄(k)](s̄, ā)

• Following a trajectory (async.): s̄(k+1) ∼ p(·|s̄(k), ā(k)), ā(k+1) ∼ π̄(k+1)(·|s̄(k)),{
Q̄(k+1)(s̄, ā) = Q̄(k)(s̄, ā), (s̄, ā) ∈ X̄ × Ā
Q̄(k+1)(s̄(k+1), ā(k+1))← r̄(s̄(k+1), ā(k+1)) + γ maxā′ Q̄(k)(s̄(k+1), ā′)

Implementation: several possibilities (can be combined):
▶ pure (population and individual) strategies
▶ discretization of X̄ = P(X ), Ā = P(X ×A)
▶ deep Reinforcement Learning
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MF Q-Learning: Numerical Illustration

Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X ), Ā = P(X ×A)

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])
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MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X ), Ā = P(X ×A)

Test 1: m0 = (1/4, 1/4, 1/4, 1/4)
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mODE(x = 2)
mODE(x = 3)
mODE(x = 4)

mQ(x = 1)
mQ(x = 2)
mQ(x = 3)
mQ(x = 4)

Evolution of mm0 optimally controlled (mODE ) or
controlled using the approximate Q-function (mQ)
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V function (Vopt) and approximate Q-function (VQ)
along the optimal flow.

(See section 8.1 of [Laurière, 2021] and section 6.1 of [Carmona et al., 2019b])
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MFC viewpoint, MF Q-learning
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Cyber-security example of [Kolokoltsov and Bensoussan, 2016] (see also lecture 5)

MFC viewpoint, MF Q-learning

pure (population and individual) strategies

discretization of X̄ = P(X ), Ā = P(X ×A)

Test 3: m0 = (0, 0, 0, 1)
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Deep RL for MFC

Instead of discretizing the distribution, we can train a parameterized function to
approximate the Q-function

For instance: neural network trained by DDPG

Note: We do not need to randomize the policy at the population level, but we do
allow randomization at the agent level

See sections 6.1, 6.2 and 6.3 of [Carmona et al., 2019b]
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1W8H4EM0bx0RFQFzIaNEcPiEYzG02b0jb?usp=sharing

Same example as above: MFC for cybersecurity

Solved using deep RL with population-dependent controls
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Another Example: Distribution Planning

Goal: match a target distribution.

X = {1, . . . , 10} and A = {−1, 0, +1}.
Transitions: F (x, a, µ, e, e0) = x + a + e0.

Cost:
f(x, a, µ) = |a|+

∑
i

|µ(i)− µtarget(i)|2.

Here we chose: µtarget = (0, 0, 0.05, 0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0, 0).
No idiosyncratic noise.

Hence in general it is not possible to match the target distribution unless the
agents are allowed to randomize their actions at the individual level.

We use P(A)X for the level-1 action space.

Without or with common noise ε0
n ∈ A.

It is not feasible to rely on a tabular method. We show deep RL results.
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More details in [Carmona et al., 2019b]
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Another Example: Distribution Planning with Common Noise
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Learning

The term “learning” has many interpretations, such as:

In game theory, economics, . . . :
[Fudenberg and Levine, 2009]: “The theory of learning in games [. . . ] examines
how, which, and what kind of equilibrium might arise as a consequence of a
long-run nonequilibrium process of learning, adaptation, and/or imitation”

In machine learning, RL, . . . :
[Mitchell et al., 1997]: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E.”
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Learning/Optimization Algorithms in Games

Learning/optimization methods:
Fixed point iteration

▶ Banach-Picard iterations
▶ idem + damping/mixing/smoothing
▶ Fictitious Play (FP)

Online Mirror Descent (OMD)

. . .

in

Games, particularly in economics, see e.g. [Fudenberg et al., 1998]

Non-atomic games. see e.g. [Hadikhanloo et al., 2021]

Mean Field Games, see e.g. [Hadikhanloo, 2018]
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Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

. . . 7→ π(k) 7→ µ(k) 7→ π(k+1) 7→ . . .

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop
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Best Response and Population Behavior Maps

We focus on MFG and write J = JMF G. For simplicity let’s forget the common noise.

Two important functions:

Best Response map:

BR : µ 7→ π ∈ argmax JMF G(·; µ)

Population Behavior (i.e., mean field) induced when everyone using a policy:

MF : π 7→ µ : µn+1 = Φ(µn, πn)

where:
Φ(µ, π)(x) :=

∑
x∈X

∑
a∈A

p(x|x0, a, µ)π(a|x0, µ)µ(x0), x ∈ X

represents a one-step transition of the population distribution

Mean Field Nash equilibrium: (µ̂, π̂) such that{
µ̂ = MF(π)
π̂ = BR(µ̂)

µ̂ can be unique without π̂ being unique!
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Banach-Picard Fixed Point Iterations

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Convergence: holds under strict contraction property for the map:

µ(k) 7→ µ(k+1)

Typically ensured by assuming that
▶ µ(k) 7→ π(k+1)

▶ π(k+1) 7→ µ(k+1)

are Lipschitz with small enough Lipschitz constants

See e.g. [Huang et al., 2006], [Guo et al., 2019]

Can be relaxed with entropy regularization [Anahtarci et al., 2020],
[Cui and Koeppl, 2021], [Yardim et al., 2022], . . .

Can be modified with damping/mixing/smoothing; e.g. Fictitious Play

Note: If BR(µ(k)) is not a singleton, it is not clear which element to pick as π(k+1);
there could be infinitely many best responses and yet a unique Nash equilibrium!
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Fictitious Play

Fictitious Play method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))
Update population’s average behavior: µ(k+1) = k

k+1 µ(k+1) + 1
k+1 µ(k+1)

Convergence: holds under (Lasry-Lions) monotonicity structure for the MFG

Typically ensured by assuming that:
▶ p is independent of µ
▶ r is separable: r(x, a, µ) = r(x, a) + r̃(x, µ)
▶ r̃ is monotone: ⟨r̃(x, µ) − r̃(x, µ′), µ − µ′⟩ ≤ 0

Consequence: the exploitability is a Lyapunov function

where the exploitability of π facing µ is:

E(π; µ) = sup J(·; µ)− J(π; µ) ≥ 0

See e.g., [Cardaliaguet and Hadikhanloo, 2017], [Hadikhanloo and Silva, 2019],
[Elie et al., 2020], [Perrin et al., 2020], [Geist et al., 2022],
[Delarue and Vasileiadis, 2021], . . .
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Value iteration VS policy iteration

Reminder:

Fixed point method

Update agent’s policy: π(k+1) ∈ BR(µ(k))
Update population’s behavior: µ(k+1) = MF(π(k+1))

Requires computation of a best response⇒ fully solving an MDP

This is analogous to value iteration

An alternative method is policy iteration: greedy update & evaluation

Note: these are not “standard” VI and PI because we need to intertwine updates
of the mean field and the policy/value function
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Policy iteration

Policy iteration method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s policy: π(k+1)(x) = argmaxa∈AQ(k+1)(x, a), x ∈ X

Update population’s behavior: µ(k+1) = MF(π(k+1))

where the representative agent’s Q-function, given µ, is:

Qπ,µ(x, a)

= E
[ ∑

n≥0

γnr(xn, an, µ)
]
, xn+1 ∼ p(·|xn, an, µ), an+1 ∼ π(·|xn+1), x0 = x, a0 = a

= r(x, a, µ) + γE[Qπ,µ(x′, a′)], x′ ∼ p(·|x, a, µ), a′ ∼ π(·|x′)

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See [Cacace et al., 2021], , [Camilli and Tang, 2022], [Tang and Song, 2022],
[Laurière et al., 2023] in the continuous setting, and [Cui and Koeppl, 2021] in
the discrete setting.

The updates can be “smoothed” by averaging→ Online Mirror Descent
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Online Mirror Descent

Online Mirror Descent method

Update agent’s Q-function: Q(k+1) = Qπ(k),µ(k)

Update agent’s average Q-function: Q
(k+1) = Q

(k) + ηQ(k+1)

Update agent’s policy by mirroring: π(k+1)(·|x) = Γ
(
Q

(k+1)(x, ·)
)

Update population’s behavior: µ(k+1) = MF(π(k+1))

where
Γ(y) := ∇h∗(y) = argmax

p∈P(A)
[⟨y, p⟩ − h(π)].

with a regularizer h : P(A)→ R and h∗ : R|A| → R its convex conjugate defined by
h∗(y) = max

p∈P(A)
[⟨y, p⟩ − h(π)]

Convergence: typically under monotonicity structure

Note: Here, no need to compute a BR; just evaluate a Q function & argmax

See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting
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See e.g., [Hadikhanloo, 2018] in the continuous setting, and
[Pérolat et al., 2022], [Geist et al., 2022], . . . in the discrete setting

41 / 68



Summary for FP and OMD
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Other Variations and improvements

Possible ways to fix lack of convergence issues:

Damping / smoothing: e.g.,

µk+1 ← average of past mean fields, πk+1 ← average of past BR, . . .

Softmax policy, e.g.

argmax Q(x, ·)← softmaxτ Q(x, ·)

Entropy regularization, e.g.

r(x, a, µ)← r(x, a, µ)− η log
(

π(a|x)
π̃(a|x)

)
. . .

→ Encompasses many possible variants
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Learning in MFGs

Generic structure: repeated game (iterations)

Update the representative agent behavior

▶ value function
▶ policy (control)

Update the population behavior

Where is there learning?

→ First type of “Learning”: meta-algorithm / outside loop

→ Second type of “Learning”: agent’s viewpoint / inner loop

Given the mean field, the problem faced by a representative player is a standard MDP

⇒We can use any RL algorithm from the literature

Next, we provide some examples
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Systemic Risk

Example (Systemic risk model of [Carmona et al., 2015])

J((an)n; (mn)n) = −E
[ NT∑

n=0

(
a2

n −qan(mn −Xn)︸ ︷︷ ︸
borrow if Xn < mn

lend if Xn > mn

+κ(mn−Xn)2
)

+c(mNT −XNT )2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + ϵn+1 + ϵ0
n+1

At equilibrium: mn = E[Xn|ϵ0], n ≥ 0

[Perrin et al., 2020]: Fictitious Play with Backward Induction or tabular Q-learning

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability
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Crowd Aversion

Example (Ergodic crowd aversion model of [Almulla et al., 2017])
MFG on T,

f(x, m, α) = 1
2 |α|

2 + f̃(x) + ln(m(x)),

with f̃(x) = 2π2
[
−

∑d

i=1 c sin(2πxi) +
∑d

i=1 |c cos(2πxi)|2
]
− 2

∑d

i=1 c sin(2πxi),

then the solution is given by u(x) = c
∑d

i=1 sin(2πxi) and m(x) = e2u(x)/
∫

e2u

[Elie et al., 2020]: Fictitious Play & DDPG (continuous spaces)

Analytical m m Learnt by Deep RL
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Flocking

Example (Flocking aversion model of [Nourian et al., 2011])

state = (position, velocity) = (x, v) ∈ R2d,
{

xn+1 = xn + vn∆t,

vn+1 = vn + an∆t + ϵn+1,

with running cost: fflock
β (x, v, µ) =

∥∥∥∥∫
R2d

(v − v′)
(1 + ∥x− x′∥2)β

dµ(x′, v′)
∥∥∥∥2

,

where β ≥ 0, and µ is the position-velocity distribution.

[Perrin et al., 2021b]: For continuous space problems: Deep RL
Deep RL (SAC) for the policy (≈ control)
Deep NN (normalizing flow) for the population distribution

Initial distribution At convergence
Video: https://www.youtube.com/watch?v=TdXysW_FA3k
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Building Evacuation [Pérolat et al., 2022]

Example (Crowd motion during building evacuation)
Grid world with movement to neighboring cells, and reward:

r(x, a, µ) = −η log(µ(x)) + 10× 1floor=0

Inspired by [Djehiche et al., 2017]

Initial distribution
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Four room exploration [Geist et al., 2022]

Crowd motion in 2D grid world, r(x, a, µ) = − log(µ(x)). (See also lecture 1)

Fixed point Fictitious Play OMD Damped Fixed Point

Softmax Fixed Point Softmax FP Boltzmann PI
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Deep OMD and Deep FP [Laurière et al., 2022b]

Crowd exiting a maze, with congestion effects in the reward
Deep RL combined with Online Mirror Descent & Fictitious Play
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You can reproduce this experiment in OpenSpiel! (see next section)

50 / 68



Deep OMD and Deep FP [Laurière et al., 2022b]

Crowd exiting a maze, with congestion effects in the reward
Deep RL combined with Online Mirror Descent & Fictitious Play

0 10 20

0

5

10

15

20
0 10 20 0 10 20 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0 50000 100000 150000 200000 250000 300000
step

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

You can reproduce this experiment in OpenSpiel! (see next section)
50 / 68



Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs
Setting
Learning/Optimization Methods
Reinforcement Learning Methods
Unifying RL for MFC and MFG: a Two Timescale Approach

4. MFGs in OpenSpiel

5. Conclusion



Definitions & Unification via Two timescales [Angiuli et al., 2022c]

MFControl: Fix a control α, compute induced distribution µα, update α, . . .
MFGame: Fix a distribution µ, compute best response αµ, update µ, . . .

Unification: update both α, µ simultaneously but at different rates ρα, ρµ

• ρα < ρµ ⇒ α evolves slowly⇒ MFControl
• ρα > ρµ ⇒ µ evolves slowly⇒ MFGame

Implementation: Finite state space X and finite action space A, stationary problem

Q-learning: Given µ, optimal cost-to-go when starting at x using action a

Q(x, a) = f(x, µ, a) +
∑

x′∈X

p(x′|x, µ, a) min
a′

Q(x′, a′)︸ ︷︷ ︸
=V (x′)

.

Note: optimal control is α̂Q(x) = argmina Q(x, a).

The scheme can be written as:
{

Qk+1 = Qk + ρQ
k T (Qk, µk)

µk+1 = µk + ρµ
k P(Qk, µk),

where
{
T (Q, µ)(x, a) = f(x, a, µ) + γ

∑
x′ p(x′|x, a, µ) mina′ Q(x′, a′)−Q(x, a),

P(Q, µ)(x) = (µP Q,µ)(x)− µ(x), with P Q,µ(x, x′) = p(x′|x, α̂Q(x), µ)

Convergence: based on Borkar’s two timescale approach (includes sto. approx.)
Rem.: For MFG only see e.g. [Mguni et al., 2018], [Subramanian and Mahajan, 2019]
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Numerical Results on LQ Example [Angiuli et al., 2022c]

Extra difficulty: the agent needs to estimate the distribution

Environment
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ftn+1

State

Xtn+1
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Xtn

Numerical illustration: Linear-quadratic example
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Comments

Tuning properly the two learning rates is not trivial

Proof of convergence (ongoing work with Andrea Angiuli, Jean-Pierre Fouque,
and Mengrui Zhang)

Application to other models, such as mean field control games
[Angiuli et al., 2022b, Angiuli et al., 2022a]: mean field of players in a Nash
equilibrium, where each agent is of mean field type (solves an MFC)→ 3 time
scales

Continuous setting (ongoing work of Andrea Angiuli, Jean-Pierre Fouque,
Ruimeng Hu et al.)

RL for MFG without oracle for the distribution [Zaman et al., 2023]
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OpenSpiel

Open source framework for research in learning in games

Main motivation: multi-agent reinforcement learning (MARL)

Marc Lanctot (Google DeepMind) + many contributors

Mostly in C++ and Python; APIs in Julia, . . .

Various games including zero-sum games, N-player games, imperfect
information, . . .

Chess, Blackjack, Atari, Kuhn poker, Go, . . .

And also: Mean field games
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OpenSpiel

Introduction to OpenSpiel:

https://openspiel.readthedocs.io/en/latest/intro.html

Python notebook:
https://colab.research.google.com/github/deepmind/open_
spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb

Tutorials by Marc Lanctot available online:
https://www.youtube.com/watch?v=8NCPqtPwlFQ

Paper [Lanctot et al., 2019]

Two big components:

▶ Games

▶ Algorithms

55 / 68

https://openspiel.readthedocs.io/en/latest/intro.html
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://colab.research.google.com/github/deepmind/open_spiel/blob/master/open_spiel/colabs/OpenSpielTutorial.ipynb
https://www.youtube.com/watch?v=8NCPqtPwlFQ


MFG in OpenSpiel

Julien Pérolat, Raphael Marinier, Sertan Girgin & growing number of contributors
Théophille Cabannes, Sarah Perrin, Paul Muller, . . .

For today, two main questions:

▶ How to define a new MFG model (environment)?

▶ How to define a new algorithm to learn the MFG solution?
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Existing codes for MFG in OpenSpiel

MFG models in C++: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/games/mfg

MFG models in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/games

▶ Crowd modeling 1D illustrated in [Perrin et al., 2020]
▶ Crowd modeling 2D illustrated in [Perrin et al., 2020, Geist et al., 2022]
▶ Dynamic routing illustrated in [Cabannes et al., 2022]
▶ Linear quadratic (1D) illustrated in [Laurière et al., 2022b]
▶ Predator prey (multi-population 2D) illustrated in [Pérolat et al., 2022]

MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [Laurière et al., 2022b]
▶ Boltzmann policy iteration [Cui and Koeppl, 2021]
▶ Fictitious play [Perrin et al., 2020], . . .
▶ Fixed point
▶ Mirror descent [Pérolat et al., 2022]
▶ Munchausen deep mirror descent [Laurière et al., 2022b]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!
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▶ Crowd modeling 2D illustrated in [Perrin et al., 2020, Geist et al., 2022]
▶ Dynamic routing illustrated in [Cabannes et al., 2022]
▶ Linear quadratic (1D) illustrated in [Laurière et al., 2022b]
▶ Predator prey (multi-population 2D) illustrated in [Pérolat et al., 2022]

MFG algorithms in Python: https://github.com/deepmind/open_spiel/
tree/master/open_spiel/python/mfg/algorithms

▶ Deep fictitious play [Laurière et al., 2022b]
▶ Boltzmann policy iteration [Cui and Koeppl, 2021]
▶ Fictitious play [Perrin et al., 2020], . . .
▶ Fixed point
▶ Mirror descent [Pérolat et al., 2022]
▶ Munchausen deep mirror descent [Laurière et al., 2022b]
▶ Munchausen mirror descent

as well as codes for policies and an evaluation metric: exploitability (nash_conv)
Some examples: https://github.com/deepmind/open_spiel/tree/
master/open_spiel/python/mfg/examples

More to come soon. Contributions are welcome!
57 / 68

https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/mfg
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/games
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/algorithms
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples
https://github.com/deepmind/open_spiel/tree/master/open_spiel/python/mfg/examples


MFG model in OpenSpiel: State

Q1. How to define a new MFG model?

State of the game = all the information required to describe the current stage

In an MFG: representative player’s state and mean field state

Evolution of the state:

▶ Players play in turn

▶ Every change to the state occurs through a node

▶ Each node has a set of possible actions and a probability to pick each
action

▶ So: the representative player is a node

▶ the “mean field” is viewed as a node

▶ and the “noise” is viewed as a node too

▶ Time is part of the state: (t, x)

The state evolves along a tree of possibilities
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MFG model in OpenSpiel: State evolution
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MFG model in OpenSpiel: State types

Initial chance node:
▶ actions: possible states
▶ probabilities: given by the initial state distribution

Player:
▶ actions: set of possible (“legal”) actions for the player
▶ probabilities: given by the policy used by this player

Chance:
▶ actions: set of possible values for the noise impacting the dynamics
▶ probabilities: distribution of the noise values

Mean field: no actions
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MFG in OpenSpiel: Distribution

The distribution is something specific to MFGs (compared with other games in
OpenSpiel)

Remember that time is part of the state object. Evaluating the distribution at a
given state means evaluating the distribution at (t, x).

master/open_spiel/python/mfg/algorithms/distribution.py

▶ Computes the distribution of a policy
▶ DistributionPolicy

⋆ evaluate: based on the logic behind nodes
⋆ _one_forward_step

master/open_spiel/python/mfg/distribution.py

▶ Representation of a distribution for a game
▶ Distribution

master/open_spiel/python/mfg/tabular_distribution.py

▶ Tabular representation of a distribution for a game
▶ TabularDistribution
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MFG model in OpenSpiel: Example

We take a concrete example: crowd modeling in 1D with a grid world

master/open_spiel/python/mfg/games/crowd_modelling.py

3 main classes

MFGCrowdModellingGame:
▶ __init__: initialization
▶ new_initial_state: generate new initial state

MFGCrowdModellingState:
▶ __init__: initialization
▶ _legal_actions: actions that are valid
▶ chance_outcomes: distribution over values of the noise in the dynamics
▶ _apply_action: will be called at each node to modify the state based on the action
▶ _rewards: representative player’s reward

Observer:
▶ defines an observation, here basically t and x
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MFG algorithms in OpenSpiel: Principles

Q2. How to define a new algorithm?

Simplest one: Fixed point
master/open_spiel/python/mfg/algorithms/fixed_point.py

A bit more involved: Fictitious play
master/open_spiel/python/mfg/algorithms/fictitious_play.py

Main class FictitiousPlay

Main method iteration

▶ Compute the distribution (sequence) associated to the current policy
▶ Update the policy (using fictitious play rule); this uses an auxiliary class

MergedPolicy to mix the previous policy and the new one

get_policy: returns the current policy
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MFG algorithms in OpenSpiel: Reinforcement Learning

Two building blocks:

Environment (in the sense of RL): in charge of updating the State based on the
based on the Game

Agent: block in charge of training the policy by interacting with the environment

Example of DQN (fixed distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_jax.py

Example of DQN embedded in Fictitious Play (updating the distribution):

master/open_spiel/python/mfg/examples/mfg_dqn_fp_jax.py

Key steps:
fp.iteration(br_policy=joint_avg_policy): performs one iteration of
fictitious play (updates the policy and the distribution)
distrib = distribution.DistributionPolicy(game,
fp.get_policy()): get the distribution induced by the new policy, just
computed by fictitious play iteration
env.update_mfg_distribution(distrib): update the environment’s
distribution using the one obtained from the fictitious play iteration
agents[p].step(time_step): train the agent
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Sample code

Code
Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1HyDFqZ-qMW25sL1zyR2qYv86f_ldrm5g?usp=sharing

MFG example in OpenSpiel
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Outline

1. Introduction

2. RL for MFC (MFRL)

3. RL for MFGs

4. MFGs in OpenSpiel

5. Conclusion



Summary (of this lecture)

Background on RL

RL for MFC
▶ Mean Field MDP viewpoint

RL for MFG
▶ Meta-algorithm to update the mean field
▶ RL algorithm to update the policy

Open Spiel

Survey paper: [Laurière et al., 2022a]
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Summary of this course

67 / 68



Some References
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• Gomes, D. A., & Saúde, J. (2014). Mean field games models—a brief survey. Dynamic Games and Applications, 4, 110-154.
• Cardaliaguet, P., & Porretta, A. (2020). An Introduction to Mean Field Game Theory. In Mean Field Games (pp. 1-158).

Springer, Cham.
• Carmona, Delarue, Graves, Lacker, Laurière, Malhamé & Ramanan: Lecture notes of the 2020 AMS Short Course on Mean

Field Games (American Mathematical Society), organized by François Delarue
• Achdou, Y., Cardaliaguet, P., Delarue, F., Porretta, A., & Santambrogio, F. (2021). Mean Field Games: Cetraro, Italy 2019

(Vol. 2281). Springer Nature.
• Delarue, F. (Ed.). (2021). Mean Field Games (Vol. 78). American Mathematical Society.
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Springer.
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• Surveys about numerical methods for MFGs:
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numerical analysis and applications (pp. 1-47). Springer, Berlin, Heidelberg.
• Achdou, Y., & Laurière, M. (2020). Mean Field Games and Applications: Numerical Aspects. Mean Field Games: Cetraro,

Italy 2019, 2281, 249.
• Laurière, M. (2021). Numerical Methods for Mean Field Games and Mean Field Type Control. Lecture notes for the AMS’20

short course. arXiv preprint arXiv:2106.06231.
• Carmona, R., & Laurière, M. (2021). Deep Learning for Mean Field Games and Mean Field Control with Applications to

Finance. arXiv preprint arXiv:2107.04568.
• Hu, R., & Laurière, M. (2023). Recent developments in machine learning methods for stochastic control and games. arXiv
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• Laurière, M., Perrin, S., Geist, M., & Pietquin, O. (2022). Learning mean field games: A survey. arXiv preprint
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Thank you for your attention

Questions?

Feel free to reach out: mathieu.lauriere@nyu.edu

mathieu.lauriere@nyu.edu
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